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Machine learning models outperform 
deep learning models, provide interpretation 
and facilitate feature selection for soybean trait 
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Abstract 

Recent growth in crop genomic and trait data have opened opportunities for the application of novel approaches to 
accelerate crop improvement. Machine learning and deep learning are at the forefront of prediction-based data anal-
ysis. However, few approaches for genotype to phenotype prediction compare machine learning with deep learning 
and further interpret the models that support the predictions. This study uses genome wide molecular markers and 
traits across 1110 soybean individuals to develop accurate prediction models. For 13/14 sets of predictions, XGBoost 
or random forest outperformed deep learning models in prediction performance. Top ranked SNPs by F-score were 
identified from XGBoost, and with further investigation found overlap with significantly associated loci identified from 
GWAS and previous literature. Feature importance rankings were used to reduce marker input by up to 90%, and sub-
sequent models maintained or improved their prediction performance. These findings support interpretable machine 
learning as an approach for genomic based prediction of traits in soybean and other crops.
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Introduction
Soybean (Glycine max) has a variety of uses including 
human consumption, livestock and aquaculture feed, 
and biofuel production [1, 2]. The demand for soy-
bean is expected to increase [3], whilst climate change 
is expected to decrease overall crop productivity, 
threatening global food security [4]. The production of 
large quantities of genomic data in the last 10-15 years 
has supported the development of genomics-based 
approaches for crop improvement that can address these 
challenges [5]. Genomic Selection (GS) has been applied 

to associate Single Nucleotide Polymorphisms (SNPs) 
with breeding values to accelerate crop improvement. 
GS has the potential to reduce breeding cycle length 
[6] and accelerate genetic gains in crops by improving 
breeding selection [7], supported by methods such as 
speed breeding [8].

Studies have shown that using non-linear prediction 
algorithms such as Machine Learning (ML) can improve 
prediction accuracy in GS [9–11]. The application of ML 
in crop breeding provides advantages such as the use 
of more complex data, along with potentially provid-
ing solutions to problems such as epistasic effects and 
genomic imprinting [12]. A relatively new subcategory of 
ML, Deep Learning (DL), has provided promising results 
in a range of fields and disciplines using interconnected 
neural networks such as Convolutional Neural Networks 
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(CNN) and Deep Neural Networks (DNN). The advan-
tage of DL is that when optimised appropriately, it can 
identify complex multidimensional patterns in large data 
sets [13]. CNNs specifically have already demonstrated 
this for GS through its application in selecting high value 
phenotypes from genomic data [6].

The underlying mechanisms of genotype to pheno-
type predictions remain unclear. Adding associated SNPs 
from Genome Wide Association Studies (GWAS) into 
linear prediction models has shown varying results [14, 
15]. For non-linear models, tools are being developed to 
increase the accuracy of predictions in ML and DL using 
GWAS data [16]. The changes in accuracy using GWAS 
related inputs suggests that prediction models can, for 
certain traits, place importance on these SNPs for build-
ing the model. Identification of these loci provides the 
opportunity to guide the reduction of input data through 
feature selection in further models.

For genotype to phenotype predictions, it is appropri-
ate to test a range of ML/DL algorithms as each algo-
rithm has its own underlying assumptions and biases, 
and no algorithm provides the best performance for all 
traits [17]. Studies in this area often compare DL models 
to linear models and with older ML models such as ran-
dom forest [18], but often forgo the inclusion of one of 
the most recent ML models, XGBoost. This omission is 
of concern due to XGBoost’s accurate prediction in other 
disciplines [19–21], and XGBoost has shown to outper-
form DL in some tabular data problems [22].

In this study we build robust prediction models for 
seven agronomic traits in soybean and compare the 
suitability of prediction models for use in crop breed-
ing. Our results suggest that XGBoost has an affinity for 
genotype to phenotype prediction and should be consid-
ered in future model development. The trait associated 
regions identified by XGBoost overlap with regions of 
significantly associated loci from GWAS, and XGBoost 
can independently identify these regions. Furthermore, 
reducing the input data to a targeted selection of SNPs 
based upon initial regions of importance to XGBoost 
tree building can provide equal or better results using far 
fewer SNPs.

Methods
SNP discovery & phenotype data
A total of 1110 diverse soybean accessions were selected 
from the USDA Soybean Germplasm Collection for SNP 
calling [23]. The sequence metadata for all 1110 soybean 
accessions are summarized in Table S2. Clean reads were 
mapped to the pangenome using BWA-MEM [24] v0.7.17 
with default settings and duplicates removed by Picard tools 
(http:// broad insti tute. github. io/ picard/). Reads were rea-
ligned using GATK [25] v3.8-1-0 RealignerTargetCreator 

and IndelRealigner, followed by variant calling using GATK 
HaplotypeCaller. The resulting SNPs were filtered follow-
ing the SNP filtering methodology described in Marsh et al 
[26], (QD < 2.0 || MQ < 40.0 || FS > 60.0 || QUAL < 60.0 || 
MQrankSum < − 12.5 || ReadPosRankSum < − 8.0) to 
remove low-quality SNPs. High-confidence SNPs were 
identified by removing SNPs with minor allele frequency 
(MAF) < 0.05 and missing genotype rate < 10% using 
VCFtools [27]. Phenotype data for flower colour, seed coat 
colour, pod colour, pubescence density, seed oil content, 
seed protein content and seed weight were downloaded 
from the USDA-GRIN database (https://npgsweb.ars-grin.
gov/) for the accessions that had available observation data. 
The range of phenotype data is summarised in Table S3.

Genome wide association studies
The R package rMVP v0.99.15 [28] was used to con-
duct GWAS, with the FarmCPU statistical technique. 
FarmCPU allows for the population structure to be 
controlled by using the first three principal compo-
nents (PCs) from an automatic principal component 
analysis (PCA) based on the marker data [29], whilst 
the significance threshold was defined as 0.05/marker 
size. GWAS was run with rMVP using the follow-
ing settings, nPC.FarmCPU = 3, priority = “mem-
ory”, vc.method = “BRENT”, maxLoop = 10, method.
bin = “EMMA”, threshold = 0.05.

Data pre‑processing for machine learning model building
Vcftools [27] vcf-to-tab was used to remove vcf pream-
ble. A python script was used to reformat this file into a 
structured csv. Soybean lines with over 1% missing data 
were excluded.

SNPs were reduced by 95% by extracting 1 in 20 
sequential SNPs, as our initial total of approximately 5 
million SNPs was not compatible with GPU memory 
requirements. For each trait, 20% of samples were ran-
domly excluded to create a holdout set by using the pack-
ages pandas and numpy within a python script before 
model building. This holdout data was later used for 
model validation.

For models with reduced feature input, SNPs for 
genomic regions based on XGBoost feature importance 
were extracted using a custom python script. Holdout 
sets were produced in the same manner as for the com-
plete dataset.

Model building and feature importance
A virtual sandbox environment was built on GPU servers 
using singularity with a tensorflow docker image (version 
‘tensorflow:20.03-tf2-py3’). Jupyter notebooks were con-
nected to the server, and are available at https:// github. 
com/ mitch gill16/ Soybe an_ Trait_ Predi ction. The python 
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package Scikit learn v0.21 [30] was used to perform a 
variety of ML relevant tasks.

For multiclass classification problems, XGBClas-
sifier was initiated with objective = ‘multiclass’ and 
num_classes set to the number of trait classes. For other 
regression and classification problems, XGRegressor and 
XGBClassifier were initiated with default settings, all of 
which were loaded in with the XGBoost package v1.1.1. 
XGBoost model parameters were optimised using the 
BayesSearchCV object from scikit optimisation package 
v0.8.1. The setting space was follows: learning_rate(0.01 
- 1.0), min_child_weight(0 - 10), max_depth(0 - 50), 
max_delta_step(0 - 20), subsample(0.01 - 1.0), colsam-
ple_bytree(0.01 - 1.0), colsample_bylevel(0.01 - 1.0), reg_
lambda(1e^9 - 1000), reg_alpha(1e^9 - 1.0), gamma(1e-9 
– 0.5), min_child_weight(0 - 5), n_estimators(50 – 
200) and scale_pos_weight(1e^6 - 500). The optimum 
XGBoost parameters were then used to fit the XGBoost 
models using stratified k-fold cross validation for classifi-
cation tasks, and standard k-fold cross validation (k = 10) 
from the scikit learn model selection package. The best 
performing model from cross validation was saved using 
the inbuilt pickle python package (protocol version 5) 
and used for prediction on the holdout dataset.

The functions ‘get_booster’ and ‘get_scores’ was used to 
generate dictionaries of importance scores for each fea-
ture used by the XGBoost model. The top 20 scores were 
retrieved and ranked. Original SNP names were retrieved 
from a stored list of headers, and allele values were 
retrieved by a custom inverse one hot encoding function.

Random forest objects for classification (Random-
ForestClassifier), and continuous (RandomForestRegres-
sor) traits were loaded from the scikit learn ensemble 
python package. Both the random forest classifier object 
and random forest regressor object were initialised with 
n = estimators = 100, max_features = “sqrt” and the 
random state set to a random integer between 0 and 
5000. To ensure an optimised and fitted model could be 
selected for use on the holdout dataset, the random for-
est objects were fitted using stratified k-fold cross vali-
dation for classification tasks, and standard k-fold cross 
validation (k = 10) from the scikit learn model selection 
package. The best performing model from all folds dur-
ing cross validation was selected and subsequently saved 
using the inbuilt pickle python package and used for pre-
diction on the holdout dataset.

The Keras 2.4.3 interface (https:// github. com/ keras- 
team/ keras) for the Tensorflow v2.1.0 [31] python library 
was used to build sequential DL models. The CNN archi-
tecture was initially adapted from the successful models 
in the GMStool [16] as a baseline for further adjustment, 
whilst the DNN architecture involved adapting ele-
ments from both the GMStool paper and a successful 

DNN architecture for prediction of yield [32]. The final 
hyperparameter and architecture choices were a mixture 
of trial and error, grid searching and adaption from the 
aforementioned papers.

The CNN models used three 1D convolution layers 
using Rectified Linear Unit (ReLU) activation, with a 20% 
dropout between layer one and two, and a 10% dropout 
between layer two and three. The convolution layers 
had 12, 10 and 8 filters and a kernel size of 14, 10 and 
8 respectively. The convolution layers were followed by a 
1D max pooling layer of size 2 and batch normalisation 
before being flattened and fed into three dense layers. 
These dense layers had 48, 32 and 16 nodes, each with 
ReLU activation and were followed by a batch normalisa-
tion layer.

The DNN models for this study were a fully connected 
feed forward multilayer perceptron network consisting of 
five dense layers with ReLU activation functions, a drop-
out layer of 3, 2 and 1% after the first three layers respec-
tively, and a batch normalisation layer after the final 
dense layer. The layers consisted of 200, 100, 64, 32 and 
16 nodes each. For both CNN’s and DNN’s, the output 
layer had one node with linear activation for continuous 
traits, 1 node with sigmoid activation for binary categori-
cal traits and x nodes with softmax activation for multi-
class traits, where x = the number of possible classes. The 
optimiser used was Adamax with a learning rate of 0.003. 
The batch size was 1/50th of the total amount of sam-
ples to ensure memory could be managed when running 
through the neural network.

Results
XGBoost, random forest, CNN and DNN models were 
trained and evaluated on SNP input data uniformly dis-
tributed across the genome to predict each of the fol-
lowing traits: flower colour, pod colour, pubescence 
density, seed coat colour, seed oil content, seed protein 
content and seed weight (Table  1, Fig.  1). Categori-
cal traits were evaluated with classification accuracy, 
whereas continuous traits used Root Mean Squared 
Error (RMSE) as a percentage of trait mean to evalu-
ate models and allow a comparison of prediction error 
across traits and models. XGBoost models outper-
formed other models for all categorical traits, however 
for the continuous traits of seed oil and seed protein 
percentage, random forest was the best performer, 
and for seed weight the CNN was most accurate. In 
comparison to the DL architectures (CNN & DNN), 
XGBoost was on average 10.32% more accurate across 
classification predictions. XGBoost’s performance in 
comparison to DL prediction error for traits requir-
ing regression analysis was negligible, with an average 
of 0.16% reduction in error for regression traits when 
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compared to DL prediction error. The best performing 
XGBoost model on each continuous trait was outper-
formed by the trained DNN for seed oil prediction, the 
trained CNN for seed protein prediction and both the 
CNN and DNN models for seed weight prediction. Like 
XGBoost, random forest on average performed better 
than DL models for classification traits, with a 4.17% 
increase in accuracy when compared to DL accuracy 
across classification prediction. Random forest models 

also had the lowest error for both seed oil and seed pro-
tein prediction.

To compare the results and assess the potential to 
reduce input data we interpreted the XGBoost mod-
els and found SNPs that were important for prediction. 
For each trait, the XGBoost input SNPs were ranked by 
their F-score, measured in gain, which is a measure of the 
relative contribution of each SNP. For flower colour, seed 
coat colour, pubescence density and seed weight, the 20 

Table 1 Evaluation and comparison of prediction models on whole genome SNP input data

† XGB = XGBoost, RF = Random Forest, CNN = Convolutional Neural Network, DNN = Deep Neural Network
‡ XGB-DL Diff = Difference in performance between XGBoost & deep learning architectures, RF-DL Diff = Difference in performance between random forest and deep 
learning architectures

Fig. 1 Model Prediction Performance Across Soybean Traits. A Accuracy for flower colour, pod colour, pubescence density and seed coat colour for 
models trained on SNP input data uniformly distributed across the soybean genome. B Root mean square error as a percentage of mean trait value 
for seed oil as a percentage of total seed weight, seed protein as a percentage of total seed weight and total seed weight. Models were trained 
on SNP input data uniformly distributed across the soybean genome. C Accuracy for flower colour, pod colour, pubescence density and seed coat 
colour for models trained on reduced SNP input data set. D Root mean square error as a percentage of mean trait value for seed oil as a percentage 
of total seed weight, seed protein as a percentage of total seed weight and total seed weight. Models were trained on a reduced SNP input data set
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highest ranking SNPs by XGBoost F-score included sub-
sets of at least 3 SNPs within close proximity. Each SNP 
in a subset was separated by a maximum of 100kbp from 
their nearest neighbouring SNP within a given subset. 
The genetic regions that these subsets of SNPs spanned 
were defined as regions of importance (ROI), of which 6 
in total were identified across 4 traits, and are summa-
rised in Table 2. To investigate the ROIs further we per-
formed a GWAS with all available SNPs to determine 
whether any of the ROI overlapped with loci identified 
from GWAS. GWAS identified one major loci for each of 
flower colour, seed coat colour and pod colour (Table 3) 
(Fig. S1). A flower colour ROI and seed coat colour ROI 
overlapped with significant GWAS loci for their respec-
tive trait, whereas the seed weight ROI did not overlap 
with any significant GWAS loci. There were no significant 
regions identified for pubescence density using GWAS, 
however a region identified from our XGBoost models 
overlaps with a previously identified locus on chromo-
some 12 for pubescence density [33]. In summary, the 
majority of the significant GWAS loci identified in this 
study had an overlapping ROI whilst three out of six ROI 
identified had an overlapping significant GWAS loci from 
this study and a previous study.

We selected a subset of targeted SNPs for each trait 
based on the XGBoost interpretation (Figs. S2-S5, Table 
S1). Input data was reduced, retaining between 27 and 
4% depending on the trait being predicted. Subsequent 
models for predicting discrete traits showed an increase 
in accuracy across all classification predictions, ranging 
from 2.42 to 7.70% (Table 4). However, models for contin-
uous traits showed mixed results (Table 4). Seed protein 
prediction showed a negligible increase in average error 
when compared to the original models. Seed oil predic-
tion had a minor increase in average error across mod-
els, whilst seed weight prediction had a larger increase in 
average error of 5.35% compared to the original models.

When using the reduced SNP input data to evaluate the 
ML and DL architectures (Table  5), XGBoost performed 
well for classification traits as it had the highest accuracy 
for flower colour, pod colour and seed coat colour, while 
for regression traits, XGBoost had the lowest error for seed 
oil prediction. In comparison to the DL models, XGBoost 
was on average 4.03% more accurate for classification traits 
when using reduced SNP input data. For regression traits, 
XGBoost showed a 1.20% lower prediction error when 
compared to the average DL prediction error, and out-
performed both the CNN and DNN model for each trait. 

Table 2 Regions of Importance (ROI) from XGBoost

† SAL = Significantly Associated Loci identified from GWAS

Table 3 Significantly Associated Loci (SAL) from GWAS

Table 4 Model performance from whole genome SNP input data compared to Reduced Input SNP Data

† RMSE = Root Mean Square Error
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Like XGBoost, random forest on average performed bet-
ter than DL models for classification traits using reduced 
SNP input data, with a 2.10% increase in accuracy when 
compared to DL accuracy across classification traits. Using 
reduced SNP input data, random forest was the best per-
forming model for seed oil and seed weight prediction. 
Random forest had a reduction in error of 1.23% when 
compared to DL error and outperforms both the CNN and 
DNN model for each of three regression traits.

Across all traits with the complete SNP data, XGBoost 
was the best performing model for 4/7 traits, random forest 
for 2/7 traits, and a CNN for 1/7 traits. With reduced SNP 
data, XGBoost was the best performing model for 4/7 traits, 
and random forest for 3/7 traits. For both datasets XGBoost 
was the best predictor of flower colour, pod colour and seed 
colour whilst random forest was the best predictor of seed 
protein content. Overall, XGBoost was the best performer 
8 of 14 times, and remained robust after feature reduction.

Discussion
Machine learning performance
Here we demonstrate the performance of XGBoost and 
random forest for genotype to phenotype predictions in 
comparison to widely used DL architectures. From the 
14 sets of models, DL outperformed the ML models on 
only one occasion. The models in this study were all non-
linear, which has the advantage of being able to include 
non-additive variances [34, 35]. Our results suggest that 
XGBoost and random forest models are better able to 
account for non-additive effects in genotype to phenotype 
prediction than DL architectures. The study emphasises 
the need to test a variety of models and provides an evalu-
ation of the XGBoost algorithm in this research space.

Building and training effective DL models requires 
abundant high-quality training data [36], and for this 
study there was access to over 5.5 million SNPs for 
between 700 and 1000 individuals per trait. Khaki and 
Wang [32] produced successful yield prediction models in 
maize using over 2000 individuals, and Jeong et  al. [16], 

trained CNNs on soybean with 1928 individuals. However 
it is to be noted that Jeong et al. [16], also trained success-
ful CNN’s for rice genomic prediction on 413 individu-
als which suggests that sample size might not be the sole 
reason that a deep learning model underperforms. Whilst 
model optimisation and training were done according 
to best practices, it is possible that ML algorithms were 
better able to train on this smaller dataset than DL algo-
rithms. Recent research supports this notion by conclud-
ing that random forest was able to better predict from 
small, tabulated datasets than DL, whilst DL was able to 
better predict from larger tabulated datasets [37]. Our 
work remains consistent with this finding and suggests 
that XGBoost has the ability to predict effectively from 
relatively small, tabulated datasets. Another consideration 
is recent evidence to suggest that DL models do not esti-
mate complex marker effects, but rather use the genetic 
relatedness between markers to make predictions. This 
may partially explain the underperformance of DL in crop 
genomic prediction problems [38].

The importance of marker density for prediction var-
ies between datasets, with some evidence demonstrating 
increasing SNP density can increase accuracy and is posi-
tively correlated with heritability [39], whereas other evi-
dence suggests that marker density is less important, and 
that heritability of a trait is more important [40]. A study in 
cattle found that highly ranked subsets of 400-3000 SNPs 
provided better results than evenly spaced SNPs across the 
genome [41], similar to the results of our study. The ability 
to reduce the number of SNPs whilst retaining a high pre-
diction performance increases the feasibility of genotyping 
for genomic selection with tools such as SNP arrays.

Explainability and interpretability for genotype 
to phenotype prediction
XGBoost’s inbuilt methods were used to interpret the 
model and guide the selection of dense areas of SNPs for 
further model building. Using model interpretability to 
guide feature selection was effective, however a potential 

Table 5 Evaluation and comparison of prediction models with reduced input data

† XGB = XGBoost, RF = Random Forest, CNN = Convolutional Neural Network, DNN = Deep Neural Network
‡ XGB-DL Diff = Difference in performance between XGBoost & deep learning architectures, RF-DL Diff = Difference in performance between random forest and deep 
learning architectures
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limitation of the study is that for some traits in the initial 
genome-wide SNP input data models, XGBoost was not 
the best performing model. As an alternative, model-
agnostic local explanation methods such as SHAP [42] 
could be used on the best performing models to rank 
feature importance. Other methods that could be used 
to reduce input include QTL-based genomic assisted 
prediction [43], using GWAS associated SNPs [44] or 
using a selection of significant and non-significant SNPs 
from GWAS to train genomic prediction models [16].

One concern with explaining models that were built 
without the intention of interpretability is that it can 
lead to issues of validation [45], and explanations that are 
misleading [46]. Interpretable models such as XGBoost 
enable the identification of features in the underlying 
architecture, and support retraining to improve model 
classification. In addition, interpretable models allow the 
identification of genetic markers, and hence a genomic 
location for traits, providing biological context [32]. 
Further model building through reduction of the input 
space has demonstrated the ability to improve the per-
formance across ML and DL models for trait prediction 
[17, 32, 47].

Comparison and similarity of XGBoost feature importance 
and significantly associated regions identified 
through GWAS
The loci identified from GWAS for flower colour on 
chromosome 13, seed coat colour on chromosome 8 and 
pod colour on chromosome 19 are supported by previ-
ous research [48, 49]. In addition, the associated loci for 
flower and seed coat colour overlapped with the regions 
of importance identified by XGBoost. Despite being differ-
ent methods, there is evidence that interpretable ML can 
use correlation between features and outcomes to extract 
associations [50], which is similar to how GWAS tests for 
marginal association between a target trait and SNP [51]. 
Our XGBoost models add evidence to this idea, as they 
learn which inputs to use in decisions by lowering the 
cumulative residual error [52], and identified loci associ-
ated with flower and seed coat colour without manual 
labelling to inform the model that there was a significant 
locus present.

This study demonstrated that XGBoost and random 
forest models have the ability to outperform DL archi-
tectures for genotype to phenotype prediction prob-
lems. XGBoost models and GWAS identified overlapping 
genomic regions for two traits. For other traits, XGBoost 
identified genomic regions hosting multiple SNPs that 
may help define new associated regions. Finally, this 
study used the feature importance results as a guide 
to reduce the number of SNPs required. These results 

demonstrate the feasibility of feature reduction for geno-
type to phenotype predictions and showcase the impor-
tance of an appropriate representation of input.
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Additional file 1: Supplementary Figure 1. P-value of each SNPs 
association for a) flower colour b) seed coat colour c) pod colour in the 
soybean VCF. SNPs coloured red have been determined as significantly 
associated for the given trait as they have a p-value less than the -log10(8) 
significance threshold for this GWAS. Supplementary Figure 2. Graphs 
ranking the top 20 most input SNPs by gain as identified by XGBoost 
models for trait predictions for traits with regions of importance identified 
from XGBoost. Blue bars are region of importance, whereas other colours 
represent collections of important SNPs on the same chromosome. Black 
bars represent left over SNPs with no relation to other SNPs in the ranking. 
SNP rankings for genome wide SNP input for A) flower colour B) seed coat 
colour C) pubescence density D) seed weight. Supplementary Figure 3. 
Top 20 ranked SNPs for XGBoost Seed Oil Prediction. Supplementary 
Figure 4. Top 20 ranked SNPs for XGBoost Pod Colour Prediction. Sup‑
plementary Figure 5. Top 20 ranked SNPs for XGBoost Seed Protein Pre-
diction. Supplementary Table 1. Targeted Regions of SNPs for Reduced 
Input Models. Supplementary Table 2. List of soybean germplasm in the 
pangenome with the sequence coverage. (ND, not defined). Supplemen‑
tary Table 3. Trait Data Types.
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