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Abstract

Background: Eucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber
and pulp production. Tissue culture induced callus has become a common tool for Eucalyptus breeding, however, our
knowledge about the genes related to the callus maturation and shoot regeneration is still poor.

Results: We set up an experiment to monitor the callus induction and callus development of two Eucalyptus spe-
cies - E.camaldulensis (high embryogenic potential) and E. grandis x urophylla (low embryogenic potential). Then, we
performed transcriptome sequencing for primary callus, mature callus, shoot regeneration stage callus and senes-
cence callus. We identified 707 upregulated and 694 downregulated genes during the maturation process of the
two Eucalyptus species and most of them were involved in the signaling pathways like plant hormone and MAPK.
Next, we identified 135 and 142 genes that might play important roles during the callus development of £. cama-
Idulensis and E. grandis x urophylla, respectively. Further, we found 15 DEGs shared by these two Eucalyptus species
during the callus development, including Eucgr.D00640 (stem-specific protein TSJT1), EucgrB00171 (BTB/POZ and
TAZ domain-containing protein 1), Eucgr.C00948 (zinc finger CCCH domain-containing protein 20), EucgrK01667
(stomatal closure-related actinbinding protein 3), Eucgr.C00663 (glutaredoxin-C10) and FucgrC00419 (UPF0481
protein At3g47200). Interestingly, the expression patterns of these genes displayed “N”shape in the samples. Further,
we found 51 genes that were dysregulated during the callus development of £. camaldulensis but without changes
in E. grandis x urophylla, such as Eucgr.B02127 (GRF1-interacting factor 1), Eucgr.C00947 (transcription factor MYB36),
Eucgr.B02752 (laccase-7), Eucgr.B03985 (transcription factor MYB108), Eucgr.D00536 (GDSL esterase/lipase At5g45920)
and Eucgr.B02347 (scarecrow-like protein 34). These 51 genes might be associated with the high propagation ability
of Eucalyptus and 22 might be induced after the dedifferentiation. Last, we performed WGCNA to identify the co-
expressed genes during the callus development of Eucalyptus and gRT-PCR experiment to validate the gene expres-
sion patterns.

Conclusions: This is the first time to globally study the gene profiles during the callus development of Eucalyptus.
The results will improve our understanding of gene regulation and molecular mechanisms in the callus maturation
and shoot regeneration.
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Background

The regeneration of plant tissue or organs under cul-
ture conditions has been extensively used for decades
in plants. Plants generate callus in response to stresses
like wounding and pathogen infection, and callus cells
are totipotent and are able to regenerate the whole plant
body [1]. Depending on the organs they generate, calli
with some degrees of organ regeneration are called with
different names, such as rooty, shooty, embryogenic cal-
lus, and compact callus [2, 3]. In vitro, exogenous appli-
cation of auxin and cytokine has been proved to induce
callus in plants. For example, Skoog and Miller showed
that a high ratio of auxin-to-cytokinin can induce root
regeneration, while a high ratio of cytokinin-to-auxin
can induce shoot regeneration [4]. In nature, wound-
ing, pathogens and interspecific hybrids are common
ways to induce callus and tumors [1]. Some molecules
have been identified to play key roles during the callus
induction and development. For example, lateral organ
boundaries domain (LBD) family of transcription factors
(e.g., LBD16, LBD17, LBD18, LBD29) can mediate the
expression of auxin response factors ARF7 and ARF19
[5, 6]. ARR1 and ARR21 have been identified to induce
callus formation in Arabidopsis [7, 8]. RWP-RK domain
transcription factors like RKD1, RKD2 and RKD4 have
been found to mediate the gametogenesis and embryo-
genesis [9, 10]. In addition, some studies have been dem-
onstrated to uncover the genes and proteins involved in
the callus development. Tan et al. identified 73 proteins
significantly differentially expressed during the callus
development in Vanilla planifolia Andrews [11]. Che
et al. identified RAP2.6L as a key factor for shoot regen-
eration in Arabidopsis because the T-DNA knockdown
mutations in RAP2.6L reduced the expression of many
genes that are normally up-regulated during shoot devel-
opment [12]. However, our knowledge about the genes
involved in the callus development and tissue regenera-
tion process in plants is still poor.

Eucalyptus, a highly diverse genus of the Myrtaceae
family, is widely planted in the world due to its significant
economic values for timber and pulp [13]. As we know,
all commonly recognized methods of vegetative propa-
gation have been applied with Eucalyptus, but most have
resulted in failure especially when applied to adult tissues
[13]. Successful regeneration of plants or organs from
selected Eucalyptus has never been reported until 1981
when callus was induced on embryos and sterile seed-
lings of selected trees of E. leichow [13]. Then, this tech-
nique was applied with many Eucalyptus species like E.

polybractea, E. camaldulensis, E. gomphocephala and E.
viminalis [13]. Another technique that has been success-
fully applied with Eucalyptus is organ culture, in which
differentiated tissues such as leaves, stems and roots are
placed in a controlled system of nutrients and environ-
ment. Roots and/or buds can be induced on the explant
either directly or after the formation of a callus and many
tree species, including Eucalyptus, which can be propa-
gated by organ culture techniques have applied with this
method. Although organ culture techniques are often
used in preference to the traditional methods of vegeta-
tive propagation due to its high multiplication rates, there
are some problems usually happened in developing the
organ culture techniques, such as obtaining aseptic tissue
from field-grown plants, brown exudate, rooting and bud
inhibitors [13]. Also, some factors have been reported
to affect the root initiation in nodes of Eucalyptus trees,
such as the culture medium, the incubation conditions,
the physiological state of the parent plant, and the posi-
tion on the parent plan t[1, 14].

Some vegetative propagation associated studies have
been demonstrated in Eucalyptus. Grattapaglia et al.
identified some QTLs controlling the ability to form
shoots of E. grandi s[15]. Marques et al. identified QTLs
related to adventitious rooting, sprouting ability and the
stability of adventitious rooting [16]. In plants, some
genes have been reported to play key roles during the
vegetative propagation, such as ARF19, SERK, LEC and
WUS [17, 18]. Previously, our lab reported the transcrip-
tome profiles of two Eucalyptus species during somatic
embryogenesis and dedifferentiation [19]. We identified
genes encoding somatic embryogenesis receptor kinase,
ethylene, auxin, ribosomal protein, zinc finger protein,
heat shock protein, histone, cell wall related protein and
multiple transcription factors that might control the abil-
ity of somatic embryogenesis and dedifferentiation. How-
ever, large is unknown about the gene regulations during
the developmental process after the callus is induced in
Eucalyptus.

In the present study, we aimed to investigate the tran-
scriptome profiles of dedifferentiated callus tissues incu-
bated on the culture medium. We also aimed to identify
genes involved in the callus development process and
controlling the ability of vegetative propagation. This is
the first time to study the gene profiles of dedifferentiated
callus tissues of Eucalyptus and our results will provide
new insights of understanding the molecular mecha-
nisms in the callus development and differentiation pro-
cesses. More importantly, our results will improve our
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knowledge about the genes associated with the vegetative
propagation ability of Eucalyptus.

Results

Callus induction and incubation

To understand the gene expression profiles during the
callus development of Eucalyptus, we obtained the stem
tissues of two Eucalyptus species — E. camaldulensis
(high embryogenic potential, Al) and E. grandis x uro-
phylla (low embryogenic potential, B1). We performed
the in vitro tissue-culture experiments on these stem
samples and obtained callus tissues from different devel-
opmental stages (Figure 1A). Initially, we observed that
the incubation time on CIM (callus-inducing medium) of
the stems has a great impact on their regeneration abil-
ity. As shown in Figure 1B, the regeneration rates of the
tissue culture induced callus by stem peaked at 21 days
of incubation on CIM. It is notable that the regeneration
rate of E. camaldulensis callus was much higher than E.
grandis x urophylla. We obtained the callus (also called
primary callus, pri-callus) at 10 days (A2 and B2) and
mature callus at 21 days (A3 and B3). Then, the mature
callus tissues were transferred to SIM (shooting-induc-
ing medium) for further incubation. They were shown
to start generating buds after 7 days incubation and 80%
of the callus generated buds after 10 days incubation.
We obtained the tissues of callus tissues incubated on
SIM for 10 days for the two Eucalyptus species (A4 and
B4). It is interesting that the callus tissues turned brown
intensively, the bead-like protrusions also turned brown
to black, and the callus lost the regeneration ability after
incubation on CIM for 30 days. The callus tissues incu-
bated on CIM for 35 days were obtained for the two spe-
cies of Eucalyptus (A5 and B5).

Transcriptome sequencing and gene expression profiles

We employed the transcriptome sequencing for the cal-
lus tissues of E. camaldulensis (A2~A5) and E. grandis
x urophylla (B2~B5). After data cleaning, we obtained
20.99 to 23.58 million reads for these samples and found
69.27% to 84.58% of the clean reads mapped to the ref-
erence Eucalyptus genome. Next, we used StringTie to
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identify genes expressed in the callus tissues of the two
Eucalyptus species. After the average TPM (transcripts
per million reads) values of all genes were calculated and
lowly expressed genes (TPM < 5) were filtered, we identi-
fied 12,229 to 14,075 genes for all the samples. It showed
in Figure 1C that 14,579 genes were identified in the
callus tissues of both E. camaldulensis and E. grandis x
urophylla and that 1,706 and 1,516 genes were expressed
specifically in E. camaldulensis and E. grandis x uro-
phylla, respectively. Then, we compared the genes identi-
fied in different stages of callus tissues. Figure 1D showed
that 10,254 and 10,316 genes were commonly identified
in all the callus tissues of E. camaldulensis and E. grandis
x urophylla, respectively. Next, we analyzed the sample
correlation during the callus development using the gene
expression profiles. As expected, the replicates were per-
formed well, and the samples can be distinguished from
each other based on the gene expression profiles (Fig-
ure 1E). Further, we analyzed the gene expression profiles
across species. Notably, the callus tissues showed similar-
ities between E. camaldulensis and E. grandis x urophylla
before mature callus developmental stage (Figure 1F),
which indicates that the callus differentiation process
varies in these two Eucalyptus species on molecular level.
Based on the developmental stages, we divided the whole
process into three parts to investigate the gene changes
during the differentiation process, including pri-callus to
mature callus (mat-callus), mature callus to shoot regen-
eration stage callus (SRS-callus), and mature callus to
senescence callus (sen-callus).

DEGs in callus maturation

We compared the gene expression profiles of primary
and mature callus tissues in the two Eucalyptus species.
Initially, we identified 3,790 (1,834 upregulated and 1,956
downregulated) and 3,740 (1,834 upregulated and 1,956
downregulated) DEGs in E. camaldulensis (A3 compared
to A2) and E. grandis x urophylla (B3 compared to B2),
respectively (Figure 2A, additional file 1). In this process,
the two Eucalyptus species shared 707 upregulated and
694 downregulated genes (Figure 2A). Notably, 106 genes
were found with adverse regulation during the callus

(See figure on next page.)

Fig. 1 Callus induction, development, and transcriptome sequencing. (A) Experimental design of the callus induction and development. Stem

tissues (A1, B1) were incubated on the CIM for dedifferentiation to get primary callus (A2, B2, pri-callus), which were further incubated on CIM for
maturation (A3, B3, mat-callus). Mature calluses were transferred onto the SIM for 10 days incubation to expand the buds (A4, B4), as the shoot
regeneration stage callus (SRS-callus). While mature calluses incubated on the CIM for long time (14 days) would lose the regeneration ability, which
were called senescence callus (A5, BS, sen-callus). (B) Physiological experiments of callus during the incubation. Left and right panels are the weight
and regeneration rates of the callus incubated on the medium for different time lengths. (C) Venn diagram of genes identified in the two Eucalyptus
species. (D) Venn diagrams of genes identified in the callus tissues during the development of E. camaldulensis (left) and E. grandis x urophylla (right).
(E) Correlation heat maps of the samples based on the gene expression profiles of callus tissues during the development of the two Eucalyptus
species. (F) Combined correlation heat map of all the samples used in this study
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Fig. 2 Differential expression ana|y5|s identified genes associated with the callus maturation and development in the two Eucalyptus species. (A)
Venn diagram of DEGs identified in the maturation process of the two Eucalyptus species. (B) Signalling pathways involved by the DEGs during the
callus maturation in Eucalyptus. (C) DEGs identified in the SRS-callus and sen-callus compared with mat-callus of £. camaldulensis. Numbers in red
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sen-callus compared with mature callus. (E) Box plots showing the expression patterns of six genes in the callus development of £. camaldulensis

maturation process in the two Eucalyptus species (Fig-
ure 2A), including Eucgr.101667 (kelch repeat-containing  (low-temperature-induced cysteine proteinase). We next
protein At3g27220), Eucgr.B00093 (HVA22-like protein  analyzed the signal transduction pathways involved by
e), Eucgr.G02764 (glutathione S-transferase DHAR2), the DEGs. Notably, 127 and 125 DEGs were enriched
Eucgr.F00590 (snakin-2), Eucgr.D00272 (CBL-interacting i

in the plant hormone signaling transduction pathway
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of E. camaldulensis and E. grandis x urophylla, respec-
tively (Figure 2B). In addition, we found 77 and 75 DEGs
enriched in the plant MAPK signaling pathway of E.
camaldulensis and E. grandis x urophylla, respectively
(Figure 2B). Gene Ontology enrichment analysis iden-
tified that 165 and 136 DEGs were involved in the pro-
tein phosphorylation (GO:0006468) during the callus
maturation process of E. camaldulensis and E. grandis x
urophylla, respectively. Further, we compared the dys-
regulated genes during the process of stem to mature
callus. It showed in Table 1 that 40 upregulated and 34
downregulated genes were identified in this process, and
they might be involved in the dedifferentiation and callus
development.

DEGs in callus development

We next identified DEGs in the differentiation process
of callus in the two Eucalyptus species. Compared to
A3, we identified 3,111 (1,793 upregulated and 1,318
downregulated) and 4,377 (2,300 upregulated and 2,077
downregulated) genes differentially expressed in A4
and A5, respectively (Figure 2C, additional file 1). As
A4 has the propagation ability while A5 lost it, we next
investigated the genes with diverse regulations in A4
and A5. It showed that a total of 135 genes with such
characteristics (additional file 2). These genes were pre-
dicted to be enriched in the biological processes like
“G0:0048827~phyllome development” (1 gene, Eucgr.
B02127), “GO:0055114~oxidation-reduction process”
(14 genes) and “GO:0009791~post-embryonic devel-
opment” (1 gene, Eucgrl02367). Likewise, compared
to B3 we identified 4,295 (2,390 upregulated and 1,905
downregulated) and 2,358 (1,072 upregulated and 1,286
downregulated) genes differentially expressed in B4 and
B5, respectively (Figure 2D). There were 142 genes with
diverse regulations in B4 and B5 (additional file 2). These
genes were enriched in the biological processes including
“G0O:0006542~glutamine biosynthetic process” (1 gene,
Eucgr.G02570), “GO:0031145~anaphase-promoting com-
plex-dependent catabolic process” (1 gene, Eucgr.J00733),
“G0:0044765~single-organism transport” (1 gene, Eucgr.
A00992), “GO:0006952~defense response” (1 gene, Eucgr.
F03332), “GO:0016569~covalent chromatin modification”
(1 gene, Eucgr.J03029), “GO:0008643~carbohydrate trans-
port” (1 gene, Eucgr.C02790) and “GO:0006012~galactose
metabolic process” (1 gene, Eucgr.C02197).

Further, we compared the DEGs with diverse regula-
tions in SRS-callus and sen-callus, relative to mat-callus,
in the two Eucalyptus species. We found 15 genes with
such regulations in these samples (Table 2), includ-
ing Eucgr.D00640 (stem-specific protein TSJT1), Eucgr.
B00171 (BTB/POZ and TAZ domain-containing protein
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1), Eucgr.C00948 (zinc finger CCCH domain-contain-
ing protein 20), Eucgr.K01667 (stomatal closure-related
actin-binding protein 3), Eucgr.C00663 (glutaredoxin-
C10) and Eucgr.C00419 (UPF0481 protein At3g47200).
We showed the expression levels of six of these genes in
Figure 2E. It is interesting that the expression patterns
of all these genes showed an “N” shape during the callus
development of both Eucalyptus species. For example,
the expression level of Eucgr.D00640 decreased from pri-
callus to mat-callus, went up from mat-callus to SRS-cal-
lus, and then went down in sen-callus.

Another group of genes involved in the callus devel-
opment of Eucalyptus include the DEGs during the
process from pri-callus to mat-callus to SRS-callus. In
E. camaldulensis, a Venn diagram of DEGs identified in
this process revealed that A4 vs A3 shared 14 upreg-
ulated and 146 downregulated genes with A3 vs A2
(Figure 2F, additional file 1). In E. grandis x urophylla,
we identified 50 upregulated and 145 downregulated
genes shared by B3 vs B2 and B4 vs B3 (Figure 2F, addi-
tional file 1). Next, we compared the shared DEGs in
the two Eucalyptus species during the callus develop-
ment process. It showed 4 upregulated and 41 down-
regulated genes shared by the two Eucalyptus species in
this process (additional file 1), including Eucgr.B00168
(probable pectate lyase 18), EucgrE01615 (puta-
tive expansin-B2), Eucgr.K03562 (transcription fac-
tor MYB108), Eucgr.H03379 (GEM-like protein 5) and
Eucgr.C03297 (ethylene-responsive transcription fac-
tor ERF017). Notably, Eucgr.B00168 and Eucgr.E01615
were downregulated in A5 vs A3 and B5 vs B3, respec-
tively (additional file 1); no downregulated genes in the
process of pri-callus to SRS-callus were found to be
upregulated in sen-callus in both Eucalyptus species;
and 17 downregulated genes were also downregulated
in the sen-callus in both Eucalyptus species (additional
file 1), including Eucgr.K03562, Eucgr.H03379 and
Eucgr.C03297.

Key genes associated with high regeneration ability

We next investigated the genes related to high propaga-
tion ability of Eucalyptus. Due to the missing annotation
of some genes in Eucalyptus genome, we first examined
the expression profiles of previously reported vegeta-
tive propagation ability related genes, including ARF19,
SERK, LEC and WUS. As shown in additional file 3,
two genes (Eucgr.C02178, Eucgr.C03293) were found
to encode ARF19 and only Eucgr.C02178 was down-
regulated between SRS-callus and mat-callus in both
Eucalyptus species. We also found two genes (Eucgr.
B01219, Eucgr.K03421) encoding LEC14B and none of
them were changed in the callus tissues of E. grandis x
urophylla(additional file 3). Among the three genes
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Table 3 High propagation ability associated genes in Eucalyptus.
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GenelD A4 vs A3 A5 vs A3 B4 vs B3 B5 vs B3 Description
log2FC FDR log2FC FDR log2FC FDR log2FC FDR

EucgrF00590 2.13 3.89E-07 -1.80 1.67E-05 0.09 885E-01 -057 290E-01  snakin-2

EucgrF02674 1.84 1.46E-05 -1.50 4.74E-04 -0.93 3.80E-02 -0.04 9.67E-01  putative laccase-9

Eucgrlole46  1.02 2.50E-02 -261 7.28E-10 0.52 2.88E-01 054 3.20E-01  ribonucleoside-diphosphate reductase small chain

Eucgrl01402  1.16 859E-03 -1.18 5.71E-03 245 424E-09 208 1.19E-06  subtilisin-like protease SBT1.6

Eucgrl00773  1.94 3.88E-06 -1.90 6.11E-06 3.99 572E-20 0.2 8.73E-01  cytochrome P450 81E8

EucgrA02259 2.06 6.33E-06 -243 1.07E-05 0.68 1.78E-01  -144 5.13E-03  two-component response regulator ARR9

EucgrF03389 1.25 544E-03 -212 191806 1.71 7.18E-05 1.14 1.75E-02  uncharacterized LOC104450184

EucgrA01788 1.02 2.38E-02 -1.73 3.80E-05 042 401E-01 052 341E-01  protein STRUBBELIG-RECEPTOR FAMILY 3

EucgrJ00130 147 8.30E-04 -1.22 6.59E-03 0.82 780E-02 -0.24 7.20E-01  mini-chromosome maintenance complex-binding
protein

Eucgr.G01769 2.22 2.55E-07 -2.83 1.65E-09 0.78 9.25E-02  -0.31 6.38E-01  auxin transporter-like protein 5

EucgrA02888 1.19 7.30E-03 -240 1.92E-08 0.29 6.03E-01  -1.17 146E-02  beta-fructofuranosidase, soluble isoenzyme |

Eucgr.D02581 1.73 5.13E-05 -1.16 8.55E-03 0.70 1.32E-01  -147 1.21E-03  protein NUCLEAR FUSION DEFECTIVE 4

EucgrF02389 2.02 1.70E-06 -3.03 5.18E-12 082 6.87E-02  0.00 1.00E4-00 lysine histidine transporter-like 8

Eucgr.C00963 3.36 1.04E-14 -1.26 533E-03 3.77 5.62E-18 -237 2.25E-07  uncharacterized LOC104436549

Eucgrl02451  1.23 527E-03 -1.67 7.39E-05 0.98 2.63E-02 1.08 2.08E-02

EucgrB03374 255 152E-09 -241 1.56E-08 1.29 247E-03  0.62 244E-01  two-component response regulator ARR6

Eucgr.GO0651  1.20 7.36E-03 -1.98 543E-06 0.69 225801 0.00 1.00E4+00 beta-xylosidase/alpha-L-arabinofuranosidase 2

EucgrJ02473 125 6.05E-03 -143 1.78E-03 1.89 1.70E-05 0.66 2.54E-01  F-box protein At4g35930

EucgrB02127 2.15 347E-07 -1.82 1.81E-05 252 1.53E-09 -0.99 3.66E-02  GRF1-interacting factor 1

EucgrH02960 1.39 1.30E-03 -1.81 2.04E-05 0.16 781E-01 -0.88 7.30E-02  acid phosphatase 1

Eucgrl02738  1.16 9.56E-03 -1.21 521E-03 063 191E-01 032 6.04E-01  uncharacterized protein C594.04c

EucgrA01269 2.96 1.54E-11 -3.82 6.19E-12 8.78 2.27E-43  0.00 1.00E+00

EucgrB02620 3.95 2.73E-19 -2.09 140E-06 0.77 882E-02 -0.66 2.00E-01  defensin Ec-AMP-D2

EucgrC00947 1.15 111802 -1.37 1.89E-03 -048 337E-01  -2.09 148E-06  transcription factor MYB36

EucgrkK01490 1.33 257E-03 -144 9.35E-04 1.28 332E-03 004 9.62E-01  short-chain type dehydrogenase/reductase

EucgrE00854 1.15 1.16E-02 -2.57 2.36E-08 038 4.74E-01  -0.28 6.84E-01  DNA primase small subunit

EucgrE04221  1.09 1.59E-02 -324 1.99E-13 -1.22 418E-03 -142 1.34E-03

EucgrHO1043 1.54 342E-04 -1.84 1.87E-05 059 2.16E-01  0.20 7.66E-01  DNA replication licensing factor MCM7

EucgrB03659 1.93 6.45E-06 -1.16 9.24E-03 2.09 6.52E-06  0.00 1.00E4+00 beta-glucosidase 12

Eucgr.B00882 1.19 7.32E-03 -1.23 471803 -0.89 477802 -223 4.02E-07

Eucgrl01419  1.85 1.31E-05 -1.84 1.98E-05 247 537809 023 741E-01  probable BOI-related E3 ubiquitin-protein ligase 2

Eucgr.C00146 1.27 3.69E-03 -349 7.69E-16 -1.22 436E-03 -2.53 345E-09  serine carboxypeptidase-like 18

EucgrGO1113  1.29 3.14E-03 -1.85 9.86E-06 -0.14 8.09E-01 -1.24 646E-03  serine carboxypeptidase-like 18

Eucgrlo1es54  1.33 2.12E-03 -1.63 1.19E-04 0.98 261E-02  -355 1.70E-15  chloride channel protein CLC-b

EucgrB03426 1.18 7.71E-03 -1.17 6.93E-03 0.86 6.02E-02 0.18 8.00E-01  HVA22-like protein ¢

Eucgrl02367  1.30 3.07E-03 -2.08 1.26E-06 049 3.32E-01 069 1.94E-01  probable LRR receptor-like serine/threonine-protein
kinase At4g36180

Eucgr.C00405 1.12 1.28E-02 -2.27 1.66E-07 0.62 1.93E-01  -0.30 6.39E-01  DNA replication licensing factor MCM5

EucgrH04921 1.06 202E-02 -1.07 1.60E-02 0.09 9.47E-01  0.00 1.00E4+00 G-type lectin S-receptor-like serine/threonine-
protein kinase LECRK3

EucgrF04160 230 437E-08 -1.51 3.56E-04 -1.02 1.95E-02  -0.15 8.22E-01  putative laccase-9

EucgrF02649 2.03 136E-06 -1.67 746E-05 -0.30 573E-01  1.10 1.71E-02  putative laccase-9

EucgrE01780 1.95 6.39E-06 -1.08 2.05E-02 -1.21 564E-03 -1.64 245E-04  non-specific phospholipase C3

Eucgr.C02990 1.56 2.50E-04 -2.20 1.25E-07 1.00 221802  -099 3.55E-02  zinc finger CCCH domain-containing protein 2

EucgrE00357 1.97 4.88E-06 -1.11 159802 -372 8.85E-14 -2.38 7.05E-07  expansin-like B1

EucgrK02657 -1.51 542E-04 1.10 1.11E-02 -0.58 315601 151 2.07E-03  leucoanthocyanidin reductase

EucgrE03884 -2.03 1.32E-06 1.62 1.09E-04 -3.69 1.12E-17  -1.80 3.07E-05  uncharacterized LOC104445607

EucgrB03985 -2.64 1.13E-09 2.09 6.02E-07 -1.65 9.50E-05 -2.30 1.10E-07  transcription factor MYB108
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Table 3 (continued)
GenelD A4 vs A3 A5 vs A3 B4 vs B3 B5 vs B3 Description
log2FC FDR log2FC FDR log2FC FDR log2FC FDR
Eucgr.GO0055 -1.06 2.85E-02 1.25 4.14E-03  0.00 1.00E4-00 0.00 1.00E4-00
EucgrB02752 -2.17 4.55E-07 1.19 543E-03 -0.59 2.29E-01 178 4.97E-05  laccase-7
EucgrF03488 -1.29 4.03E-03 1.15 7.78E-03 -3.35 545E-13  -0.84 1.05E-01  protein O-linked-mannose beta-1,4-N-acetylglu-
cosaminyltransferase 2
Eucgr.D00536 -1.15 127802 1.81 1.80E-05 0.25 6.66E-01  -1.49 1.12E-03  GDSL esterase/lipase At5g45920
EucgrB02347 -145 1.14E-03 1.12 1.00E-02 -2.89 1.06E-10  0.64 2.37E-01  scarecrow-like protein 34

(Eucgr.H03383, Eucgr.l01078, Eucgr.F04151) encoding
SERK, we found that Eucgrl01078 was the dominant
one. Eucgr.l01078 was not changed in the callus tissues
of E. camaldulensis and peaked in B3 (additional file 3).
It is interesting that Eucgr.F02320 encoding WUSCHEL-
related homeobox 4 was upregulated in A3 vs A2,
downregulated in B3 vs B2, and upregulated in B4/B5
compared to B3 (additional file 3).

Then, we analysed the 116 genes upregulated in A4
(compared to A3) and downregulated in A5 (compared
to A3), and found 43 genes (Table 3) downregulated
or with no changed in B4 (compared to B3), includ-
ing Eucgr.FO0590 (snakin-2), Eucgr.F02674 (putative
laccase-9), Eucgr.A02259 (two-component response
regulator ARRY), Eucgr.G01769(auxin transporter-like
protein 5), Eucgr.B02127 (GRF1-interacting factor 1)
and Eucgr.C00947 (transcription factor MYB36). The
second group may contain genes downregulated in
A4 (compared to A3), upregulated in A5 (compared
to A3), but upregulated or not changed in B4 (com-
pared to B3). Using these filters, we identified 8 genes
(Table 3), such as Eucgr.B02752 (laccase-7), Eucgr.
B03985 (transcription factor MYB108), Eucgr.D00536
(GDSL esterase/lipase At5g45920) and Eucgr.B02347
(scarecrow-like protein 34). A heat map (Figure 3A)
showed the expression patterns of these 51 genes in
the callus tissues of the two Eucalyptus species. It is
interesting that there were 12 genes highly expressed
in B3 and B4 but not changed between them, and they
were upregulated in A4 compared to A3, such as Eucgr.
C02990 (zinc finger CCCH domain-containing pro-
tein 2), Eucgr.A01269, Eucgr.B03374 (two-component
response regulator ARR6) and Eucgr.B02127 (GRF1-
interacting factor 1).

WGCNA

We next performed the weighted genes co-expression
network analysis to identify co-expressed genes dur-
ing the callus development process of the two Eucalyp-
tus species. As shown in Figure 3B (left panel), the grey

(8 genes) and blue (1,539 genes), yellow (820 genes),
brown (961 genes), and turquoise (2,630 genes) mod-
ules of genes were identified to be correlated with A2,
A3, A4 and A5, respectively. Notably, the yellow module
of genes (co-expressed in A3) contained some transcrip-
tion factor genes, such as Eucgr.C02208 (transcription
factor bHLH35), Eucgrl00291 (ethylene-responsive
transcription factor ABR1), Eucgr.K01542 (transcription
factor MYB44) and Eucgr.C01943 (probable WRKY tran-
scription factor 40). Next, we showed the co-expressed
genes in the callus development process of E. grandis x
urophylla (Figure 3B, right panel). It is notable that there
were 891 genes from the yellow module co-expressed in
B3. Then, we compared the co-expressed genes at the
same developmental stages of the two Eucalyptus spe-
cies. It showed that 421, 166, 516 and 482 genes were
co-expressed in pri-callus, mat-callus, SRS-callus and
sen-callus of the two Eucalyptus species, respectively
(Fig. 3C).

gRT-PCR

We next selected 12 genes and performed qRT-PCR to
validate their expression patterns in the callus devel-
opment of the two Eucalyptus species. The H2B gene
was used as the internal control gene. The primer
sequences of them can be accessed in additional file 4.
We performed three reactions for each gene in one
biological sample and a total of 9 reactions were used
for one gene (n=9). For the qRT-PCR experiment we
used log2RNE values to present the gene changes in
the comparisons (mat-callus used as the control), and
for transcriptome we used log2FC to show the gene
changes. For the comparison of mat-callus and pri-
callus (A3 vs A2 and B3 vs B2), we used -log2RNE
to show the expression changes. Thus, in total there
were 72 events (12 x 3 x 2) that to be validated and
we have 61 (84.72%) events were agreed by both qRT-
PCR and deep sequencing (Figure 4). It is notable that
the dysregulation of some genes was confirmed by
both experiments in E. camaldulensis and E. grandis
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x urophylla, such as Eucgr.B03816 (transcription fac-

the callus development and differentiation of Eucalyp-
tor LHW), Eucgr.C00948 (zinc finger CCCH domain-

tus. Their functions require more experiments to be

containing protein 20), Eucgr.C03301 (protein TIFY explored.
10a), Eucgr.D00640 (stem-specific protein TSJT1) and
Eucgr.J00388 (E3 ubiquitin-protein ligase MIEL1). Discussion

High agreement of gene expression patterns in tran-
scriptome sequencing and qRT-PCR indicate that the
genes we found in this study might be associated with

In this study we analysed the transcriptome profiles dur-
ing the callus maturation and development processes
in two Eucalyptus species with different vegetative
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Fig. 4 gRT-PCR experiment. A total of 12 genes were selected for gRT-PCR validation and the H2B gene was used as internal control. Overall, 61
(84.72%) out of the 72 events were agreed by both gRT-PCR and RNA-Seq.

propagation capacity. The utilization of successful (SRS-
callus) and failed (sen-callus) vegetative propagation cal-
lus tissues as contrast strongly support that the genes
identified in this study might play important roles in the
callus development and might be associated with the veg-
etative propagation ability in Eucalyptus.

In Eucalyptus, three major stages of regeneration
from tissue culture have been reported — co-cultiva-
tion, callus induction and shoot regeneration [20]. With
our observation, after the dedifferentiation of stem tis-
sue, pri-callus tissues still have low regeneration ability

and require further incubation on CIM (Figure 1A and
B), which agrees with the callus culture in maize [21].
Not many studies have focused on the callus matura-
tion process in plant and very little is known about the
molecular changes in this process. Prior to transfer to
the MS medium, fine chopping and partial desiccation
of embryogenic calli can simulate the rapid maturation
of somatic embryos in date palm [22]. In Zea mays,
Maturation of somatic embryos was enhanced by trans-
ferring the embryogenic callus after 3 weeks to medium
containing 6% sucrose and lacking2,4-D [23]. Many
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genes have been reported to be dysregulated during the
embryo maturation in maize, such as histone and ribo-
somal protein genes, and genes encoding hydrolytic
enzymes (nucleases, glucosidases and proteases) and a
few storage genes (an a-zein and caleosin) [21]. In this
study, we also identified many dysregulated genes dur-
ing the callus maturation (Figure 2A, additional file 1),
including genes encoding histone, ribosomal proteins,
nuclease, glucosidases and proteases. Notably, some
genes were found to be continually up or down regu-
lated from stem tissue to mature callus (Table 1), such
as Eucgr.A02688 (ABC transporter G family mem-
ber 4), Eucgr.B02604 (G-type lectin S-receptor-like
serine/threonine-protein kinase LECRK2), Eucgr.
E01615 (putative expansin-B2), Eucgr.A00514 (auxin
transporter-like protein 4), Eucgr.C03807 (transcrip-
tion factor bHLH68) and Eucgr.F01151 (early nodulin-
like protein 2). ABCG14, a homologue of ABCG4, has
been proved to be a positive regulator of plant growth
and play an important role in the major root-to-shoot
(acropetal) long-distance cytokinin (CK) transport via
the xylem sap [24-27]. Another ABCG4 homologue
ABCB4 is an auxin influx transporter which medi-
ates the transport of auxin in roots and contributes to
the basipetal transport in hypocotyls and root tips by
establishing an auxin uptake sink in the root cap [28,
29]. Eucgr.E01615, which encodes the EXPB2 protein,
was upregulated during the callus maturation process
(additional file 1). Interestingly, four beta-expansin
genes were found to be induced by treatment with gib-
berellin and by wounding in rice and correlated with
rapid elongation of deep-water rice internodes [30].
Further, EXPB2 was found to be a root-predominant
gene and play a key role in the root-hair formation
in rice [31]. The expression pattern of Eucgr.A00514
(auxin transporter-like protein 4, LAX4) was downreg-
ulated in mat-callus compared to pri-callus in the two
Eucalyptus species (additional file 1). It is consistent
with the discovery of LAX3 gene in rice after grafting
[32]. The dysregulation of these genes may suggest that
they might play an essential role from the beginning
of wounding to encourage healing and preparation for
downstream rapid development.

After maturation, shoot regeneration is another impor-
tant stage indicating the successful propagation. In maize,
genes encoding photosynthetic and other chloroplast
components (e.g., chlorophyll a/b binding protein) were
upregulated as shoots began to green [21]. In the present
study, we found that various genes encoding chloroplast
components were dysregulated in SRS-callus and mat-
callus in the two Eucalyptus species, including 9 genes
encoding chlorophyll a-b binding proteins (additional
file 1). Interestingly, these 9 genes were downregulated
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during the callus maturation but upregulated in the shoot
regeneration process in Eucalyptus. We also found two
genes (Eucgr.H00220 and Eucgr.F03055) encoding photo-
synthetic NDH subunit of subcomplex B 5, chloroplastic
upregulated in B4 vs B3 only (additional file 1). Consid-
ering our study used the sen-callus as a contrast of SRS-
callus, which may provide a deep insight into the genes
associated with the shoot regeneration process of callus,
there were 15 genes with diverse regulations in SRS-
callus and sen-callus compared to mat-callus (Table 2),
such as Eucgr.D00640, Eucgr.B00171, Eucgr.C00948,
Eucgr.K01667, Eucgr.C00663 and Eucgr.C00419. Most
of these 15 genes have not been reported to be associ-
ated with callus development or shoot regeneration.
However, some of them have been proved to function in
plant development. For example, the protein product of
Eucgr.B00171 is BTB/POZ and TAZ domain-containing
protein 1, which is a substrate-specific adapter of an E3
ubiquitin-protein ligase complex and involved in game-
tophyte development [33]. Eucgr.C00419 encodes the
UPF0481 protein At3g47200, which has been reported
to be upregulated during the early flower development
in Prunus mume [34]. Eucgr.D00640 encodes the stem-
specific protein TSJT1, which has been found in other
plants like tobacco, grape, and soybean. The functions of
these newly callus development associated genes require
more experiments to investigate their roles in somatic
embryogenesis, dedifferentiation, differentiation, and
development.

Known vegetative propagation ability associated
genes (e.g., ARF19, SERK, LEC and WUS) have been
reported to play key roles during the dedifferentiation
process in Eucalyptus [19], however, we did not find
strong association between these genes and the callus
development as we cannot determine their expression
patterns in this process (additional file 3). However,
because the two Eucalyptus species used in this study
have distinct ability of vegetative propagation, we iden-
tified 51 genes that might be related to their somatic
embryogenesis potential (Table 3) and 29 of them
have been reported in the dedifferentiation process
of Eucalyptus [19], including Eucgr.F02674 (putative
laccase-9), Eucgr.B03374 (two-component response
regulator ARR6), Eucgr.C00947 (transcription factor
MYB36). These 29 genes might be triggered during the
early dedifferentiation process and the other 22 genes
might be induced at the callus maturation and shoot
regeneration processes, such as Eucgr.A01788 (SREF3,
protein STRUBBELIG-RECEPTOR FAMILY 3) and
Eucgr.B02127 (GIF1, GRFl-interacting factor 1). SRF3
has been proved to be involved in the plant immunity
[35]. Recently, it was showed to be associated with the
cell proliferation during the switch development from
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the apical buds to leaf marginal tissues [36]. Interest-
ingly, its homologue SRF4 was shown to play an impor-
tant role in making plants display enlarged leaves
through affecting cell wall formation [37]. As a tran-
scription coactivator, GIF1 has also been shown to con-
trol cell proliferation. Being a target of miR396, GIF1
and other GIFs act in the regulation of meristem func-
tion, at least partially through the control of cell pro-
liferation [38]. In addition, together with GRF5 GIF1
controls the development of appropriate leaf size and
shape through the promotion and/or maintenance of
cell proliferation activity in leaf primordia, GIF1 plays
a role in adaxial/abaxial patterning and growth in leaf
morphogenesis, and together with GATA18/HAN,
GIF1 mediates the cotyledon identity by preventing
ectopic root formation through the repression of PLT1
expression [39]. We assume that the dysregulation of
the 22 genes might be regulated by some mechanisms
and the interaction network requires more experiments
to be explored. When and how the vegetative propaga-
tion ability associated genes are expressed during the
callus development are also valued research areas and
will be focused in the future.

Conclusions

In conclusion, we analyzed the transcriptome profiles
of callus tissues during the maturation and shoot regen-
eration processes of two Eucalyptus species which have
distinct vegetative propagation ability. We observed that
the regeneration rates of the tissue culture induced callus
by stem peaked at 21 days of incubation on CIM. In the
callus maturation process we identified 3,790 and 3,740
DEGs in E. camaldulensis and E. grandis x urophylla,
respectively, including genes encoding histone/ribosomal
proteins and genes involved in the plant hormone signal-
ling transduction pathway. Then, using SRS-callus and
sen-callus as contrast we identified 15 genes (e.g., Eucgr.
D00640, Eucgr.B00171, Eucgr.C00948, Eucgr.K01667,
Eucgr.C00663) which might play important roles during
the development of mat-callus. They were annotated to
encode the stem-specific protein TSJT1, zinc finger pro-
teins, stomatal closure-related actin-binding proteins and
glutaredoxin-C10 proteins. Further, 51 genes were identi-
fied to be associated with the ability of somatic embryo-
genesis of Eucalyptus, of which 22 genes (e.g., SRF3 and
GIF1) might be induced after the dedifferentiation. This
is the first time to study the transcriptome profiles of cal-
lus development in Eucalyptus. The results will improve
our understanding of gene regulations and molecular
mechanisms in the callus development and vegetative
propagation of Eucalyptus. More importantly, the out-
put of this study may benefit the Eucalyptus breeding
program.
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Methods

Plant material and culture conditions

The original seeds of E. camaldulensis (voucher ID:
c0009) and E. grandis x urophylla (voucher ID: j0017)
were obtained from the wild in 1984 without any
restrictions. Then, the seeds and plants were con-
firmed by a senior botanist Prof. Dongyun Xiang and
they were maintained in the experimental fields of
Guangxi Forestry Research Institute. The stem tissues
were obtained from the in vitro tissue-culture induced
seedlings of E. camaldulensis (voucher ID: c0009, Al)
and E. grandis x urophylla (B1) trees, and maintained
on the callus induction MS medium (CIM, supple-
mented with 20mg/L Ca(NOj),, 1 mg/L KT and 0.5
mg/L 2,4-D) for 10 days to get the pri-callus (A2, B2).
Then, the pri-callus was continually incubated on the
CIM for another 11 days to get the mature callus (A3,
B3), which was transferred onto the shooting-induc-
ing medium (SIM, MS medium supplemented with 20
mg/L Ca (NOj), +2.0 mg/L 6-BA + 0.2 mg/L NAA)
for incubation. The callus was incubated on the SIM
for 10 days to get the shoot regeneration stage callus
(A4, B4), which were developed with some buds as
successful propagation. While the mature callus was
incubated on the CIM for another 14 days, we get
the senescence callus (A5, B5) which totally lose the
embryogenic capacity.

Total RNA extraction, cDNA library preparation

and transcriptome sequencing

Total RNA was extracted from the plant tissues (A2~A5,
B2~B5) using the TRIzol reagent, as previously described
[19, 40]. Then, Agilent 2100 Bioanalyzer was used to eval-
uate the quantity and quality of the total RNA samples.
Equal amount of total RNA (1 ug) was used for the cDNA
library construction, as described [19]. In brief, the poly-
A mRNAs were enriched using the magnetic oligo (dT)
beads and then were fragmented into 200 bp pieces.
Next, random hexamer (N6) primers were used to build
double strand cDNA libraries for all the samples. After
the libraries were end-repaired by using phosphate at the
5" end and sticky ‘A’ at the 3’ end, they were ligated with
sequencing primers for BGISEQ-500. The libraries were
sequenced on the BGISEQ-500 RS platform with paired-
end 150 strategy.

Genome alignment, gene expression profiles

and differential expression analysis

Raw reads were processed by SOAPnuke to remove
sequencing adaptors, low quality reads and contamina-
tion reads [41]. Then, the clean reads were aligned to the
Eucalyptus genome (v2.0, https://plantgenie.org) using
hisat2 [42]. Stringtie [42] and Subread [43] were used to
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profile gene expression for each sample and count the
read counts aligned to each gene, respectively. We next
used the TPM (transcripts per million reads mapped)
method to normalize gene expression in each sample and
filtered lowly expressed genes (average TPM < 5). To per-
form differential expression analysis, we first calculated
the coefficient of variation (CV) of each gene and genes
with CV > 0.5 were filtered. Then, we employed edgeR
with some cut-offs, including log2 fold change (log2FC) >
1 or < -1, p-value < 0.05, false discovery rate (FDR) < 0.1,
to identify differentially expressed genes in two samples.

Functional analysis

We next annotated the Eucalyptus genes by mapping
them to the Gene Ontology (GO) and KEGG path-
way databases, as previously described [44]. Then, the
enriched GO terms and KEGG pathways by differentially
expressed genes were identified by p-value (< 0.05), cal-
culated by Fisher’s exact test, and q-value (< 0.05), calcu-
lated by the R package ‘qvalue’

WGCNA

We used the R package “WGCNA” to identify co-expressed
genes during the callus development of the two Eucalyptus
species [45], according to the manufacturer’s protocol.

RT-PCR

We selected 12 genes for qPCR-PCR validation and
used the H2B gene as the internal control. The primers
of these 13 genes were predicted by Primer3 and synthe-
sized at BGI-Shenzhen. The procedure of qRT-PCR was
same as a previous study [19, 46]. For each gene in a bio-
logical replicate, we performed three qRT-PCR reactions
and in total we have 9 replicates for one gene (n=9). After
the Ct values were calculated and averaged, we used the
ACt value to present the gene expression in each sam-
ple. Then, using the mature callus as the control sample
we calculated the AACt value to show the difference of a
gene in the callus development. Last, relative normalized
expression (RNE) was used to show the gene expression
change: RNE =272t and 1og2RNE was used to match
the transcriptome sequencing method. For pri-callus and
mature callus comparison (A3 vs A2 and B3 vs B2), we
used -log2RNE to present the gene changes.
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