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Abstract

Background: Coleorhiza hairs, are sheath-like outgrowth organs in the seeds of Poaceae family that look like root
hair but develop from the coleorhiza epidermal cells during seed imbibition. The major role of coleorhiza hair in seed
germination involves facilitating water uptake and nutrient supply for seed germination. However, molecular basis
of coleorhiza hair development and underlying genes and metabolic pathways during seed germination are largely
unknown and need to be established.

Results: In this study, a comparative transcriptome analysis of coleorhiza hairs from japonica and indica rice sug-
gested that DEGs in embryo samples from seeds with embryo in air (EIA) as compared to embryo from seeds
completely covered by water (CBW) were enriched in water deprivation, abscisic acid (ABA) and auxin metabolism,
carbohydrate catabolism and phosphorus metabolism in coleorhiza hairs in both cultivars. Up-regulation of key
metabolic genes in ABA, auxin and dehydrin and aquaporin genes may help maintain the basic development of
coleorhiza hair in japonica and indica in EIA samples during both early and late stages. Additionally, DEGs involved in
glutathione metabolism and carbon metabolism are upregulated while DEGs involved in amino acid and nucleotide
sugar metabolism are downregulated in EIA suggesting induction of oxidative stress-alleviating genes and less prior-
ity to primary metabolism.

Conclusions: Taken together, results in this study could provide novel aspects about the molecular signaling that
could be involved in coleorhiza hair development in different types of rice cultivars during seed germination and may
give some hints for breeders to improve seed germination efficiency under moderate drought conditions.
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Background

Coleorhiza hair can form under dry soil conditions and
can’'t be induced under oxygen limited conditions, sug-
gesting its functional adaptation to dried conditions
[1]. It develops from the epidermal cells of the emerg-
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drought resistant upland rice, moderate resistant paddy
rice upland and non-resistant rice [1]. The members
of Poaceae are probably the most valuable plant family
including many cereal crops [3]. This specific structure
of seeds of Poaceae is presumed to have water absorbing
properties [4] and may help to exude cohesive-substances
into the soil [5].

As a staple food crop consumed worldwide [6], rice (a
member of Poaceae) feeds more.

than half of the world’s population and provides 20% of
daily calories [7]. Japonica and indica rice are the most
cultivated and consumed rice subgroups in China and
they have differences in plant architecture, agronomic
and physiological features [8]. Coleorhiza hairs also
develop on seeds of rice. How rice coleorhiza hairs are
formed, and the similarities and differences in coleorhiza
hair formation between rice subgroups remain largely
obscure.

The rapidly growing world population requires
increased production rates of staple crops such as corn
and rice but current rice production practices face sev-
eral obstacles such as global climate change and envi-
ronmental pollution issues connected to traditional
intensive cultivation practices, increasing use of water-
land-energy-labor resources, and increasing industri-
alization and urbanization which leads to the loss of
agricultural land area [9]. Hence, in future, a balance
between increased rice production and conserving envi-
ronmental sustainability is needed and can be achieved
by adoption of agro-practices consuming less resources
in labor, agrochemicals and irrigation water which are
also less taxing on the environment [10, 11]. This can be
achieved currently by using more efficient rice cultivars
which require less resources and by improving agronomic
practices such as irrigation management. With respect
to labor input reduction, mechanization and direct rice
seeding along with weed management are suitable prac-
tices already. Environmental footprint for rice produc-
tion can be reduced by adopting direct seeding practices
and costs decreased by using technologies requiring less
resources such as alternate wetting and drying irrigation
regime [9, 12].

In traditional rice production, in order to save trans-
plant time, labor and costs, farmers directly sow or dis-
perse seeds in flooded fields where seeds germinate in a
hypoxic environment which can lead to more greenhouse
gas emission [13]. Although the soil preparation before
direct seeding has been mechanized for a long time, the
surface of rice field is uneven, which means that some
places have deep water layer, while some places have
no water layer. Therefore, the rice seeds are in differ-
ent water states (some are completely submerged while
some are only partially in contact with water) after direct
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seeding. We found that under the condition of near satu-
rated air humidity (98%), rice seeds have many coleorhiza
hairs. In contrast when the rice seeds are completely sub-
merged in water, there will be no coleorhiza hair forma-
tion. We speculate that coleorhiza hair formation plays
an important role in improving rice seed germination
under water scarce conditions. The study of coleorhiza
hair formation may provide new ways thorough which
plants could perceive water state and provide theoretical
basis for breeding longer (or more) coleorhiza hair varie-
ties which may impart higher germination rate in direct
seeding practices.

Omics technologies have been widely used to study
plant growth, development and molecular characteris-
tics [14—17], which provides great information and can
be used to catalog all the genes expressed in a particular
condition [18]. Transcriptome analysis has been widely
used for elucidating the expression patterns in the root
hair development under multiple environmental condi-
tions in different plant species [19-21]. In this study, a
comparative transcriptome analysis was used to address
gene regulatory networks in coleorhiza hair regulation of
two rice subgroups and it would help improve the under-
standing of molecular role of coleorhiza hair develop-
ment in facilitating seed germination.

Results

Phenotypic characteristics of coleorhiza hair formation

in japonica and indica rice

To investigate the phenotypic differences in coleorhiza
development in japonica (Nipponbare) and indica (9311)
cultivars, seeds of these two cultivars were germinated
under two water treatments: (a), seeds are fully cov-
ered with water, hereby referred to as covered by water
(CBW), or (b) seeds are half submerged in water and
embryo comes out from the non-submerged part, hereby
referred to as embryo in air (EIA). Both CBW and EIA
seeds germinated normally within 2days. Interestingly,
the EIA seeds developed a singular phenotype: profuse
hair like structures originating from the epidermis of
entire embryo surface (coleorhiza, epiblast, and ventral
scale) just before root emergence, which were referred
to as coleorhiza hairs (Fig. 1). In contrast, no coleorhiza
hairs were observed for the CBW treated seeds. Interest-
ingly, although both seeds of Nipponbare and 9311 could
develop coleorhiza hairs, coleorhiza hairs of 9311 were
significantly longer than those of Nipponbare.

Difference in type of water treatment was the major factor
contributing to transcriptome variation

To fish out putative genes involved in coleorhiza hair
development in Nipponbare and 9311 cultivars dur-
ing the early germination process, a genome-wide
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Fig. 1 Phenotypic comparison of coleorhiza hair development in japonica (NIP) and indica (9311) cultivars. A and E, coleorhiza hair development
in japonica under CBW at T1 and T2stages. B and F, coleorhiza hair development in indica under CBW at T1 and T2 stages. C and G, coleorhiza hair
development in japonica under EIA conditions at T1 and T2 stages. D and H, coleorhiza hair development in indica under EIA conditions at T1 and
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transcriptome approach was employed to compare the
EIA and CBW samples of the two rice subgroups. Prelim-
inary data exploration with principal component analy-
sis (PCA) was conducted for the cleaned-up sequencing
read data from samples to assess the factors which con-
tributed most to the observed transcriptional variation
between samples (Fig. 2A). The replicates for each tissue-
treatment combination clustered closely with each other
suggesting robust replication in our transcriptome profil-
ing. Along PC1, major variation (88%) was seen because

of the treatment (CBW or EIA) while PC2 showed a
minor variation (6 & 7%) due to time points. This sug-
gested that differences in water exposure between the two
treatments is the major factor affecting the transcriptome
variation between treatment samples in the two culti-
vars. Similarity in transcripts in all samples was assessed
by the Pearson Correlation Coefficient (PCC) analysis
(Figure S1). Overall, the PCC values ranged from 0.86 to
0.96 (both cultivar at T1 and T2 stages). As expected, the
transcripts profiles in Nipponbare and 9311cultivar were
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Fig. 2 Overview of RNA-seq in coleorhiza hair development of japonica and indica cultivars. A, PCA variation analysis of samples in japonica and
indica. B, Total DEGs in japonica and indica at T1 and T2 stages. C, Venn diagram of DEGs shared by japonica and indica at T1 and T2 stages

highly correlated with each other at T1 and T2 stages.
This indicates that the gene expression changes correlate
well with each other in both cultivar at early seed germi-
nation during coleorhiza hair development process.

Degree of transcriptome modulation under different
treatments and time points

Differences in differentially expressed genes (DEGs)
were examined to decipher genes with similar or differ-
ent regulatory patterns which may participate in cole-
orhiza hair development under the two treatments. For
japonica (Nipponbare), 5229 genes were up-regulated,
and 3145 genes were down-regulated in T1, and 5019
genes were up-regulated, and 2377 genes were down-
regulated in T2 in a comparison of EIA vs CBW samples
(Fig. 2B). For indica (9311), 5601 genes were up-regu-
lated, and 3901 genes were down-regulated in T1, and

6305 genes were up-regulated, and 3365 genes were
down-regulated in T2 in a comparison of EIA vs CBW
samples (Fig. 2B). To have an idea of the degree of over-
lap between these datasets, Venn intersections were car-
ried out between the up-regulated and down-regulated
DEGs at the 2 time points for each cultivar separately
(Fig. 2C). For Nipponbare, there were 3347 common
up-regulated DEGs and 1459 common down-regulated
DEGs between T1 and T2. For 9311, there were 4077
common up-regulated DEGs and 2220 common down-
regulated DEGs between T1 and T2. The overall DEGs
were also analyzed by Volcano plot that displays the
consistency between CBW and EIA in both cultivar at
T1 and T2 stages (Figure S2). Hierarchical clustering
suggested that the treatment effects at both time points
lead to similar transcriptional profiles for both cultivars
(Figure S3).
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Functional classification of the DEGs by gene ontology
(GO) and Kyoto encyclopedia of genes and genomes
(KEGG) analysis

To further interpret the genes or metabolic pathways
involved in coleorhiza hair development in japonica and
indica cultivars, DEGs identified at early stage (T1) and
late stage (T2) of coleorhiza hair formation were sub-
jected to GO enrichment and KEGG pathway analysis.
GO enrichment of DEGs from japonica (Nipponbare)
collected at T1 and T2 stages and from indica (9311)
collected at T1 and T2 stages were classified into three
main GO categories: “cellular component’, “biological
processes” and “molecular function” (Figure S4). Not sur-
prisingly, the DEGs from these two time-points of japon-
ica and indica showed similar GO enrichment terms
when compared. In the biological process category, DEGs
were mostly enriched in cellular process, metabolic
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process, response to stimulus and biological regulation
(at both T1 and T2). In the cellular component category,
cell part, organelle, membrane part, and membrane were
significantly enriched terms (at both T1 and T2). In
the molecular function category, the top four enriched
molecular function terms were binding, catalytic activity,
transporter activity and transcription regulator activity
(at both T1 and T2).

Furthermore, specifically, using GO comparison heat-
maps, the enriched “biological process” (BP) terms for
DEGs up-regulated at T1 and T2, up-regulated at T1
but down-regulated at T2, and down regulated at both
T1 and T2 in these two cultivars were analyzed respec-
tively for finding similar or distinct processes active at
these time points during coleorhiza development (Fig. 3).
There are about 34 common enriched BP terms includ-
ing “response to water”, “responses to acid chemical’,
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“response to water deprivation’, etc. for DEGs up-reg-
ulated at both T1 and T2 in these two cultivars. Subse-
quently, there are 23 unique BP terms such as “secondary
metabolic process’, and “organic acid biosynthetic pro-
cess’, enriched only in japonica (Nipponbare), and 19 BP
terms including “cell wall organization’; “cell wall biogen-
esis’, etc., enriched specifically in indica (9311) (Fig. 3A).
Secondly, 15 BP terms are commonly enriched for DEGs
down-regulated at both T1 and T2 stages in japonica and
indica, 4 BP terms (“polysaccharide catalytic process’,
“cell wall organization or biogenesis’; “negative regulation
of catalytic activity’, “negative regulation of molecular
function”) are specifically enriched only in japonica cul-
tivars and 24 BP terms including “ATP generation from
ADP’, “glycolytic process’, “ADP metabolic’, etc., only
in indica cultivars (Fig. 3B). Thirdly, 52 BP terms were
enriched for DEGs up-regulated at T1 and down-regu-
lated at T2 out of which 50 were specific to japonica and
2 (“diterpenoid biosynthetic process” and “diterpenoid
metabolic process”) specific to indica (Fig. 3C). There are
3 DEGs (“WRKY’, “transmembrane protein’, “lipid trans-
fer protein”) that are down-regulated at T1 and up-regu-
lated at T2 in both japonica and indica, (Fig. 3D).

To identify the specific metabolic pathways perturbed
in the treatment comparison for the two time points in
both cultivars, KEGG pathway enrichment analysis was
employed. The top 12 KEGG pathways involving most
DEGs (Figure S5) included carbon metabolism, phenyl-

propanoid biosynthesis, biosynthesis of amino acids,
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plant hormone signal transduction, starch and sucrose
metabolism, glycolysis/gluconeogenesis, amino sugar
and nucleotide sugar metabolism, plant-pathogen inter-
action, glutathione metabolism and MAPK signaling
pathway-plant were enriched for the two rice cultivars in
both T1 and T2. To further discern the metabolic path-
ways that may be common or distinctive for these two
cultivars, KEGG comparison heatmaps were visualized.
Among upregulated DEGs, four distinctive pathways
including diterpenoid biosynthesis, galactose metabo-
lism, butanoate metabolism, beta-alanine metabolism
were found enriched for DEGs up-regulated at T1 and T2
specifically in japonica, while three distinctive pathways
including glyoxylate and dicarboxylate metabolism, pho-
tosynthesis and antenna proteins enriched for DEGs up-
regulated at both T1 and T2 specifically in indica and six
pathways were commonly enriched for both cultivars for
DEGs up-regulated at both T1 and T2 (Fig. 4A). Among
downregulated DEGs, enriched metabolic pathways for
DEGs down-regulated at both T1 and T2 in both culti-
vars were amino acid and nucleotide sugar metabolism,
metabolic pathways, glycolysis/gluconeogenesis, and bio-
synthesis of secondary metabolites. Other KEGG terms
specific to indica were carbon metabolism, biosynthesis
of amino acids, carbon fixation in photosynthetic organ-
ism, and brassinosteroid biosynthesis while fructose and
mannose metabolism and cutin, suberin and wax biosyn-
thesis were specifically enriched for japonica (Fig. 4B).
Among contrastingly regulated DEGs, DNA replication
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and phenylpropanoid biosynthesis are enriched for DEGs
up-regulated at T1 and down-regulated at T2, specifically
for japonica and diterpenoid biosynthesis specifically for
indica (Fig. 4C).

Genes involved in water deprivation and carbohydrate
catabolism were upregulated during coleorhiza hair
formation

To further investigate the specific DEGs that may be
involved in coleorhiza development of japonica and
indica cultivars, expression differences between japonica
and indica were analyzed. Firstly, DEGs constituted in
the enriched BP terms “response to water deprivation”
and “carbohydrate catabolic process” for DEGs upregu-
lated at T1 and T2 (Fig. 5); “glutathione metabolic pro-
cess, response to oxidative stress, hydrogen peroxide
catabolic process’, and “carbon metabolism” for DEGs
upregulated at T1 and T2 (Figure S4); “phosphorus meta-
bolic process” and “xylan metabolic process” for DEGs
downregulated at T1 and T2 (Fig. 6) were compared for
log, fold change differences between the cultivar sam-
ples (Figs. 5, 6, S4). Secondly, KEGG term DEGs for
“Carbon metabolism’, “Glutathione metabolism’, “Amino
acid sugar metabolism’, “nucleotide sugar metabolism’,
“fructose and mannose metabolism” were also analyzed
for expression differences between the analyzed sam-
ples (Figure S5, S6). Log, fold changes were scaled to Z
scores between the samples for DEGs constituted in all
the above terms.

DEGs constituting “response to water deprivation”
(Fig. 5A) and “carbohydrate catabolic process” (Fig. 5B)
were compared for expression differences between
japonica and indica. In total, 24 DEGs in “response
to water deprivation” were upregulated commonly in
both cultivars and at both time points. Among these
genes, transcript levels of four genes encoding phos-
phatidylinositol 4,5-bisphosphate (PIP2, 0s02¢062920
0/BGIOSGA008660), catalase isozyme A (0Os02g01157
00/BGIOSGA007252), later embryogenesis abundant
(LEA, 0s03g0322900/BGIOSGA010834), and dehydrin
(DHN1, Os11g0451700/BGIOSGA018448) respectively
were expressed similarly in both cultivars and at both
time points. Two dehydrin genes (Osl1g0454200/BGI
OSGA034051, Os11g0453900/BGIOSGA034054) and
genes encoding water stress inducible protein RAB21
(Os11g0454300/BGIOSGA034050) in both cultivars were
induced at T2 compared to T1. One bZIP transcriptional
factor gene (Os02g0766700/BGIOSGA005551) showed
down-regulation at T2 in japonica and indica as com-
pared with T1 while other bZIP (Os06g0211200/BGIO
SGA022536) increases at T2 in japonica but decreases at
T2 in indica. Three aquaporin genes (BGIOSGA008773,
BGIOSGA016912 BGIOSGA013999) in indica had
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lower expression at T2 as compared to T1. Expression
of another gene encoding a hydrophobic protein Iti6b
(0s07g0635900/BGIOSGA026215) was reduced at T2 in
japonica but remained to similar levels at T1 and T2 in
indica. A methionine gamma-lyase gene (Os10g051750
0/BGIOSGA031550) and annexin gene (Os05g0382900
/BGIOSGA019773) shows contrasting trends between
cultivars. Expression of a calcium-transporting ATPase
gene (Os04g0605500/BGIOSGA014399) increased at
T2 in indica only. A cyclase family protein gene (Os09g
0110300/BGIOSGA030237) had higher expression at
both T1 and T2 in japonica relative to indica. A cata-
lase isozyme C gene (0s03g0131200/ BGIOSGA011520)
and abscisic acid (ABA) receptor 2 gene (0s02¢g0255500/
BGIOSGA007903) were expressed to similar levels in all
samples. A glucan phosphorylase gene (0Os03g0758100/
BGIOSGA009780) was repressed at T2 in both cultivars.
Comparing expression among genes, dehydrin genes
were more upregulated than aquaporin genes.

Interestingly, there are 40 genes involved in the carbo-
hydrate catabolic process were upregulated commonly
in both cultivars and at both time points. However, five
genes encoding ATP-dependent 6-phosphofructoki-
nase (Os08g043900, Os06g0151900), beta-D-xylosidase
(0s02¢0752200) and beta-amylase (Os10g0465700) were
expressed at lower levels at T2 vs. T1 in japonica specifi-
cally. A gene encoding a pectate lyase (0s02¢0214400) in
japonica specifically and a pyruvate dehydrogenase E1
subunit (0s06g0246500/BGIOSGA022620) in both culti-
vars were expressed at lower levels at T1 vs. T2.

Genes involved in phosphorus metabolism and xylan
catabolism were downregulated during coleorhiza hair
formation

Based on the GO enrichment analysis, genes involved
in the phosphorus and xylan catabolic processes were
commonly downregulated in both cultivars at both time
points T1 and T2 (Fig. 6). In our study, there are 114
DEGs in phosphorus metabolic process and 14 DEGs in
xylan catabolic process which are significantly downreg-
ulated at T1 and T2 in both cultivars. These DEGs that
are involved in phosphorus metabolism most are slightly
downregulated. Most DEGs in xylan catabolism are very
similarly downregulated in all the samples.

Glutathione metabolism, hydrogen peroxide catabolic,
carbon metabolism, amino and nucleotide metabolism,
and fructose and mannose metabolism showed significant
transcript changes during coleorhiza hair formation

DEGs mapped to the GO and KEGG terms in glu-
tathione metabolism, reactive oxygen species (ROS)
oxidative stress, hydrogen peroxide catabolic, carbon
metabolism (for DEGs upregulated at both T1 and
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A Response to water deprivation Z-score

0S02G0629200 BGIOSGA008660 HvPIP2;1 protein M

0S02G0115700 BGIOSGA007252 Catalase isozyme A -1 0 1
0S03G0322900 BGIOSGA010834 Late embryogenesis abundant (LEA)
0S11G0451700 BGIOSGA018448 Dehydrin DHN1

0S11G0454200 BGIOSGA034051 Dehydrin

0S11G0453900 BGIOSGA034054 Dehydrin Rab16D

0S02G0766700 BGIOSGA005551 bZIP transcription factor
0S07G0635900 BGIOSGA026215 Hydrophobic protein Itiéb
0S10G0517500 BGIOSGA031550 Methionine gamma-lyase
0S04G0605500 BGIOSGA014399 Calcium-transporting ATPase
0S02G0823100 BGIOSGA009321 Plasma membrane intrinsic protein
0S09G0110300 BGIOSGA030237 Putative cyclase family protein
0S05G0382900 BGIOSGA019773 Annexin

0S11G0454300 BGIOSGA034050 Water-stress inducible protein RAB21
0S03G0131200 BGIOSGA011520 Catalase isozyme C

0S02G0255500 BGIOSGA007903 ABA receptor 2

0S06G0211200 BGIOSGA022536 bZIP transcription factor
0S04G0233400 BGIOSGA009363

0S04G0233400 BGIOSGA009362

0S02G0666200 BGIOSGA008773 Aquaporin

0S04G0559700 BGIOSGA016912 Aquaporin, Phloem sucrose transport
0S03G0861300 BGIOSGA013999 Aquaporin

0S02G0669100 BGIOSGA005869 Dehydrin family protein
0S03G0758100 BGIOSGA009780 Alpha-1,4 glucan phosphorylase

B carbohydrate catabolic process
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0S08G0439000 BGIOSGA026922 ATP-dependent 6-phosphofructokinase
0S06G0136600 BGIOSGA021980 Similar to Enolase 1

0S06G0666600 BGIOSGA020719 Glyceraldehyde-3-phosphate dehydrogenase
0S02G0733300 BGIOSGA008993 Endoglucanase

0S02G0714200 BGIOSGA005740 Pyrophosphate--fructose 6-phosphate 1-phosphotransferase
0S11G0216000 BGIOSGA035008 Pyruvate kinase

0S02G0752200 BGIOSGA005609 Beta-D-xylosidase

0S10G0465700 BGIOSGA033092 Beta-amylase

0OS06G0151900 BGIOSGA021895 ATP-dependent 6-phosphofructokinase
0S04G0674800 BGIOSGA014101 Endoglucanase 5

0S02G0171100 BGIOSGA007628 Glyceraldehyde-3-phosphate dehydrogenase
0S09G0571100 BGIOSGA031311 Pectinesterase

0S01G0952600 BGIOSGA005183 glycoside hydrolase family 2 protein
0S02G0214400 BGIOSGA006875 Pectate lyase

0S06G0246500 BGIOSGA022620 Pyruvate dehydrogenase E1 component subunit alpha
0S04G0432400 BGIOSGA015083 Plant neutral invertase family protein
0S06G0715300 BGIOSGA020533 Endoglucanase

0S05G0399400 BGIOSGA019833 Chitinase 9

0S01G0742500 BGIOSGA000849 Phosphotransferase

0S10G0405600 BGIOSGA031955 ATP-dependent 6-phosphofructokinase
0S03G0399000 BGIOSGA012816 Pectinesterase

0OS09G0415800 BGIOSGA029762 Phosphofructokinase family protein
0S11G0297800 BGIOSGA035159 Similar to Beta-D-xylosidase
0S09G0394300 BGIOSGA029812 Endoglucanase

0S01G0287600 BGIOSGA001867 Similar to Chitinase 10

0S04G0409900 BGIOSGA016345 Plant neutral invertase family protein
0S03G0141200 BGIOSGA011829 Beta-amylase

0OS09G0375000 BGIOSGA029874 Enolase 1, chloroplastic

0OS09G0505700 BGIOSGA031047 Ribulose-phosphate 3-epimerase
0S01G0746700 BGIOSGA000837 Mannan endo-1,4-beta-mannosidase 2
0S11G0113100 BGIOSGA036910 Protein-tyrosine phosphatase
0S05G0522500 BGIOSGA020215 Phosphotransferase

0OS03G0758100 BGIOSGA009780 Alpha-1,4 glucan phosphorylase
0S03G0832600 BGIOSGA013878 Galactokinase

0S11G0175400 BGIOSGA021334 Plant neutral invertase family protein
0OS07G0627000 BGIOSGA026185 4-alpha-glucanotransferase

0S03G0736300 BGIOSGA009850 Endoglucanase

0S10G0155500 BGIOSGA019452 Aldose 1-epimerase

0S03G0248600 BGIOSGA011109 Enolase 2(0s03t0248600-02)

Fig. 5 DEGs involved in GO enriched biological processes. A, DEGs enriched in “responses to water deprivation”BP categories. B, DEGs enriched in

“carbohydrate catabolic process”BP categories
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Phosphorus metabolic process

0S02G0236100 BGIOSGA006821 Leucine-rich repeat receptor-like kinase

0S06G0646400 BGIOSGA023365 Tyrosine protein kinase

0S08G0504800 BGIOSGA028957 Protein kinase

0S12G0576700 BGIOSGA035956 Purple acid phosphatase

0S12G0604700 BGIOSGA035880 Serine/threonine-protein kinase Nek2 Z_score
0S03G0289100 BGIOSGA012387 Serine/threonine protein kinase OSK3

0S03G0124200 BGIOSGA011750 Pto-like protein kinase F

0S11G0261900 BGIOSGA024618 Shewanella-like protein phosphatase 2
0S08G0275200 BGIOSGA028353 Protein kinase

0S06G0557100 BGIOSGA023086 Serine/threonine protein kinase
0S08G0478100 BGIOSGA026804 Uncharacterised protein

0S04G0677500 BGIOSGA014088 Pyruvate kinase

0S06G0543400 BGIOSGA021085 Non-specific serine/threonine protein kinase
0S11G0121400 BGIOSGA034597 Protein kinase APK1A

0S03G0192500 BGIOSGA012028 Type 2C protein phosphatase
0S01G0718300 BGIOSGA000907 Protein BRASSINOSTEROID INSENSITIVE 1
0S06G0638500 BGIOSGA020817 Tyrosine protein kinase

0S03G0294200 BGIOSGA012407 Fructose-6-phosphate-2-kinase/fructose-2, 6-bisphosphatase
0S02G0283800 BGIOSGA007976 Leucine-rich repeat receptor-like kinase

| :i 0S09G0376800 BGIOSGA029866 Trehalose-6-phosphate synthase

0S06G0167500 BGIOSGA022384 Leucine-rich repeat protein

0S812G0574700 BGIOSGA035965 L-type lectin-domain containing receptor kinase
0S04G0631800 BGIOSGA014285

0S02G0629400 BGIOSGA005994 Phytosulfokine (PSK) receptor

0S01G0654100 BGIOSGA004131 CTP synthase

0S02G0459600 BGIOSGA008156 L-type lectin-domain containing receptor kinase
0S12G0114100 BGIOSGA036769 MAP kinase

0S07G0475900 BGIOSGA024321 ACT domain containing protein kinase
0S04G0631800 BGIOSGA014293

0S08G0342400 BGIOSGA027143 Aspartate kinase-homoserine dehydrogenase

0S07G0537900 BGIOSGA025881 SRK3 gene

0S08G0120600 BGIOSGA027739 Fructose-bisphosphate aldolase
0S05G0493100 BGIOSGA020093 KI domain interacting kinase 1
0S01G0670100 BGIOSGA001049 Serine/threonine protein kinase
0S02G0821400 BGIOSGA005340 Calmodulin-binding receptor-like cytoplasmic kinase 1
0S07G0537500 BGIOSGA024172 Serine/threonine protein kinase
0S07G0550500 BGIOSGA024124 Hypothetical conserved gene
0S01G0276700 BGIOSGA001898 Pyruvate kinase

0S04G0543000 BGIOSGA014627 Protein kinase

0S01G0905800 BGIOSGA000301 Aldolase C-1

[ | 0S12G0113500 BGIOSGA036907 Non-specific serine/threonine protein kinase
0S08G0414700 BGIOSGA026976 Trehalose-6-phosphate synthase 7
0S03G0238600 BGIOSGA012200 Purple acid phosphatase

0S02G0120100 BGIOSGA007234 Serine/threonine/tyrosine protein kinase
0S03G0238300 BGIOSGA011147 Endor onucl pl
0S07G0542600 BGIOSGA024147 Receptor-like protein kinase

:E 0S02G0822900 BGIOSGA009318 Hypothetical conserved gene

F: 0S03G0850400 BGIOSGA013949 Aspartokinase
0S05G0318700 BGIOSGA018309 CrRLK1-like kinase
|| 0S03G0225700 BGIOSGA012155 Walll-associated kinase

0S07G0537600 BGIOSGA025880 Hypothetical conserved gene
0S07G0530600 BGIOSGA025853 Probable pyruvate, phosphate dikinase regulatory protein
0S09G0492700 BGIOSGA031013 3-hydroxy-3-methylglutaryl coenzyme A reductase
0S01G0894300 BGIOSGA000339 Fructokinase 1

0S05G0572700 BGIOSGA017524 protein phosphatase 2C ABI1
0S09G0454900 BGIOSGA029642 Serine/threonine protein kinase
0S08G0345700 BGIOSGA028505 Pyrophosphate--fructose 6-phosphate 1-phosphotransferase
0S09G0345700 BGIOSGA029942 ATP-NAD kinase

0S05G0524400 BGIOSGA020219 ATP-dependent 6-phosphofructokinase
0S02G0231700 BGIOSGA006830 Protein kinase

0S12G0198200 BGIOSGA036472 Protein phosphatase 2C

0S05G0194900 BGIOSGA019317 ATP-dependent 6-phosphofructokinase
0S04G0404800 BGIOSGA016334 Acetyl-coenzyme A synthetase
0S07G0446800 BGIOSGA025614 Phosphotransferase

0S01G0690800 BGIOSGA004240 Protein kinase

0S04G0655400 BGIOSGA014195

0S05G0473000 BGIOSGA017879 Streptomyces cyclase/dehydrase
0S12G0197100 BGIOSGA036477 Pre-ATP-grasp fold domain protein
0S05G0187100 BGIOSGA018669 Phosphotransferase

0S08G0425500 BGIOSGA026957 Endor onucl p
0S03G0297600 BGIOSGA010919 ABA receptor 6

0S05G0111800 BGIOSGA019041 Protein phosphatase type 2C
0S11G0113700 BGIOSGA034624 Non-specific serine/threonine protein kinase
0S10G0204400 BGIOSGA032182 Phosphoenolpyruvate carboxykinase
0S09G0551500 BGIOSGA029311 S-locus receptor-like kinase
0S02G0661100 BGIOSGA005896 Trehalose 6-phosphate phosphatase
0S04G0109100 BGIOSGA015722 Concanavalin A-like lectin/glucanase
0S10G0327000 BGIOSGA032139 Protein kinase

0S04G0596900 BGIOSGA014433 Phosphoribulokinase

0S02G0210700 BGIOSGA007768 Protein kinase

0S07G0541800 BGIOSGA024150 KI domain interacting kinase 1
0S10G0116800 BGIOSGA032440 Purple acid phosphatase

0S04G0659300 BGIOSGA017285 Receptor-like protein, Root development
0S03G0269300 BGIOSGA011028 Protein kinase-like domain containing protein
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Fig. 6 DEGs enriched in “phosphorus catabolic process and xylan catabolic process”BP categories of GO enrichments

0S09G0544300 BGIOSGA031187 ATMRK serine/threonine protein kinase

0S03G0333200 BGIOSGA012562 Receptor-like kinase

0S11G0448000 BGIOSGA015858 Protein kinase

0S10G0524400 BGIOSGA031524 Phospholipase D -1 0

0510G0541200 BGIOSGA033380 Protein phosphatase 2C Xy|an catabolic process

0S01G0937200 BGIOSGA000153 Peptidase aspartic
0S01G0937100 BGIOSGA000154 Xylanase inhibitor
0811G0701200 BGIOSGA035718 Glycoside hydrolase

: . ew! 081160702100 BGIOSGA033527 Class Il chitinase
82??282?%888 gg:gggﬁggi;g; g?or{glerittlr:::eme protein kinase 0S11G0701900 BGIOSGA033528 Glycoside hydrolase
0S05G0577700 BGIOSGA017498 ATP binding protein 081160700200 BGIOSGA033530 Glycoside hydrolase
0S03G0689100 BGIOSGA013359 Histidine acid phosphatase family protein 080160937600 BGIOSGA005128 Peptidase aspartic
0S05G0402700 BGIOSGA019844 Fructose-bisphosphate aldolase 0S11G0701400 BGIOSGA035719 Chitinase
0S06G0208700 BGIOSGA022522 Dual-specificity phosphatase protein 081160702200 BGIOSGA033526 Glycoside hydrolase
0S01G0136800 BGIOSGA002437 Protein kinase 0S11G0701800 BGIOSGA035722 Class Il chitinase

[ | 0S12G0149700 BGIOSGA036995 Protein kinase 081160701000 BGIOSGA033529 Class IIl chitinase
0S07G0574100 BGIOSGA024039 Receptor-kinase isolog 0S01G0937500 BGIOSGA005127 Peptidase aspartic
0S09G0567500 BGIOSGA031292 Fatty acyl-CoA reductase 081160701500 BGIOSGA035720 Class Il chitinase
0S01G0648600 BGIOSGA004106 Protein kinase N N
0S05G0430800 BGIOSGA019914 Amidophosphoribosyltransferase & ,\Q‘O' \\\ \\{L

| | 0S01G0690800 BGIOSGA000993 Protein kinase = A &
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T2 in both cultivars) and amino and nucleotide sugar
metabolism, and fructose and mannose metabolism
(for DEGs downregulated at both T1 and T2 in both
cultivars) were analyzed for expression differences
in japonica and indica. For glutathione metabolism,
most of the genes belonged to peroxidase encoding
genes and glutathione-S-transferase encoding genes
(Figure S6). Term carbon metabolism (Figure S7), con-
stituted of genes encoding enzymes such as catalase
isozyme A (0s02g0115700/BGIOSGA007252), alco-
hol dehydrogenase (Os07g0621800/BGIOSGA023891),
glyceraldehyde-3-phosphate dehydrogenase (Os06g066
6600/BGIOSGA020719), enclosel (Os06g0136600/BGI
0OSGA021980), alcohol dehydrogenase (Os03g0189600
/BGIOSGA011308), phosphoenolpyruvate carboxylase
(Os08g036600/BGIOSGA027083), pyruvate kinase (OsI
1g0216000/BGIOSGA035008), crotonase (Os06g05941
00/BGIOSGA023191) and AMP-binding protein (Os03
£g0305000/BGIOSGA010894). DEGs commonly down-
regulated in both cultivars at T1 and T2 and involved
in amino acid metabolism belonged to chitinases
(Figure S8).

Genes involved in ABA and auxin signaling pathways were
up-regulated during coleorhiza hair formation

To identify the genes in the ABA signaling pathway, the
DEGs were mapped against the KEGG pathway. Most
genes involved in ABA synthesis, ABA responsive tran-
scriptional factor, ABA conjugation and degradation
and in negative or positive regulation of ABA signaling
were up-regulated (Fig. 7). However, the ABA recep-
tor genes displayed mixed expression patterns and six
receptor genes (PYLs, Os05g0473000/BGIOSGA017879,
0s03g0297600/BGIOSGA010919,
O0s01g0827800/BGIOSGA004727,
O0s06g0527800/BGIOSGA021121,
O0s06g0562200/BGIOSGA0230096,
0s05¢0213500/BGIOSGA019369)  were  down-reg-
ulated while three receptor genes (Os02g0255500/B
GIOSGA007903, 0Os10g0573400/BGIOSGA 033490,
0s502¢0226801/BGIOSGA006847) were up-regulated in
both cultivar at T1 and T2 stages (Fig. 7).

Since auxin has been implicated in root hair forma-
tion, DEGs involved in the auxin related pathways
were analyzed. In our study, DEGs involved in auxin
biosynthesis, auxin transport, auxin metabolism, and
auxin response were greatly up-regulated while most
of the genes belonging to auxin conjugation and deg-
radation were down-regulated (Fig. 8). However, the
auxin responsive TFs were slightly down-regulated and
only two of them (0s01g0753500/BGIOSGA000812,
0s05g0515400/BGIOSGA020188) were up-regulated in
both cultivar at T1 and T2 stages (Fig. 8).
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Gene expression changes in quantitative real-time PCR
(qRT-PCR) and RNA-Seq assays are strongly correlated
Fifteen genes belonging to ABA and auxin signaling path-
ways and response to water deprivation pathway were
selected for gene expression verification (Figure S9). The
expression fold changes from qRT-PCR strongly cor-
related with those obtained from RNA-Seq, with a cor-
relation coefficient of R? =0.865, indicating that the
gene expression changes obtained with RNA-Seq were
robustly obtained.

Discussion
The coleorhiza, a non-vascularized embryonic organ
that expands upon imbibition, emerges from the radi-
cles and is thought to play essential roles in protecting
growing embryo and controlling the germination [22].
It is a root hair-like structure, starting elongation from
the coleorhiza of the developing embryo during the early
germination process and is only present under the oxy-
gen-limited and moisture dependent conditions in rice
[1, 2]. These are thought to supply water to the embryo
during germination [23, 24]. Afterwards, the coleorhiza
hair, reported to function as an anchor, could adhere into
the soil in a direct penetration ratio of seminal root in the
surface-sown forage grass seeds [2]. This coleorhiza hair
is not simply an adventitious outgrowth as validated by
the failure of sub-surface cells to produce them but also
work as an important organ to help the plant survival
when exposed to stresses [2]. However, few functional
developments have been made since the discovery of
the coleorhiza hair [25]. Nevertheless, it is quite intrigu-
ing to elucidate the molecular basis of coleorhiza hairs in
germinating seeds and its responses to various environ-
mental conditions. Unlike coleorhiza hair, root hair is a
tubular-shaped outgrowth of root epidermis cells but dif-
ferentiate only during the late stage of plant growth [26,
27]. Previously, large scale transcriptome analysis had
been performed to investigate the responses of root hairs
to water deficiency, excessive water conditions as well as
nutrients, hormone, stress and etc., demonstrating that
root hair are of vital importance to regulate the stress
adaptations and maintain the basic plant development
[28-30]. However, fewer studies have been performed
to investigate the gene regulatory networks in coleorhiza
hair development in seed germination at an early stage.
In this study, we performed a comparative transcrip-
tome analysis of gene expression in coleorhiza hair
development of indica (9311) and japonica (Nippon-
bare) rice cultivars under EIA and CBW conditions at
the early stage of germination. These are most cultivated
varieties and parental lines used for breeding in Asian
countries [31]. Phenotyping of embryos in air vs fully
submerged embryos at 12 and 24h (T1 and T2) post
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ABA biosynthesis

0S07G0154100 BGIOSGA025169 OSNCED3
0S03G0645900 BGIOSGA013214 OSNCED1

0S06G0670000 BGIOSGA023441 ABA4

0S03G0810800 BGIOSGA013797 ABA3
0S04G0448900 BGIOSGA016502 ABA1
0S01G0128300 BGIOSGA002467 ABA2
0S07G0164900 BGIOSGA024764 OsAAO
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ABA conjugation and degradation

m 0S08G0472800 BGIOSGA026823 OSABASOX2

0S09G0457100 BGIOSGA029635 OsABA8OX3
0S02G0703600 BGIOSGA008883 OsABA8OX1
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Positive regulation of ABA signalling

0S10G0564500 BGIOSGA031386 SNRK2
0S05G0433100 BGIOSGA017991 SNRK2
0S03G0390200 BGIOSGA010605 SNRK2
0S12G0586100 BGIOSGA035923 SNRK2
0S07G0622000 BGIOSGA026164 SNRK2
0S04G0432000 BGIOSGA016442 SNRK2
0S04G0691100 BGIOSGA017404 SNRK2
0S01G0869900 BGIOSGA004882 SNRK2
0S03G0764800 BGIOSGA013621 SNRK2
0S03G0610900 BGIOSGA010254 SNRK2

I | 0S02G0551100 BGIOSGA006276 SNRK2
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0S10G0138100 BGIOSGA032502 Aldehyde oxidase-2
0S03G0790900 BGIOSGA009671 Aldehyde oxidase-2

0S03G0790700 BGIOSGA009672 Aldehyde oxidase-3

0S02G0255500 BGIOSGA007903 PYR/PYL
0S10G0573400 BGIOSGA033490 PYR/PYL
0S02G0226801 BGIOSGA006847 PYR/PYL
0S05G0213500 BGIOSGA019369 PYR/PYL
0S06G0528300 BGIOSGA021119 PYR/PYL
0S06G0562200 BGIOSGA023096 PYR/PYL
0S06G0527800 BGIOSGA021121 PYR/PYL
0S01G0827800 BGIOSGA004727 PYR/PYL
0S03G0297600 BGIOSGA010919 PYR/PYL
0S05G0473000 BGIOSGA017879 PYR/PYL

Fig. 7 KEGG analysis of DEGs related to ABA biosynthetic pathways in coleorhiza hair development in japonica and indica
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0S01G0867300 BGIOSGA000430 ABF bZIP
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Negative regulation of ABA signalling

0S03G0268600 BGIOSGA011032 PP2C
0S01G0656200 BGIOSGA004140 PP2C
0S09G0325700 BGIOSGA030517 PP2C
0S01G0846300 BGIOSGA004789 PP2C
0S01G0583100 BGIOSGA003839 PP2C
0S05G0537400 BGIOSGA017659 PP2C
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sowing in two rice cultivars japonica and indica demon-
strated that indica (9311) has longer coleorhiza hairs at
both T1 and T2 as compared to japonica (Nipponbare)
under EIA as compared to CBW (Fig. 1). A subsequent
genome-wide transcriptome analysis on these embryos
suggested that more DEGs are identified in indica (9311)
than in japonica (Nipponbare) with EIA treatment at

T1 and T2 stages (Fig. 2-b). Specifically, there are 3347
DEGs that were commonly detected as up-regulated
genes at T1 and T2 while there are 1459 DEGs that were
commonly detected as down-regulated at T1 and T2 in
japonica (Fig. 2-c). Again, from these some DEGs were
up-regulated (86) at T1 and down-regulated at T2 as well
as some DEGs down-regulated at T1 and up-regulated
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Fig. 8 KEGG analysis of DEGs related to auxin biosynthetic pathways in coleorhiza hair development in japonica and indica

at T2 (32) (Fig. 2-c). Meanwhile, the comparison in
indica (9311) indicated that the number of common up-
regulated DEGs at T1 and T2 is about 4077 and com-
mon down-regulated DEGs at T1 and T2 is about 2173.
On the other hand, some DEGs were up-regulated
(18) at T1 and down-regulated at T2 while some DEGs

were down-regulated at T1 and up-regulated at T2 (55)
(Fig. 2-d).

To interpret the specific DEGs that may be respon-
sive in coleorhiza hair development, the common DEGs
identified from two cultivars at T1 and T2 stages were
compared and analyzed via GO enrichment and KEGG
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mapping (Fig. 3 and Fig. 4). Interestingly, the “biologi-
cal process” in the GO category of the shared common
DEGs revealed that DEGs enriched in “response to
water’, “responses to water deprivation’, “reactive oxygen
species metabolic process” and “carbohydrate catabolic
process” were up-regulated in both japonica and indica
while the DEGs enriched in biological process such
as “cell wall related metabolism process’, “phosphorus
metabolic process’, and “xylan catabolic process” were
down-regulated in both cultivars. However, the DEGs
enriched in “diterpenoid biosynthetic and catabolic pro-
cess” were up-regulated at T1 and down-regulated at
T2 in both cultivars. There were about 22 upregulated
DEGs related to “responses to water deprivation’, sug-
gesting that those genes are specific responsive genes to
water signal that could regulate coleorhiza hair develop-
ment in both japonica and indica cultivars. For exam-
ple, aquaporin family genes (PIPI-1, Os02g0666200;
PIP1-2, Os04g0559700; PIP2-8, Os03g0861300), are a
family of integral membrane associated water channel
proteins functioning for the water transport and small
molecules [32], and were upregulated in both cultivars
at T1 and T2 stages. OsPIP1-1, is induced by drought
and salt stress, and its overexpression could increase
the resistance to water and stress which also improves
the seed germination, root hydraulic conductivity and
seed yield [33]. PIP1-2 was reported to be involved in
the mesophyll CO, and sucrose transport [34]. How-
ever, the function of PIP2-8 needs to be established [35].
Thus, upregulation of aquaporin genes in EIA samples
may enhance water uptake to impart tolerance to water
deficiency for optimal seed germination as compared
to the seeds under CBW conditions. Another group of
DEGs, involving dehydrin family genes (Os11g0451700,
Os11g0453900, Os11g0454200) are mostly up-regulated
in EIA samples at T1 and T2 stages in both cultivars
(Fig. 3). The dehydrin family genes belong to a subgroup
of the late embryogenesis abundant proteins and gene
expression is highly up-regulated by multiple stress con-
ditions including drought, cold and salt [36]. Undoubt-
edly, the seeds of japonica and indica treated under EIA
may suffer from drought stress which in turn could cause
up-regulation of dehydrin genes and help improve the
growth of coleorhiza hair to cope up with drought onset
in both cultivars. These results prove that the coleorhiza
hair development may be essential for uptake of water
and alleviation of drought stress under EIA conditions in
both cultivars. KEGG analysis of the DEGs common to
both cultivars suggested that biosynthesis of secondary
metabolites, glutathione metabolism, carbon metabolism
and glycolysis/gluconeogenesis were greatly enriched in
upregulated DEGs in both cultivars at T1 and T2 stages
(Fig. 4, Figure S5). In addition, nearly half of the DEGs
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involved in glutathione metabolism and carbon metabo-
lism were upregulated and DEGs involved in amino acid
and nucleotide sugar metabolism were downregulated
under EIA conditions in both cultivars (Figure S6-S7).
Glutathione metabolism plays important roles in stress
tolerance of plants to many abiotic stresses including
salt, drought, chilling as well as plant development [37,
38] and thus its upregulation would prepare germinating
seeds with better tolerance to oxidative stress by quench-
ing ROS. Previous studies indicated that up-regulation
of genes in carbon metabolism would lead to changes in
level of sugars in plants including those of glucose and
sucrose that are generally correlated to universal stress
conditions and would help supply energy for plant root
development during germination process [39]. Similarly,
as for KEGG analysis, glutathione metabolism and car-
bon metabolism related genes are induced in coleorhiza
hair containing embryos under EIA as compared to CBW
treated ones which are fully covered by water i.e., expe-
riencing flooding and low oxygens stress. Summarizing,
coleorhiza hair may help improve survival of imbibed
seeds under oxidative stress and avail energy from car-
bon metabolism but formation of higher metabolites
like amino acid sugar or nucleotide sugar are not pur-
sued during this process. This would suggest that more
focus is put on the growth processes of seed germination
rather than producing more metabolic intermediates and
energy for this growth comes from the endosperm energy
reserves. Carbohydrate catabolic process was related
to oxygen deprivation in terms of growth and survival
of plant organs [40]. In rice, carbohydrate metabolism
plays vital roles in sustaining coleoptile elongation [41].
As seed storage substances such as carbohydrates, lipids
and proteins can be mobilized into embryo to fuel the
seed germination process [42], up-regulation of genes
encoding enzymes in pathways like carbohydrate cata-
bolic process may enhance coleorhiza hair development
as observed in our study. Consistent with this hypoth-
esis, the DEGs involved in carbohydrate metabolism
were mostly up-regulated that may help maintain the
coleorhiza hair development in japonica and indica culti-
vars (Fig. 5-b). It is quite intriguing that DEGs participat-
ing in phosphorus metabolic process are downregulated
in coleorhiza hair development in both cultivars under
EIA conditions (Fig. 6) which may suggest preference of
growth over biosynthesis of metabolites.

Hormones such abscisic acid (ABA) and gibberel-
lin (GA) are thought to be the main hormones regulat-
ing seed germination in plants [43]. Abscisic acid (ABA)
also plays a vital role in root hair elongation [44] and is
involved in inhibition of seed germination [45]. However,
recent reports also addressed another plant hormone,
auxin, which is also critical for inducing and maintaining
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seed dormancy and may act as key regulator for protect-
ing seed dormancy [46]. This suggests that seed germi-
nation may be regulated by phytohormones. However,
in our study, the GA metabolism related genes were
not significantly expressed in both cultivars in japonica
and indica and only ABA and auxin related genes were
mainly upregulated in both cultivars at both T1 and T2
(Fig. 7 and Fig. 8). Auxin emerged as a regulator together
with ABA to regulate seed germination and induc-
tion and maintenance of seed dormancy [43]. Auxin is
also involved in root hair formation [47-49] and thus it
is tempting to assume that coleorhiza hair formation is
also regulated by auxin in conjunction with ABA. Inter-
estingly, free auxin depleting enzyme genes which are
responsible for auxin conjugation and degradation are
downregulated. The upregulated genes in other auxin
processes can be functionally analyzed using genetic and
molecular biology experiments during coleorhiza hair
development.

Overall, this is the first study comparing transcriptomic
responses in coleorhiza hair development in two major
rice cultivars, japonica and indica during seed germina-
tion process and hypothesize the putative role of com-
mon transcriptionally perturbed genes and metabolic
pathways in coleorhiza hair containing embryos of two
different rice cultivars in mediating coleorhiza hair devel-
opment. This paves way for detailed functional studies in
coleorhiza hair developmental biology in the future.

Conclusions

In this study, seeds of japonica variety Nipponbare and
indica variety 9311 could develop coleorhiza hairs under
EIA treatments, and coleorhiza hairs of 9311 were signifi-
cantly longer than those of Nipponbare. There are differ-
ences in DEGs quantity and enriched pathways between
Nipponbare and 9311, which may lead to different cole-
orhiza hair length. DEGs enriched in water deprivation,
ABA and auxin metabolism, carbohydrate catabolism
and phosphorus metabolism in both two varieties, which
may play important roles in coleorhiza hair formation.

Methods

Plant materials and growth conditions

Seeds of a japonica Nipponbare and an indica 9311
cultivars were kindly provided by Prof. Jianchang Yang
(Jiangsu Key Laboratory of Crop Cultivation and Physi-
ology, Yangzhou University, China). Ripened seeds of
cultivar Nipponbare and cultivar 9311 were dried in an
oven at 50°C for three days to break seed dormancy.
Hulled rice seeds were first glued to the middle of slides
(10 seeds/slide), and 6 slides were placed in one slide
box. After that, these seeds were germinated under
two treatments. Treatment one: half of seed surface
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was in water, and the rest half with embryo in air (EIA)
and treatment two: whole seeds were covered by water
(CBW). Each treatment contained 3 boxes (18 slides) for
one replicate for one cultivar. Seeds were placed in an
incubator with the temperature maintained at 28 £5°C
and kept in dark.

RNA extraction, RNA sequencing, data analysis, and quality
control of RNA-seq

EIA and CBW treated Nipponbare and 9311 RNA
samples (embryo) were collected first, when cole-
orhiza hairs just developed in EIA treatment (about
24h after treatment, T1), and second, when coleorhiza
hairs were the longest (about 36h after treatment,
T2). RNA was extracted using E.ZN.A.® plant RNA
Kit (Omega Bio-tek, GA, USA) and quantified with
kaiaoK5500®Spectrophotometer (Kaiao, Beijing, China).
RNA integrity and concentration were assessed using
RNA Nano 6000 Assay Kit in Bioanalyzer 2100 (Agilent
Technologies, CA, USA). RNA concentration for library
preparation was measured with Qubit® RNA Assay Kit in
Qubit® 3.0 and then diluted to 1 pg/pl.

Library preparation for RNA sequencing

2 micrograms of total RNA was input to NEBNext®
Ultra™ RNA Library Prep Kit for Ilumina® (NEB, USA)
to generate sequencing libraries as follows: poly-T oligo-
attached magnetic bead purification of mRNA from
input total RNA; mRNA fragmentation by adding diva-
lent cations under heating; first strand cDNA synthesis
was performed with random hexamer primers; RNAse H
degradation of residual RNA; second strand cDNA syn-
thesis and purification with QiaQuick PCR kit followed
by terminal repair, A-tailing and adapter addition. PCR
was performed to finish library preparation.

Library examination, clustering, and sequencing

Insert size in library was quantified with StepOne-
Plus™ Real-Time PCR System (Library valid concentra-
tion>10nM). The cBot cluster generation system was
used for sample clustering using HiSeq PE Cluster Kit
v4-cBot-HS (Illumina, USA). Libraries were sequenced
on Illumina platform and 150bp paired-end reads were
obtained for further transcriptome data analysis.

Data assembly and transcriptome analysis

Quality check of above obtained reads was carried out
with fastqc and trimming/adaptor removal was car-
ried out to obtain clean reads. Basic statistics of total
raw and clean reads of transcriptome sequencing is
shown in Table S1. HISAT2 v2.0.5 was used to per-
form alignments of bisulfite-treated reads to the refer-
ence genome in RAP-DB (https://rapdb.dna.affrc.go.
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jp/download/irgspl.html) and Ensembl Plants (http://
plants.ensembl.org/Oryza_indica/Info/Annotation/#
assembly) using default parameters. Following this, read
count for each gene in each sample was obtained with
HTSeq v0.6.0, and post normalization of read counts,
FPKM (Fragments Per Kilobase Million mapped reads)
was calculated to estimate the expression level of genes
in each sample. Mapping statistics of clean reads of RNA
sequencing data to reference rice genome is shown in
Table S2. DESeq2 v1.6.3 was used for differential gene
expression by estimating the gene expression level by
linear regression calculating the fold changes for sam-
ple comparisons; p-value with Wald test and corrected
p-value (g-value) following BH adjustment. Genes with
q<0.05 and |log, fold change|>1 were identified as
differentially expressed genes (DEGs). The global gene
expression pattern between all samples was denoted by
Pearson correlation matrix for calculation of pairwise
correlation coefficient (Figure S1) while volcano plots
were used for visualizing the distribution of differentially
expressed genes (DEGs) (Figure S2); read counts of DEGs
in all samples were clustered using hierarchical cluster-
ing of normalized counts (Figure S3). Functional enrich-
ment analyses were performed using GO enrichment and
KEGG pathway analyses.

gRT-PCR validation

Validation of the RNA-Seq results was performed for
15 genes using qRT-PCR, according to the method
described in Song et al. [17]. The primer sequences used
for qRT-PCR are provided in Table S3.
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