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Abstract

Background: Despite its good salt-tolerance level, key genes and pathways involved with temporal salt response of
common bermudagrass (Cynodon dactylon (L) Pers) have not been explored. Therefore, in this study, to understand
the underlying regulatory mechanism following the different period of salt exposure, a comprehensive
transcriptome analysis of the bermudagrass roots was conducted.

Results: The transcripts regulated after 1 h, 6 h, or 24 h of hydroponic exposure to 200 mM NaCl in the roots of
bermudagrass were investigated. Dataset series analysis revealed 16 distinct temporal salt-responsive expression
profiles. Enrichment analysis identified potentially important salt responsive genes belonging to specific categories,
such as hormonal metabolism, secondary metabolism, misc., cell wall, transcription factors and genes encoded a
series of transporters. Weighted gene co-expression network analysis (WGCNA) revealed that lavenderblush2 and
brown4 modules were significantly positively correlated with the proline content and peroxidase activity and hub
genes within these two modules were further determined. Besides, after 1 h of salt treatment, genes belonging to
categories such as signalling receptor kinase, transcription factors, tetrapyrrole synthesis and lipid metabolism were
immediately and exclusively up-enriched compared to the subsequent time points, which indicated fast-acting and
immediate physiological responses. Genes involved in secondary metabolite biosynthesis such as simple phenols,
glucosinolates, isoflavones and tocopherol biosynthesis were exclusively up-regulated after 24 h of salt treatment,
suggesting a slightly slower reaction of metabolic adjustment.

Conclusion: Here, we revealed salt-responsive genes belonging to categories that were commonly or differentially
expressed in short-term salt stress, suggesting possible adaptive salt response mechanisms in roots. Also, the
distinctive salt-response pathways and potential salt-tolerant hub genes investigated can provide useful future
references to explore the molecular mechanisms of bermudagrass.
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Background

Soil salinity is a significant abiotic factor limiting plant
growth and development. To mitigate salt-induced os-
motic stress, ion toxicity and oxidative damage, plants
have evolved a series of physiological and molecular re-
sponse mechanisms [1-3]. Common bermudagrass (Cyno-
don dactylon (L.) Pers.) is a popular and extensively used
turf species which can be spread by stolons, rhizomes, and
seed [4, 5]. Despite having good salt tolerance level, there
is a wide intraspecies variation. Thus, the growth and de-
velopment of relatively sensitive cultivars could be ser-
iously inhibited by salinity stress, greatly limiting the
promotion and application of bermudagrass in saline soils
[6, 7]. Therefore, an in-depth analysis of salt tolerance
mechanism and mining key response genes and pathways
will contribute to its application in saline environments.

In plants, salt stress triggers a genome-wide transcrip-
tomic reprogramming to response to this environmental
stimuli. As a result, groups of genes related to many
physiological traits and salt-response pathways are regu-
lated to alleviate the adverse effects, making salt response
to be a complex quantitative trait [1, 8]. Immediately after
plants perceive salt stress signal from the environment,
multiple signal transduction pathways can be rapidly acti-
vated [9, 10] and an elevation in the calcium ion (Ca**)
concentration is among the first response to external stim-
uli [11]. To cope with the stress, the action of stimuli Ca**
sensors (e.g., CBLs: calcineurin B-like proteins; CIPKs:
Ca**-independent  protein  kinases; CDPKs: Ca**-
dependent protein kinases; CMLs: calmodulin-like pro-
teins) [11] precedes a chain of reactions such as the SOS
(salt overly-sensitive) and MAPK (mitogen-activated pro-
tein kinase) pathways [12-14]. Along Ca®* signalling,
other second messengers such as ROS (reactive oxygen
species) are also participated [3]. Although ROS can func-
tion as signalling molecules in response to environmental
cues [2, 15], its excessive accumulation can result in cell
oxidative damage [16]. To curb ROS-induced oxidative
damage, plants have evolved a complex scavenging system
consisting of antioxidants enzyme (e.g. superoxide dismut-
ase, SOD; peroxidase, POD; catalase, CAT) and non-
enzymatic scavengers (e.g. tocopherols; carotenoids; phe-
nols) have been developed to scavenge excessively pro-
duced ROS and protect themselves from salt-induced
oxidative stress [17, 18]. Also, the phytohormones-
mediated signalling pathways (e.g. auxin; abscisic acid,
ABA; jasmonic acid, JA; cytokinin, CTK; gibberellin, GA;
ethylene, ETH) also play key roles in the adaptive growth
of plants after environmental stimulation [19].

To further protect plants from damage, activated cascades
such as Ca”*, ROS, and hormone signaling cascades can fur-
ther activate other regulators like transcription factors (TFs)
(e.g. ABA-responsive element-binding protein/ABA-binding
factor, ABRE/ABF) [20] to regulate other downstream salt
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response genes. For instance, genes regulating levels of
osmoprotectants are reported to be the first stress-inducible
transcripts during initial response to initial osmotic stress.
The intracellular concentrations of osmolytes such as pro-
line, soluble sugar and dehydrins are elevated to improve
cellular osmotic pressure [2, 21]. After prolonged exposure
to salt stress, other strategies are adopted to mitigate Na*
toxicity (24 h or beyond), for example, the ion transporters
such as HKT (high-affinity K* transporter) and NHX (Na*/
H" antiporters) gene families could be regulated to further
sequester or compartmentalize excess Na" in the vacuole
with a higher cytosolic K*/Na" and resist to salt stress in
glycophytes [22, 23]. In soybean, after treated for 24 h or be-
yond, the seedlings entered a new physiological state with
lower photosynthetic rates and stomatal conductance,
followed by the accumulation of Na™ in the leaf that could
be detrimental to the plants. Therefore, 24 h might be a
turning point at which salt response strategy might begin to
change in many plants [24].

Under excessive salt exposure, roots are the first organs
to detect the stress and likely to suffer more damage due
to their closer proximity compared to the shoots [25, 26].
As a result, roots perceive an early-onset osmotic stress
and respond. Subsequently, these initial reactions can be
passed on to the whole plant [2]. This makes roots to be
ideal for providing a sensitive target to study the molecu-
lar mechanisms underlying plant salt tolerance and adap-
tation [27]. In other species, several salt-responsive
transcriptomic studies in the roots have been done so far
[24, 28, 29]. In bermudagrass roots, using two cultivars
with contrasting salt tolerance level, a transcriptome ana-
lysis was performed after 7 days of salt stress [30]. How-
ever, transcriptomic studies in the roots of bermudagrass
that involve in early salt response among multi-time
points have not been explored. Taking in consideration
these temporal dynamic changes when evaluating a plant’s
response to a stress factor could provide a more system-
atic analysis in the expression profiles [25, 28, 29]. In this
study, we investigated and compared gene expression re-
programming under short-term salt stress to investigate
the shared and exclusive response patterns and expression
connections of salt response genes in the roots of bermu-
dagrass. Some key regulatory pathways, gene families and
hub genes induced during the early stages of salt stress
imposition were identified. These results could give an
overview of the early-salt response transcription map and
provide more useful information for further study of the
salt response of bermudagrass.

Results

Effect of salt stress on the physiological parameters of
bermudagrass roots

To study the early salt response in the roots of bermuda-
grass, the plants were treated with 200 mM NaCl for 1 h,
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6h and 24 h respectively. The roots samples were col-
lected for physiological parameters determination and
transcriptome analysis. Due to a relatively shorter expos-
ure time to salt stress, the growth parameters such as
plant height, shoot biomass and root length were not
significantly affected (data not shown). However, physio-
logically, the roots of 24 h salt-treated plants displayed
higher malondialdehyde (MDA) content than control
plants (Fig. 1a). The POD activity was significantly ele-
vated in the roots of 1 h and 6 h salt-treated plants com-
pared to that in their respective control regimes (Fig.
1b). The SOD activity of 1h and 6h salt-treated roots
showed an upward trend, but the increase was not sig-
nificant compared to their respective control plants (Fig.
1c). Besides, salt stress induced a higher proline accumu-
lation of roots compared to non-salinity conditions (Fig.
1d). The accumulation of these metabolites indicated
that the roots of plants were experiencing salt stress and
producing a stress response at the time when used for
transcriptome analysis.

b N CK B salt

207 % ¥
187
167
147
127
107
'
61
41
2]
0-

POD (U/g)

(2]
o]
Q

35 ¥
307
257
207
157
107
51
0 0°
1h 6h 24h 1h 6h
Fig. 1 Physiological parameters of bermudagrass roots grown under
control and salt conditions. The uniform stolons were planted in
growth media for one month, and the plants mowed to the same
height were then transferred into CK (0 mM NaCl) and salt stress
(200 mM NaCl) conditions for 1 h, 6 h or 24 h in a hydroponic
culture. The MDA content (a), POD activity (b), SOD activity (c) and
proline content (d) were measured. Data are means + SD of three
independent experiments; * indicate statistically significant

difference between control and salt stress under certain time point
at P<0.05 by Student's t—test
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General transcriptomic responses and expression profiles
of differential expression genes in the roots of
bermudagrass

Totally 695,542 transcripts and 694,799 unigenes with an
N50 of 1391 bp were obtained. Gene expression analysis
showed that the expression of 58,979 genes was signifi-
cantly altered in response to salt stress at one or more
time points. The Venn diagram indicated that 229 genes
were up-regulated while 764 genes were down-regulated
at all the three-time points (Fig. 2a, b). Among the up-
regulated genes under salt stress, 3812, 2670, and 1258
genes were exclusively expressed in 1h, 6h and 24 h re-
spectively (Fig. 2a). Among the down-regulated genes, the
expression of 31,409 genes was regulated specifically at 1
h; the expression of 6538 genes was modulated only at 6 h
whereas the expression of 3054 genes was exclusive for
24h (Fig. 2b; Table S1). Overall, most of the responsive
genes showed down-regulated expression by NaCl at all
the three-time points, respectively (Fig. 2c). Also, the
number of differentially expressed genes (DEGs) after 1 h
salt treatment was relatively more than the number after
6 h and 24 h-salt treated (Fig. 2c, d).

To detect the expression pattern of DEGs, the STEM
(Short Time-series Expression Miner) software package
(Table S1) was used and 16 distinct temporal expression
patterns were identified (Fig. 3). The predominant pro-
files indicated that, following salt treatment, the expres-
sion pattern of the most DEGs changed rapidly within
the first 1 h following salt treatment (Fig. 3). Some genes
expression peaked (repression or induction) at 1h (Fig.
3e, i, 0) while other groups of genes peaked at 6 h (Fig.
3d, g) or 24 h respectively (Fig. 3b, j, 1, m, p). Some genes
responded at 1 h continued along the same trajectory at
the subsequent time points (Fig. 3b, m) or reverted to
untreated state levels (Fig. 3i, 0). Some genes were in-
duced at 1h and persisted (Fig. 3e, f). Other genes dis-
played slight changes until 24h (Fig. 3l, p). Also, as
compared to 1 h or 24 h, some genes displayed converse
patterns of induction and repression at 6 h (Fig. 3¢, n).
Moderate responses of some genes were observed at 1 h
and 6 h and showed a slight response at 24 h (Fig. 3h, k).
Still other genes repressed at 1 h were slightly repressed
at 6 h and reached a highly suppressed expression at 24
h (Fig. 3a). These gene expression profiles indicated that
there might be a time-specific response pattern in the
roots of bermudagrass.

Functional categorization of deferentially expressed
genes

To understand the transcript pattern changes of genes
belonging to different categories, and to detect the exist-
ence of differently expressed genes, PageMan analysis
was then used to analyse the relationship between the
enriched transcripts of different response time points
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Fig. 2 Summary of different expression genes after salt exposure at different time point. Venn diagram showing the overlap of up-regulated
genes (a) and down-regulated genes (b) at various time points (1 h, 6 h, 24 h). The numbers of DEGs exclusively expressed in one sample are
shown in each circle. The numbers of DEGs with a common tendency of expression changes between the two treatments are shown in the
overlapping regions. (S1_R_salt, NaCl treated for 1 h; CK1_Control, without NaCl treated for 1 h; S6_R_salt, NaCl treated for 6 h; CK6_Control,
without NaCl treated for 6 h; S24_R_salt, NaCl treated for 24 h; CK1_Control, without NaCl treated for 24 h). ¢ The number DEGs under different
time points. d A heatmap of the relative expression levels of of DEGs under different time point

and their biological significance. Results showed that stress (20), misc. (26), development (bin 33) and trans-
bins involved in major metabolism (2), cell wall (10), port (34) were all up-enriched (Fig. 4a-f; Table S2) while
secondary metabolism (16), hormone metabolism (17), the DNA (28), protein (29), energy-related (8: TCA/org
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transformation; 9: mitochondrial electron transport/ATP
synthesis) and cell (31) related bins showed significant
depletion of up-regulated genes under salt stress at all
three time points (Fig. S1; Table S2). These consistently
and continuously up-regulated gene categories mainly
included genes that participated in ABA synthesis and
signaling transduction (e.g. 9-cis-epoxycarotenoid dioxy-
genase, NCED; protein phosphatase 2C, PP2C; ABRE
binding factors, ABFs) (Fig. 5a), transcription factors
(e.g. members of HB, MYB and bZip) (Fig. 5b), several
groups of transporters (Fig. 5d) (e.g. transporters of

sugars, amino acids, peptides and oligopeptides; ABC
transporters; multidrug resistance systems; major
intrinsic proteins.PIP), genes regulating levels of osmo-
protectants (e.g. S-adenosylmethionine decarboxylase;
galactinol synthases; raffinose sythases; trehalose; callose;
galactose), transcripts that encode antioxidant enzymes
(e.g. peroxidase), genes involved in oxidases stress, such
as oxidases-copper, glutathione S transferases, beta 1,3
glucan hydrolases, plastocyanin-like proteins) and other
proteins (e.g. the late embryogenesis abundant proteins
and AWPM-19-like membrane family proteins
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and 2-oxoglutarate (20G) and Fe(II)-dependent oxygen-
ase superfamily protein) (Fig. S2a; Table S1). Although
the protein synthesis and amino acid activation sub bins
showed significant depletion of up-regulated genes
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Cluster-342212.185849 bZIP transcription factor famlily protein
Cluster-342212.174553 bZIP transcription factor famlily protein
Cluster-342212. 151483 Remorin famlily protein

Cluster-342212. 151482 Remorin famlily protein

Cluster-342212. 151485 Remorin famlily protein

Cluster-342212. 151412 Remorin famlily protein

Cluster-342212. 125024 RING/U-box superfamily protein

ﬁ Cluster-342212. 110337 RING/U-box superfamily protein

Transcripton regulator

Cluster-342212.109591 polyol/cyclitol/monosaccharide-H*-symporter
Cluster-342212.148950 sucrose transporter 2(SUT2)
Cluster-342212.147484 sucrose transporter 2(SUT2)
Cluster-342212.88484 amino acid permease 3(AAP3)
Cluster-342212.221600 natural resistance-associated macrophage protein1
Cluster-342212.167522 Major facilitator superfamily protein
Cluster-342212.98969 plasma membrane localized ABC transporter
Cluster-342212.98967 plasma membrane localized ABC transporter
Cluster-342212.98972 plasma membrane localized ABC transporter
Cluster-342212.98968 plasma membrane localized ABC transporter
Cluster-342212.143450 Probable aquaporin PIP2.3
Cluster-342212.143432 Probable aquaporin PIP2.3
Cluster-342212.143461 Aquaporin PIP2.5

Cluster-342212.66304 temperature-induced lipocalin TIL1
Cluster-342212.246796 AWPM-19-like family protein
Cluster-342212.66302 temperature-induced lipocalin TIL1
Cluster-342212.246794 AWPM-19-like family protein
Cluster-342212.1413 AWPM-19-like family protein
Cluster-342212.200620 Major facilitator superfamily protein

Transport

Pl

under all three time points, the protein modification
sub-bin significantly enriched the up-regulated genes
(e.g. members of PP2C, HAB, HAI, WIN, CIPK family)
(Fig. 5¢). However, genes involved in protein transla-
tional modification such as kinase and ubiquitination
pathway-related genes were up-regulated (Fig. S3).

Salt responsive genes categories at different time points

Salt treatment triggered exclusive response at different
time points (Table S2). For instance, the receptor-like
kinase sub-bin (30.2) involved in signaling bin (30) was
specifically over-represented immediately after salt ex-
posure for 1h (Table S2; Fig. S4a), including receptors
such as leucine-rich repeat (LRR V, VIII and XII),
thaumatin-like, Catharanthus roseus-like RLK1, domain
of unknown function (DUF) 26, legume-lectin domain
(LLD), LRK10 like; lysine motif, proline extension-like
(PERK), S-locus glycoprotein like and wall-associated

receptor kinase (WAK). Some calcium signaling-related
genes were specifically up-regulated immediately after
the roots were exposed to salt for 1h (e.g. calcium-
dependent protein kinase, CDPK11; Calmodulin, CAM3;
calmodulin-domain protein kinase, CPK5; calmodulin-
like, CML43). A mitogen-activated protein kinase
MAPK?2 (cluster-342,212.26954), which is a homolog to
At2g43790 was also up-regulated exclusively at 1h
(Fig.S2b). Sub bins involved in hormone metabolism
(17) such as JA synthesis-degradation (17.7.1) and signal
transduction (17.7.2), CTK metabolism (17.4) and ETH
metabolism (17.5) were specifically induced at 1 h (Table
S2; Fig. 4a). Genes that participated in ETH biosynthesis
(one ACC synthase and four ACC oxidase), ethylene sig-
nal transduction (three ERF and one DREB), JA biosyn-
thesis (one allene oxide synthase, AOS1; one allene
oxide cyclase, AOC4), JA signal transduction (JAZ1) and
CTK metabolism degradation (five UDP-glucosyl
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transferase and nine cytokinin oxidase) were significantly
up-regulated under 1h salt treatment, indicating that
these hormones could be involved with early response to
salt stress in the roots of bermudagrass (Table S2, Fig.
4a). In addition, a series of TFs sub bins (e.g. ARF:
27.3.4; ARR: 27.3.12; C3H: 27.3.5; NAC: 27.3.27; Trihe-
lix: 27.3.30; AS2: 27.3.37; JUMON]JIL: 27.3.57; PHORI:
27.3.64; Psudo ARR: 27.3.68) were over-represented after
1 h salt treatment compared to the later time points, im-
plying that these TFs might be exclusively involved in
early salt response in the roots of bermudagrass (Table
S2; Fig. S5). Other genes were also exclusively expressed
at 1h, including several groups of transporters (e.G.
major intrinsic proteins NIP, PIP); stress response mole-
cules (e.g. typsin inhibitor, PR proteins, MLO-like recep-
tors), lipid metabolism (e.g. choline kinase) (Table S2).

More map-bins enriched by PageMan were found ex-
clusively over-represented after plants were exposed to
salt for 1 h compared to the latter two-time points (16 at
1h, 10 at 6 h and 11 at 24 h respectively) (Fig. S6). These
included bins of tetrapyrrole synthesis (19) (Fig. S4c),
biodegradation of xenobiotics (24) (Fig. S4e), lipid me-
tabolism (11) (Fig. S4b), suggesting a relative earlier re-
sponse to salt (Fig. S4). However, the polyamine
synthesis sub-bin was over-represented only after 6h
and 24 h salt treatments (Fig. S6). In the secondary me-
tabolism bin, the sub bins related to isoprenoid, phenyl-
propanoid and flavonoids metabolism were presented
upregulated at all the three-time points of salt exposure.
However, some sub-bins included in secondary metabol-
ism (16) such as simple phenol (16.10), glucosinolates
(16.5.1), isoflavones (16.8.5) and tocopherol biosynthesis
(16.1.3) (Table S2) were exclusively over-represented at
24 h (Fig. 4b), indicating a slightly delayed response to
salt. These results revealed that regulators or effectors
involved in different salt-responsive categories might be
active at different time point following the perception of
salt stress.

Coexpression network analysis and hub gene
investigating by WGCNA

WGCNA was further performed to identify the specific
genes that are highly associated with salt response in the
roots of bermudagrass (Table. S4). Based on pairwise
correlations analysis of gene expression, fifteen network
modules in the co-expression network, designated dark-
violet, lightpink3, coral, skyblue3, corall, lavenderblush1,
mediumpurplel, lavenderblush2, pink4, brown4, honey-
dew, darkolivegreen, antiquewhite2, firebrick4 and grey
were identified (Fig. 6a, b). Investigating the relation-
ships between salt response physiological indexes (proli-
ne\POD\SOD) and module eigengenes revealed that the
correlation coefficients value varied from - 0.67 to 0.70
in proline, from - 0.55 to 0.70 in POD and from - 0.55
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to 0.70 in SOD (Fig. 6b). At the p value < 0.05 level, four
modules were associated with proline content, while five
modules with POD and two modules with SOD. The
eigengenes of lavenderblush2 and brown4 modules
showed significant positive correlations (p <0.01) with
proline and POD, suggesting these two modules might
have greater relevance in salt response (Fig. 6b). Further,
the lavenderblush2 and brown4 modules, representing
882 and 438 genes respectively, were visualized with the
Cytoscape software. The top three hub genes of brown4
co-expression network contained one homologue of
hypothetical protein MTR_3g035650 from Medicago
truncatula (Cluster-342,212.125010), one hypothetical
mitochondrion protein homolog to AGC78945.1 from
Vicia faba (Cluster-342,212.139315) and one classical
transcription factor HSF (cluster-342,212.125010) (Fig.
6¢c; Table S4). The top three hub genes of lavender-
blush2 co-expression network visualized by Cytoscape
contained one gene encoding [-amylase (Cluster-342,
212.182369) which belong to glycosyl hydrolase family
14 (Fig. 6d; Table S4). However, the other hub genes of
these two modules were not annotated.

RT-gPCR validation of selected deferentially expressed
hub genes

Because hub genes were investigated based on the rela-
tionship between FPKM of genes and the physiological
parameters, the accuracy of FPKM value of these hub
genes in the transcriptome data should be confirmed.
The expression levels of eight hub genes with different
expression pattern (Fig. 7) from two WGCNA modules
lavenderblush2 and brown4 were further determined by
RT-qPCR analysis (Fig. S7; Table. S5). The expression
profiles of top three hub genes from the module laven-
derblush2 showed an induced expression after 1h salt
stress but a decreased expression or no obvious alter-
ation at the latter time points (Fig. 7a-c; Fig. S7a-c). The
expression of top five hub genes from the module
brown4 showed a significant induction at all the three-
time points under salt exposure (Fig. 7d-h; S7d-h). The
expression patterns of these selected hub genes verified
by RT-qPCR and their FPKM values from the transcrip-
tome showed a consistent trend under the correspond-
ing treatments. These results not only confirmed the
differential response pattern of these hub genes from dif-
ferent modules but also confirmed the reliability of the
transcriptome data.

Discussion

Time-specific quick salt response modules in the roots of
bermudagrass

Previous transcriptome analysis of plants reveals differ-
ential response strategy at different stages of salt stress
[31, 32]. For instance, plants response to the initial
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osmotic stress by increasing the intracellular concentra-
tions of osmolytes [2]. After NaCl exposure for 24 to 72
h, alleviating Na" toxicity raises to a more urgent task
[23, 24]. To investigate the transcriptome adjustments of
bermudagrass roots to the salt shock in the early phase,
1h was firstly chosen to study the immediate salt

response. We next chose 6 h as a treat time point to in-
vestigate the immediate following reaction after the
earliest response to salt (1 h) based on the previous study
showing that soybean faced to an initial osmotic stress
stage in 1 h to 4 h after salt treatment [2]. Moreover, 24
h was still chosen to investigate if the salt response
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strategy begins to change in bermudagrass because 24 h
might be a turning point at which the salt response
strategy might begin to change in some plants [23, 24].
In bermudagrass, about 2.4 and 6 times more specific
salt-responsive genes derived from different gene cat-
egories were differentially regulated in the roots exposed
to salt for 1 h compared to those exposed to salt for 6 h
or 24 h respectively, suggesting a quick response after
salt exposure (Fig. 3). For example, several signal recep-
tors like kinases (e.g. LRR, thaumatin-like, RLK1,
DUF26, LLD, LRK10 like, PERK, and WAK) were de-
tected immediately and exclusively up-regulated at 1h
(Fig. S4a). These signal receptors kinases always re-
sponse at an earlier time point to function in protein
phosphorylation and modification, which is an important
step in initiating salt response signalling pathways and
ultimately leading to a transcriptional regulation [33—

37]. Moreover, the salt signal could also immediately
trigger the downstream hormones pathways, which are
known to be involved in stress responses in a wide range
[19, 38]. In this study, genes involved with ABA biosyn-
thesis and signal transduction sub-bins (17.1.1, 17.1.2,
17.1.3) were consistently up-enriched at all three-time
points (e.g. NCED; PP2C and ABFs) (Fig. 5a), suggesting
the established role to salt response [9]. However, we
also noticed that transcripts involved in the metabolism
of biosynthesis and signal transduction of ETH (e.g.
ACC synthase; ACC oxidase and ERF) and JA (eg.
AOS1 and AOC4), were exclusively over-represented at
1h of salt exposure (Fig. 4a; Table S2), indicating that
these salt responsive hormones metabolism pathways
might participate in the quick salt response progress in
the roots of bermudagrass [32, 39, 40]. In addition, the
induction of transcripts involved in CTK and GA
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degradation was noticed (Fig. 4a; Table S2). Transcripts
encoding gibberellin-degrading enzyme gibberellin 2-
oxidase (homologs of At4g21200 and Atlg75450 re-
spectively) suggested the cell growth were partly inhib-
ited to survive under environmental salt stress. The
expression of at least 9 transcripts of AtCKX6
(Atlg75450) homologs were regulated (Table S2), which
encoding a cytokinin oxidase/dehydrogenase that partici-
pates in catalysing the degradation of cytokines [41, 42].
These results suggested that hormone signaling does not
work alone while mediating salt response but might
function in multifarious crosstalk network with other
hormones.

Intracellular phosphorylation events are downstream
of secondary messengers, such as CDPKs [9-14] and
MAPK cascades [43-45], which are reported to be es-
sential sensor-transducers in plants. In this study, some
gene members involved in calcium signaling responded
immediately after salt exposure for 1h (e.g. CDPK11,
CAM3, CPK5 and CML43) (Fig. S4a; Table S2). Some
calcium-transporting ATPase encoding genes were spe-
cifically over-represented at 1h, which could further
promote the transmembrane transport of Ca** (Table
S2). A MAPK?2 gene (cluster-342,212.26954), which is a
homolog to At2g43790 was also up-regulated exclusively
at 1 h (Fig. S2b) and might interplay with ROS and hor-
mone in salt response [46, 47]. The immediate up-
regulation of these protein kinases encoding genes might
further trigger downstream transcriptome reconfigur-
ation to cope with the stressful salt condition [48].

In the roots of bermudagrass, we also identified over
ten transcription factor families, which were significantly
induced at one or more time points after salt exposure
(Fig. S5). The induced TFs number was much more at 1
h than latter time points. Among those TFs, AP2,
WRKY, bHLH and HB families accounted for a large ra-
tio of the total number of salt-induced TFs identified
and the three families (MYB, HB, bZip) were signifi-
cantly induced at all three time points (Fig. 5b; Table
S2). One HSF transcription factor was investigated as a
hub gene of brown4 co-expression network in this study
(Fig. 6d). The expression of this HSF transcription factor
showed up-regulated by salt at all three time points and
it could be a good target for future studies (Fig. 7f; S7).
Consistent with the previous studies that WRKY TFs
could positively or negatively participate in salt tolerance
[49], we also observed that 20 of the 23 WRKY TFs de-
tected significantly induced in response to 1h salt treat-
ment in the roots (Fig. S5; Table S2). The AP2/EREBP
family was also reported to include some stress-
responsive TFs [50]. We also observed that 16 of 17 AP2
transcripts were up-regulated after 1h salt treatment
(Table S2). Under salt stress, another most affected TF
family in the roots was bHLH, with 24 of 28 transcripts
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being induced at 1 h and 10 of 19 were increased at 6 h
by salt stress (Table S2). Among these induced bHLH
TFs, some important members which have been re-
ported to positively participate in salt stress response
such as bHLH92 [51]. The Aux/IAA families were sig-
nificantly enriched in salt-responsive transcripts espe-
cially at 1h with all 12 transcripts all up-regulated by
salt stress (e.g. IAA5, 12, 20, 24, 18, 23) (Table S2).
These salt response Aux/IAA genes have a central role
in auxin response and might act to integrate the signal
from environmental stimuli into the auxin-related gene
regulatory network [52]. Therefore, here, we noticed that
some biological processes responded at the early stage of
salt stress, mainly including signal transduction, hor-
mone metabolism and regulation of TFs. These quick re-
sponses might then form a cascade to active a series of
downstream response factors.

Common and distinctive positive salt response
mechanisms in the roots of bermudagrass

Plants have evolved diverse gene families to detoxify
ROS caused by harsh environments such as salt [19, 20].
In our study, the POD activity was significantly higher in
the roots of 1 h and 6 h salt-treated plants compared to
that in their respective control roots (Fig. 1b). However,
the SOD activity of 1 h and 6 h salt-treated roots showed
an upward trend, but the increase was not significant
compared to their respective control plants (Fig. 1c). Ac-
cordingly, a few members of POD encoding genes were
up-regulated but SOD encoding genes were not up-
regulated in our transcriptome data (Fig. 4d; Table S2).
Because oxidative stress is a consequence of the deteri-
oration of lipid peroxidation (indicated by MDA)
brought about by ROS, we also measured the MDA con-
tent in the roots. However, the roots MDA content dis-
played a higher value than control plants until exposed
to salt for 24 h (Fig. 1a), suggesting a progressive accu-
mulation with the increased treatment time. Other
members of gene families encoding oxidases-copper,
glutathione S transferases, beta 1,3 glucan hydrolases,
UDP glucosyl and glucoronyl transferases, plastocyanin-
like proteins (Fig. 4d; Table S2) were also up-regulated
at one or more time points to cope with the salt stress.
For example, UDP glucosyl transferases UGT79B2/B3 in
Arabidopsis was reported to contribute abiotic stress tol-
erance such as salt and drought via affecting anthocya-
nin accumulation and enhancing ROS scavenging [53].
Consistent with the previous studies in plants, some bio-
active secondary metabolites in the roots of bermuda-
grass (e.g. carotenoids, tocopherols and flavonoids) [54—
56] were also over-represented under salt and might also
serve as ROS scavengers (Fig. 4b; Table S2). As expected,
the genes regulating osmoprotectants levels were also
highly upregulated in this study. They included genes
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encoding galactinol synthases, raffinose synthase, trehal-
ose, callose and galactose (Fig. S4d), which were re-
ported to be the first stress-inducible genes under salt
stress [23-26].

The plant cell wall consists of cellulose, hemicellulose,
lignin, pectin and many glycoproteins [57, 58] and is
considered to be an important factor to sense and re-
sponse to salt stress. We also noticed that genes involved
in cellulose synthase (10.2), hemicellulose synthesis
(10.3) and lignin synthesis (16.2.1) were over-
represented in the salt-treated roots of bermudagrass
(Fig. 4f). The expression of glycoside hydrolase (GH17)
family genes was significantly induced under 1h of salt
stress (Fig. 4d; Table S2), suggesting it may participate in
the post-translational modifications of cell wall-related
proteins and lead to the alteration of cell wall flexibility
[59, 60]. In addition, other cell-wall related gene families
which function in cell wall extensibility were also
showed differential regulation in salt responsive tran-
scripts. For example, the expression of MUR4 was found
up-regulated in the roots of bermudagrass (Fig. 4f), and
was reported to function in the biosynthesis of UDP-
arabinose. Mutation in MUR4 affects cell wall integrity
and leads to an defective cell-cell adhesion with a re-
duced root elongation under high salinity [61]. More-
over, several AGPs (arabinogalactan proteins) encoding
genes were found up-regulated by salt at the transcript
level in our study (Fig. 4f). The AGPs on cell walls or
plasma membranes are also reported to be associated
with cell growth [62, 63] and one AGP (SOS5) was
known to contribute to salt tolerance in Arabdiopsis
[64]. We further noticed an earlier response of lipid me-
tabolism in the roots of bermudagrass. In particular, the
expression of genes involved in FA synthesis and elong-
ation were down-regulated while genes involved in FA
desaturation and lipid degradation were significantly up-
regulated immediately when exposed to salt for 1h (Fig.
S4b). Studies have shown that FA desaturases play an
important role in the maintenance of the biological
function of membranes in plant cells under different
conditions including salt stress [65, 66]. Here, salt stress
markedly changed the expression of genes encoding -3
FA desaturases which might lead to an alteration of FA
composition (Fig. S4b, Table S2). The immediate regula-
tion of genes coding for a recombination of lipid com-
position can provide novel insights to improve salt
tolerance of bermudagrass.

Other than secondary metabolisms-related genes
which significantly participated in cell wall modification
(Fig. 4f), some important secondary metabolism path-
ways were significantly induced at a prolonged time
point, suggesting slightly slower reactions that may in-
volve metabolic adjustment [67, 68]. For example, the
polyamine synthesis sub-bin was over-represented only
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after 6h and 24 h salt treatments. Some sub-bins in-
cluded in secondary metabolism such as simple phenol,
glucosinolates, isoflavones and tocopherol biosynthesis
were specifically over-represented at 24 h (Fig. 4b; Table
S2). These secondary metabolisms were previously re-
ported to be involved in plants oxidative response in
some species [67, 68]. For example, the expression of
laccase encoding genes was found up-regulated espe-
cially when exposed to salt for 24 h, which might partici-
pate in the oxidation and reduction of simple phenols in
the roots of bermudagrass and alleviate the oxidize stress
caused by salt stress [69, 70].

Categories of down-regulated genes by salt stress in the
roots of bermudagrass

In this study, down-regulated genes were more abundant
at all three time points respectively (Fig. 2c), suggesting
an impact of the huge negative regulation of transcrip-
tion on plant metabolism and functioning. Actually, im-
portant enriched gene categories such as hormone
metabolism, transcription factors, misc. and secondary
metabolism also contained large number of down-
regulated genes (Table S2). For instance, genes involved
in brassinosteroid synthesis or degradation (e.g. CYP450
family members) and signal transduction (e.g. BRI) were
significantly down-regulated by salt stress (Table S2),
suggesting an interaction of hormones to participate in
salt response in bermudagrass [71]. Although a series of
TF families showed up-regulation, other TF families
such as C,H, and HAP showed a large number down-
regulated genes at one or more time points (Table S2).
HAP transcription factor AtHAP3b and C,H, protein
Zat7 were previously reported to play key roles in pri-
mary root elongation to promote drought tolerance and
in salt resistance in Arabidopsis, respectively [72, 73].

In previous proteomic studies, NaCl treatment de-
creased protein translation, which is consistent with the
downregulation of most ribosomal proteins related tran-
scripts in this study (Fig. S3; Table S2) [27, 74]. We also
noticed that the number of DEGs after 1 h salt treatment
was relatively higher than the number after 6 h and 24 h
salt treated (Fig. 2c, d). More ribosomal proteins encod-
ing genes and protein metabolism related genes also
were significant over-represented in down-regulated
genes immediately after exposed to salt for 1h, suggest-
ing that more genes involved in protein or amino acid
metabolism were quickly and negatively regulated.
Genes involved in protein translational modification
such as kinase and ubiquitination pathways were up-
regulated (Fig. S3). Notably, the majority of E3 RING
and E3 SCF proteins related genes were significantly in-
duced by salt stress (Fig. S3; Table S2), suggesting that
these enzymes may function in ways that might be inde-
pendent on the 26S proteasome during salt response
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[75]. The inhibited protein synthesis and enhanced pro-
tein degradation might hike the concentration of free
amino acid, especially proline, which can act as an os-
motic protective substance. In this study, the proline
content in the roots of bermudagrass was significantly
induced after NaCl exposure (Fig. 1d). These free amino
acids could further initiate synthesis of dehydrin or poly-
amine, which might function in the maintenance of the
structure of the protein and cell membrane under salt
[2]. However, proline synthetic related category was not
significantly over-represented, suggesting that genes in-
volved in proline metabolism might not receive signifi-
cant transcriptional regulation at all treat time points in
this study.

Moreover, salt stress downregulated the expression of
genes involved in tricarboxylic acid cycle (TCA), which
is the main respiratory pathway in aerobe organisms
(Fig. Sla; Table S2). For example, genes encoding pyru-
vate dehydrogenases, which function in the conversion
of pyruvate to acetyl-CoA and thereby links the glyco-
lytic pathway to the TCA cycle, were enriched among
down-regulated gene categories (Fig. Sla; Table S2).
Also, genes encoding the mitochondrial electron trans-
port chain components such as NAD(P)H dehydroge-
nases and F1-ATPase were also exclusively enriched
among down-regulated gene categories (Fig. S1b; Table
S2). This suggests that the mitochondria might be dam-
aged by oxidative stress. Also, we noticed that genes in-
volved in DNA synthesis and cell organization were
down-regulated especially at 1h and 6h (Fig. Slc, 1d).
These gene categories might function together to save
energies and materials to maintain plants growth and
development under salt stress. A proposed model of key
categories of genes positively and negatively affected by
salt stress in the roots of bermudagrass was provided
(Fig. 8). Generally, genes belonging to signaling path-
ways, involved in signal perception and transduction,
such as signaling receptor kinase, hormone, and signal
pathways, respond immediately after NaCl exposure.
The transcription factors that respond at an earlier time
point further positively or negatively regulate the down-
stream response genes. In these salt-responsive gene cat-
egories, some categories such as lipid metabolism and
protein synthesis respond much earlier while other cat-
egories involved in secondary metabolite biosynthesis re-
spond at latter time point [26, 76].

Conclusions

Here, to understand the underlying regulatory mechan-
ism following salt exposure in bermudagrass roots, a
comprehensive transcriptome analysis was conducted.
Groups of important salt response gene categories were
identified. In addition, the distinctive salt-response path-
ways, time-specific response and potential hub genes
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investigated in this study can provide useful references
to further study the salt response mechanism of bermu-
dagrass in depth.

Methods

Plant materials and growth conditions

Bermudagrass accession ‘A12359’ (provided by Dr. Yangqi
Wu in Oklahoma State University) was used in this
study. Uniform stolons (ten stolons per pot) were
planted in pots filled with sand for about 1 month. The
plants were irrigated by Hoagland’s solution every 2
days. The roots of the plants were washed clean and
transferred into a hydroponic culture with Hoagland’s
solution for about 1 week to make the plants to adapt.
Before treatments, the plants were mowed to the uni-
form height and transferred into a hydroponic culture
consisting of CK (Hogland solution with 0 mM NaCl)
and salt stress (Hogland solution with 200 mM NacCl)
conditions. The plants were then treated for 1 h, 6 h and
24 h respectively. Each treatment comprised three repli-
cations and 18 root samples were collected for RNA ex-
traction and physiological parameters measurement. The
hydroponic culture was processed under the following
conditions: 22/18 °C (day/night), 65% relative humidity,
16 h photoperiod with a photon flux density of 300 umol

-2 -1
m S .

Transcriptome analysis

Root samples of 1h, 6h and 24h NaCl treated plants
(Salt 1 h_R; Salt 6 h_R; Salt 24h_ R) and their respective
control regimes (CK 1 h_R; CK 6 h_R; CK 24 h_ R) were
used for transcriptome analysis. Each treatment com-
prised three replications and 18 sequencing libraries
were prepared for RNA sequencing. Total RNA extrac-
tion was conducted following the Spectrum Plant RNA
extraction kit (Sigma-Aldrich, USA). The RNA concen-
tration was checked after DNase I digestion (NanoDrop
ND-1000 UV-Vis spectrophotometer). The RNA integ-
rity was measured using Bioanalyzer 2100 system (Agi-
lent Technologies). The following steps were conducted
as described before [31]. Generally, RNA libraries were
generated according to NEBNext® Ultra™ RNA Library
Prep Kit for Illumina® (NEB, USA). RNA fragments were
attached to sequencing adaptors and sequenced on an
[lumina HiSeq 2000 platform (Illumina, USA) to gener-
ate paired-end reads. Clean reads were generated after
removing raw reads and adapters of all samples and then
were de novo assembled by Trinity program to get as-
sembly transcriptome [77]. The cufflinks program (ver-
sion 2.0.2) was used to analysis the expression of
transcripts and FPKM value were used to estimate their
expression distribution [31]. DEGs (defined as genes up-
or down-regulated by salt at one or more time points)
were identified by comparing the expression alterations
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of the control and NaCl-treated samples. The signifi-
cance of differential gene expression was assessed ac-
cording to the following thresholds after salt treatment:
log, fold change value >lor< -1 and FDR (false discov-
ery rate) <0.05 and FPKM value >1 [31].

PageMan analysis

The log, Fold change of SvsCKlh (left column),
SvsCK6h (middle column) and SvsCK24h (right column)
were imported into PageMan (a new version included in

MapMan which was used for pathway analysis) and
subjected to a comparative overview of over-
representation in all of the treatments [78, 79]. To
predict BINs significantly affected, we applied the
statistical analysis provided in PageMan. The data was
analyzed by Wilcoxon test. Significant differences of
BINs were defined based on a p-value <0.05. Red
colour indicates a significant enrichement of up-
regulated genes and blue colour indicates a significant
depletion of up-regulated genes.
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Gene expression pattern analysis by STEM

For temporal expression profiles analysis, STEM
software was used [80]. The DEGs whose salt-treated
(S): untreated control (CK) log, expression ratio dif-
fered significantly from O at one or more time points
were used for analysis. The log, expression ratio of
genes was listed in Table S1. The maximum number
of profiles was set to 16 and maximum unit change
was set to 3 according to the method described be-
fore [27].

WGCNA

WGCNA analyses were conducted using the expression
of genes against the physiological parameters from the
same samples by hypergeometric tests [81]. Generally,
the RPKM values were firstly normalized by square root
transformation and the cutoff for significant enrichment
was FDR < 0.05 [82]. Network construction and module
detection were conducted using the automatic one-step
method with default settings. Then, the calculated mod-
ule eigengene value was used to determine the associ-
ation of modules with each salt responsive-related
physiological parameter of 18 samples. Using Cytoscape,
the modules which showed greater relevance with
physiological parameters were visualized. The genes con-
necting to a greater number of genes was denoted with
bigger size and dark red and were speculated to be more
important for their interaction with other genes.

Analysis of gene expression by RT-qPCR

The total RNA was extracted from the roots of three
biological replicates at all three time points using
RNeasy kit (Qiagen) according to the manufacturer’s in-
structions. First-strand cDNA of each sample was syn-
thesized from DNase I-treated total RNA (1-5 pg) using
TagMan reverse transcription kit (Applied Biosystems).
Each RT-qPCR reaction in a total volume of 20 pl con-
tained 2 pl of cDNA template, 0.2 uM of primers and
10 ul SYBR Green qPCR mix (Toyobo, Japan) and was
conducted using ABI real-time PCR system (Applied
Biosystems, FosterCity, CA) as described before [30].
Each reaction had three technical duplications. Tran-
script pattern of each gene was determined by following
the 22" method [83]. The CdActin2 was used as a ref-
erence gene for gene expression normalization. All the
technical aspects of RT-qPCR experiments fitted the re-
quirements of MIQE Guidelines [84]. Before gene ex-
pression analysis, RNA integrity of all samples was
evaluated on agarose gels electrophoresis and RNA ab-
sorbance OD260/280 ratios were examined. The original
c¢DNA of each sample was made tenfold serial dilutions
(10, 100, 1000x) with sterile ddH,O. The original cDNA
and diluted cDNA were used as template to make stand-
ard curves (Plots of log gene copy number versus Ct
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value) to further calculate the gene-specific primer effi-
ciency and R2 (regression coefficient) [85]. The primer
efficiency of all primers used in study was over 90%. The
specificity of each primer was confirmed by the single
peak of the melting curve of all samples. The primers
used were listed in Table S5.

Statistical analysis

One-way ANOVA was performed using SPSS17.0 for
Windows (SPSS). All of the above tests had at least three
independent replicates. Results were expressed as
mean = SD, and * show significant differences (P < 0.05)
by Student’s t—test.
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