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Abstract

Background: Sesame (Sesamum indicum) charcoal rot, a destructive fungal disease caused by Macrophomina
phaseolina (Tassi) Goid (MP), is a great threat to the yield and quality of sesame. However, there is a lack of
information about the gene-for-gene relationship between sesame and MP, and the molecular mechanism behind
the interaction is not yet clear. The aim of this study was to interpret the molecular mechanism of sesame
resistance against MP in disease-resistant (DR) and disease-susceptible (DS) genotypes based on transcriptomics.
This is the first report of the interaction between sesame and MP using this method.

Results: A set of core genes that response to MP were revealed by comparative transcriptomics and they were
preferentially associated with GO terms such as ribosome-related processes, fruit ripening and regulation of
jasmonic acid mediated signalling pathway. It is also exhibited that translational mechanism and transcriptional
mechanism could co-activate in DR so that it can initiate the immunity to MP more rapidly. According to weighted
gene co-expression network analysis (WGCNA) of differentially expressed gene sets between two genotypes, we
found that leucine-rich repeat receptor-like kinase (LRR-RLK) proteins may assume an important job in sesame
resistance against MP. Notably, compared with DS, most key genes were induced in DR such as pattern recognition
receptors (PRRs) and resistance genes, indicating that DR initiated stronger pattern-triggered immunity (PTI) and
effector-triggered immunity (ETI). Finally, the study showed that JA/ET and SA signalling pathways all play an
important role in sesame resistance to MP.
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Conclusions: The defence response to MP of sesame, a complex bioprocess involving many phytohormones and
disease resistance-related genes, was illustrated at the transcriptional level in our investigation. The findings shed
more light on further understanding of different responses to MP in resistant and susceptible sesame.
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Background
Plants have evolved complex signalling systems and mo-
lecular mechanisms to cope with multifarious biotic and
abiotic stresses in a constantly changing environment
[1]. In 2006, the concept of plant innate immunity was
first proposed. Pattern-triggered immunity (PTI) and
effector-triggered immunity (ETI) are two vital mecha-
nisms in the long course of coevolution of plant and
pathogen interactions [2]. Although PTI is feeble, it is
essential for plants and is the first line of defence against
pathogens [3]. PTI can be triggered by pathogen-
associated molecular patterns (PAMPs), followed by
thickening of cell wall, lignification of cell wall, produc-
tion of phytoalexin and induction of the expression of
PR genes. However, some pathogens can restrain and
break through the defence of PTI by secreting effectors
into plants. Plants have developed a reconnaissance
mechanism to perceive and recognize these effectors,
which leads to ETI. Both PTI and ETI are engaged in
the early defence response of plants. They perform com-
parative functions and early induction of defence signal-
ling transduction and downstream molecular network
responses can also be observed at the physiological level,
such as the burst of reactive oxygen species (ROS), the
activation of mitogen activated protein kinase (MAPK)
pathway and amassing of callose [4]. The production of
reactive oxygen intermediates, particularly the burst of
superoxide anion radicals and the accumulation of
hydrogen peroxide, is considered to be an early defence
response of plants to external pathogens and is a neces-
sary autoimmune reaction process of plants [5]. ROS, in-
cluding 0%, H,0, and HO", predominantly collect in
chloroplasts and mitochondria, and they can cause oxi-
dative damage to lipids, proteins, nucleic acids and
photosynthetic devices. To reduce oxidative harm, plants
produce different types of antioxidant enzymes such as
superoxidase dismutase (SOD), catalase (CAT) and per-
oxidase (POD) to scavenge ROS to enhance their disease
resistance. Simultaneously, the process of decomposing
H,0, by POD can likewise produce toxic substances to
ward off invasive microorganisms and inhibit the prolif-
eration and diffusion of pathogens [6]. ROS are consid-
ered to be an essential signalling component in plant
defence [7, 8].

Basic helix-loop-helix (bHLH) proteins belong to the
TF superfamily and are widely distributed in eukaryotes.

Members of the bHLH superfamily generally contain
two highly conserved and functionally different domains:
the N-terminal basic region that binds to DNA [9],
which mainly recognizes the E-box and G-box [10], and
the C-terminal HLH domain, which depends on the
interaction of hydrophobic amino acids to form autodi-
ploid or allodiploid of two HLH proteins and regulates
the expression of downstream target genes [11, 12].
bHLHs often cooperate with members of other TF fam-
ilies to regulate and induce the biosynthesis of an assort-
ment of secondary metabolites, such as terpenoids,
alkaloids, phenylpropanoid, and anthocyanins and so on,
which assume a significant job in regulating the inter-
action between plants and the environment [13, 14].
Presently, an ever-increasing number of studies have
demonstrated that bHLHs are related to biotic or abiotic
stress reactions in various plants [15-17].

Sesame, a member of the Pedaliaceae family, is one of
the most advantageous and nutritious oil crops with an
oil content of 50-60% and a protein content of 20—30%.
Furthermore, it is rich in unsaturated fats (approximately
85%) and natural antioxidants such as sesamol, tocoph-
erol and nutrient E [18, 19]. These antioxidants have sig-
nificant health-promoting effects, such as reducing
cholesterol and hypertension, reducing the incidence of
some cancers and providing neuroprotective effects
against hypoxia. Subsequently, the worldwide demand
for sesame has continuously expanded as of late. How-
ever, in China, sesame is vulnerable to a variety of path-
ogens, which are the leading causes for the low and
unstable yield of sesame. In addition, basic researches on
sesame are still scarce compared with other crops, which
is also one of the reasons for the low yield of sesame. It
is necessary to study the basic genetics and molecular
biology of sesame to improve the resistance of sesame to
biotic stress.

Sesame charcoal rot generally occurs at the end of the
flowering stage and before the ripening stage in sesame,
with the disease spots beginning to appear and spread
from the root or stem under hot and dry weather or
high environmental stress. This is caused by the seed-
and soil-borne fungus MP, which is highly contagious
and can infect in excess of 500 species of plants. Char-
coal rot usually diminishes sesame production of 10—
15% or even over 80% in serious cases. Furthermore, it
will likewise impact the quality of sesame by diminishing
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the oil content of sesame seeds of 4.2-16.2% [20].
Hence, revealing the resistance mechanism of sesame,
screening for the resistance genes in sesame and culti-
vating resistant varieties are helpful for alleviating the
loss of yield. Unfortunately, the genetic improvement of
sesame is proceeding slowly due to the lack of a known
molecular mechanism and information regarding the
gene—for—gene relationships in the interaction between
sesame and MP. With the publication of sesame ge-
nomes [21, 22], researches on sesame have become in-
creasingly active. Hitherto, an investigation of the
transcriptomes involved in the interaction between ses-
ame and MP has not yet been published.

Consequently, this study preliminarily explored the
molecular mechanism of sesame resistance to MP by
comparing and analysing the transcriptome data of a
sesame resistant genotype DR and a susceptible geno-
type DS inoculated with MP, which will provide a funda-
mental theoretical research for the genetic improvement
of sesame.

Results

Root phenotypes of DS and DR post inoculation by MP
According to the results of infection phenotype of ses-
ame roots, we found that there was a difference between
DR and DS post-inoculation by MP (Fig. 1). The roots of
DS and DR showed no significant difference before in-
oculation. At 12 h post-inoculation (HPI), sporadic black
spots were observed in the roots of DS, while no obvious
symptoms in DR. At 24 HPI, the black spots in DS were
increasing significantly and necrosis can be seen in a
part of the roots. However, the black spots just appeared
in the roots in DR at this moment. With the passage of
time (36 HPI and 48 HPI), the black spots in DS grad-
ually spread to the whole root and the necrotic area
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further expanded, while in DR, the black spots didn’t
change significantly, and there was no obvious necrosis
in the root within 48 h. It further indicates that DS is
susceptible to MP, while DR is highly resistant to MP.

lllumina sequencing and alignment to the genome

Plant at five time points post-inoculation (0 HPIL, 12
HPI, 24 HPI, 36 HPI, and 48 HPI) and their biological
replicates were sequenced and 30 transcriptomes were
obtained. The evaluation of the sequencing quality indi-
cated that the sequencing results of all samples were ex-
cellent, the base distribution was balanced and the mean
Q value was approximately 36. More than 2.4 billion raw
reads were generated from 30 libraries, and then ap-
proximately 2.337 billion clean reads (clean ratio >
95.69%) were obtained for subsequent analysis after re-
moving the adapter sequences, low-quality reads and
rRNA sequences. On average, 95.89% of the reads could
be mapped to the reference genome of sesame and most
of them (88.28%) could be mapped to the coding regions
(Additional file: Table S1).

The relationships among the samples were checked
through the Pearson correlation coefficients between
samples (Fig. 2) and principal component analyses
(PCA) (Additional file: Figure S1). We selected samples
with a high correlation between biological replicates
(R%> 0.96). Furthermore, we can also see that the two
samples DS Oh-2 and DR 48 h-3 were serious outliers
based on PCA. Thus, DS 0 h-2 and DR 48 h-3 were ex-
cluded from the following analysis. PCA also showed
that there was a great difference between the control (0
HPI) and treated groups, which indicated that MP in-
duced many different changes in the sesame transcrip-
tomes, and there may be some resistance-related genes
in the interaction between sesame and MP.

Fig. 1 Root phenotypes of DS and DR post innoculation by MP
A\

36h

48h
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Fig. 2 Pearson correlation coefficients of all 30 samples. The expression level of each gene for each pair of samples was used to calculate the
Pearson correlation coefficients

Core gene sets in response to MP
In order to apprehend the overall transcriptome changes
in the interaction between sesame and MP in the two
genotypes, the genes with FPKM values greater than 0.1
were regarded as expressed genes. A total of 22,049, 22,
114, 21,961, 21,712 and 22,032 genes were detected in
DS, while 22,514, 22,036, 22,032, 22,049 and 22,100
genes were detected in DR at 0 HPI, 12 HPI, 24 HPI, 36
HPI, and 48 HPI, respectively. The expression of 23,042
and 23,217 genes was also observed at all time points in
DS and DR, respectively (Additional file: Figure S2A).
There are 22,761 genes (96.9%) expressed in both DS
and DR, 281 genes (1.2%) were specifically expressed in
DS and 456 (1.9%) in DR (Additional file: Figure S2B).
To investigate genes involved in the response to MP in
sesame, differentially expressed genes (DEGs) were iden-
tified under the standard of false discovery rate (FDR) <
0.01 and |log2-fold change| > 1. As shown in additional
file: Figure S3A, 3607, 3876, 3336 and 3359 DEGs were
significantly up-regulated and 2839, 3684, 4329 and
2956 DEGs down-regulated in DS, while 2304, 2410,

2485,2600 DEGs in DR were significantly up-regulated
and 2803,2703,3091 and 2394 DEGs down-regulated at
four time points post-inoculation, respectively. It follows
that the overall DEGs (4994-5576 DEGs) of DR ware
fewer than those of DS (6315-7665 DEGs) within 48 h
post-inoculation, and the number of DEGs responding
to stress in DR was significantly fewer than that in DS at
each time point. This indicated that the injury caused by
MP in DR was likely to be much less than that in DS,
which may change the transcriptome expression profile
to a smaller extent and permit the plant to cope with
the stress more easily.

Further overlap analysis of up- and down-regulated
DEGs at four time points of DS and DR showed that
1977 and 1320 co-up-regulated genes and 1791 and
1357 co-down-regulated genes were identified in DS and
DR respectively. To identify the core gene sets in re-
sponse to MP, we compared the overlap DEGs between
DS and DR and found that there are 867 up-regulated
DEGs and 721 down-regulated DEGs overlapped be-
tween the two genotypes (Additional file: Figure S3B).
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The enrichment of GO terms of the core gene sets
above was analysed to study the potential function of
genes in response to MP. The 867 up-regulated DEGs
were mainly enriched in ribosome-related processes,
followed by thiamine pyrophosphate binding, maturation
of LSU-rRNA from tricistronic rRNA transcript (SSU-
rRNA, 5.85 rRNA, LSU-rRNA), fruit ripening, acylgly-
cerol lipase activity and defence response to gram-
negative bacterium (Fig. 3a). Likewise, the main term
with the highest enrichment of 721 down-regulated
DEGs are regulation of jasmonic acid mediated signal-
ling pathway, UDP-galactosyltransferase activity, cell-cell
signalling, response to freezing and regulation of second-
ary cell wall biogenesis (Fig. 3b).

DEGs up-regulated uniquely in DR

To study the functional specificity of disease resistance
in DR, up-regulated DEGs observed specifically in DR
compared with DS were explored over time. At 12 HPI,
733 DEGs were enriched in the process of ribosome syn-
thesis and assembly, maturation of SSU-rRNA from tri-
cistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-
rRNA) and cytoplasmic translation (Additional file: Fig-
ure S4A), indicating that DR may respond more quickly
than DS and prepare for the translation of resistance-
related proteins at the level of transcription and transla-
tion during the initial stage of stress. At 24 HPI, 488
DEGs were enriched in GO terms such as ligand-gated
ion channel activity, cellular response to hypoxia, oxido-
reductase activity, systemic acquired resistance, and
positive regulation of defence response (Additional file:
Figure S4B), which reveals that DR has made a series of
responses to infection stress, such as the production of
peroxidase and activation of the systemic acquired resist-
ance process and defence response, illustrating that DR
can arrange the defence system more quickly and effect-
ively to resist MP. When the stress was more severe (36
HPI), a total of 737 DEGs were specifically up-regulated
in DR, which were mainly enriched in ribosome-related
processes, followed by phloem transport, nucleoside,
nucleobase transport, nucleobase transmembrane trans-
porter activity, cytoplasmic translation and hydrogen
peroxide catabolic process (Additional file: Figure S4C).
At 48 HPI, GO enrichment indicated that 750 DEGs
were involved in ribosome related pathways, cytoplasmic
translation, RNA binding, beta-glucosidase activity,
ligand-gated ion channel activity and monoterpenoid
biosynthetic process (Additional file: Figure S4D). This
result indicated that DR continuously transcribes, trans-
lates and transports disease resistance-related proteins
and secondary metabolites such as monoterpenes to ad-
dress stress. Overall, the rapid stress responses and the
activation of specific disease-related pathways of DR
might lead to its high resistance.
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DEGs between DS and DR

Moreover, DEGs were compared between DR and DS to
filter the genes with a high correlation with disease re-
sistance in sesame. Under normal growth conditions (0
HPI), 1577 DEGs were observed between DR and DS
(Fig. 4a). GO enrichment analysis showed that these
genes were enriched in condensin complex, mitotic
chromosome condensation, DNA primase activity,
chromosome condensation, DNA unwinding involved in
DNA replication, FMN reductase activity and response
to anoxia (Additional file: Figure S5).

Then, based on overlapped analysis, a total of 52 genes
that were significantly differentially expressed between
the two genotypes at all four time-points were obtained
(Fig. 4b). Then, they were classified into 5 clusters exhi-
biting different functions (Fig. 4c). These 52 genes were
most enriched in GO terms such as response to abscisic
acid, cell wall, hormone-mediated signalling pathway, re-
sponse to hormone, cell-cell junction, defence response
and signal transduction (Additional file: Figure S6), most
of which are known to be associated with plant stress.
This further implies that these genes are crucial candi-
date genes inducing higher resistance in DR than DS.
Among them, 20 of these genes exhibited significant dif-
ferences in expression even under normal conditions be-
tween the two genotypes.

It is noteworthy that most DEGs were found in the
two sesame genotypes at 36 HPI, as well as between the
two genotypes. Furthermore, many DEGs in the KEGG
pathways related to biological stress were significantly
enriched at 36 HPI in DR VS DS, including “plant hor-
mone signal transduction” (35 DEGs), “plant-pathogen
interaction” (15 DEGs), “brassinosteroid biosynthesis” (2
DEGs) and “ diterpenoid biosynthesis “ (12 DEGs). How-
ever, DEGs in these key signalling pathways were not
obvious at other time points, indicating that 36 HPI may
be an important period in the disease resistance of
sesame.

DEGs involved in key pathways at 36 HPI
From the perspective of KEGG pathways, “plant-patho-
gen interaction” and “plant hormone signal transduc-
tion” are the key pathways in plant resistance. Therefore,
the two main pathways in sesame were analysed at the
important time of 36 HPL

The genes involved in the “plant-pathogen interaction”
pathway were identified based on KEGG pathway assign-
ment. The results showed that 48 and 72 DEGs were
identified in DR and DS, respectively, and most of these
genes were down-regulated in both genotypes. In DR,
the expression of PR1 (pathogenesis-related protein 1),
HSP90 (heat shock protein 90kDa beta)), MAP 2K1
(mitogen-activated protein kinase kinase 1) and RPM1
(disease resistance protein RPM1) increased, while the
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Fig. 3 Top 30 GO term enriched functional categories of co-up-regulated (a) and co-down-regulated (b) DEGs in the two genotypes
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expression of WRKY22, WRKY29, WRKY33, Rboh (re-
spiratory burst oxidase), FLS2 (LRR receptor-like serine/
threonine-protein kinase FLS2) and CDPK (calcium-
dependent protein kinase) decreased. In DS, the expres-
sion of BAK1 (brassinosteroid insensitive 1-associated
receptor kinase 1), HSP90, MAP 2K1 and Ptil (pto-
interacting protein 1) genes were up-regulated, while
FLS2, MEKK1 (mitogen-activated protein kinase kinase
kinase 1), NHOL1 (glycerol kinase), Rboh, RPS2 (disease
resistance protein RPS2), WRKY22, WRKY29 and
WRKY33 were down-regulated. Furthermore, in the
“plant-pathogen interaction” pathway, up-regulated
genes such as HSP90 were more involved in DR than in
DS. For the genes that were detected only in DS, the ex-
pression of BAK1 and Ptil increased while the expres-
sion of MEKK1 and NHO1 decreased (Additional file:
Table S2).

Similarly, in the “plant hormone signal transduction”
pathway, there were more DEGs involved in DS (113)
than in DR (76). Most of these genes participate in auxin
(AUX), abscisic acid (ABA) and ethylene (ET) biosyn-
thesis. In addition, genes connected to CRE1 (Arabidop-
sis histidine kinase 2/3/4), B-ARR (two-component
response regulator ARR-B family), SnRK2 (serine/

threonine-protein kinase SRK2), EIN2 (ethylene-insensi-
tive protein 2), BZR1_2 (brassinosteroid resistant 1/2)
and BSK (BR-signalling kinase) specifically expressed in
DS were all down-regulated while those related to BAK1
and BKI1 were all up-regulated (Additional file: Table
S2).

In the “ plant-pathogen interaction” pathway, in com-
parison with DS, the expression levels of 2 CDPKs, 3 dis-
ease resistance protein RPMI1, 1 LRR receptor-like
serine/threonine-protein kinase FLS2, 2 CML genes en-
coding calcium-binding protein and 1 Rboh gene in DR
were significantly up-regulated. These genes can induce
PTI in plants by identifying Ca** signals and then acti-
vate hypersensitive responses and cell wall reinforcement
to prevent the spread of pathogens. The expression
levels of other genes such as WRKY22 were significantly
up-regulated, which can induce resistance by generating
downstream defence genes. On the other hand, a total of
35 genes were differentially expressed in “plant hormone
signal transduction” pathway, with 11 DEGs up-
regulated in connection with auxin, including 2 IAA
(auxin-responsive proteins), 2 AUX1 (auxin influx car-
riers), 2 auxin-responsive GH3, 1 ARF (auxin response
factor) and 4 SAUR proteins. The other up-regulated
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genes were 2 genes encoding ethylene-responsive tran-
scription factor (ERF1) involved in ethylene response, 2
transcription factors TGA and 1 regulatory protein
NPRI1 related to SA biosynthesis, 2 cyclin D3 (CYCD3)
involved in the brassinosteroid pathway, 1 DELLA pro-
tein involved in gibberellin biosynthesis and 2 genes en-
coding two-component response regulator related to the
cytokinin synthesis pathway (Table 1).

Analysis of hub genes by WGCNA between two sesame
genotypes

All the genes (mean FPKM > 0.1) differentially expressed
between DR and DS post-inoculation were further inves-
tigated by weighted gene co-expression network analysis
(WGCNA). 1076 genes were divided into six co-
expression modules named as blue, brown, green, tur-
quoise, yellow and grey, containing 242, 217, 48, 323, 65
and 181 genes, respectively (Fig. 5a, b). The correlation
between the detected modules and the time-points post-
inoculation of resistant and susceptible genotypes
showed that all the six modules differently response to
MP stress. Among these modules, the genes in the tur-
quoise module were negatively correlated with DR-
36HPI, but positively correlated at DS-36HPI. Similarly,
the genes in the yellow module were positively corre-
lated with DR-36HPI, but negatively correlated at DS-
36HPI (Fig. 5).

The expression pattern of the genes in these two mod-
ules is shown in Fig. 6. This indicated that these two
modules may contain resistant genes to defence MP, so
we selected turquoise and yellow modules for gene co-
expression network analysis to reveal hub genes during
the interaction between sesame and MP. In gene co-
expression networks, many genes only interact with a
limited number of others while fewer gene sets (hub
genes) interact with many others, there is no doubt hub
genes in the networks play a core role. In order to
understand the relationship between the genes within
the modules, Cytoscape software was used to construct
the gene networks of the yellow and turquoise modules
(weight > 0.3 and the first 2000 edges). TFs are repre-
sented with darkgreen font and the size of node circle is
positively correlated with the number of genes it inter-
acts. Genes with biggest node sizes represent the hub
genes and they are showed as red nodes (Fig. 7).

In yellow module, we observed several hub genes, in-
cluding LOC105160699 (LRR receptor-like serine/threo-
nine-protein kinase), LOC105172070 (probable LRR
receptor-like serine/threonine-protein kinase),
LOC110012469 (probable LRR receptor-like serine/
threonine-protein kinase), LOC105170715 (aquaporin
PIP2-7), LOCI105157597 (probable 2-oxoglutarate-
dependent dioxygenase), LOC105172803 (polygalacturo-
nase), LOC105169338 (histone H3.2), LOC105168283
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(2-phytyl-1,4-beta-naphthoquinone  methyltransferase),
LOC105169078 (protein DETOXIFICATION 43),
LOC110011443 (NA) and LOC105174719 (NA). Simi-
larly, The hub genes detected in turquoise module were
LOC105161270 (GRAS), LOC105177799 (peroxidase 73
precursor), LOC105158919 (laccase-15-like),
LOC105179108 (laccase-14-like), LOC105175128 (G-
type lectin S-receptor-like serine/threonine-protein kin-

ase), LOC105156745 (E3 ubiquitin-protein ligase
RHA2B-like), LOC105171289 (ATP sulfurylase 1),
LOC105168907 (linoleate 9S-lipoxygenase 5),

LOC105167576 (VQ motif-containing protein 22),
LOC105162622 (oleel-like protein), LOC105176162
(NA), LOC105176323 (NA). Furthermore, some key TFs
like LOC105174354 (MYB) in yellow module and
LOC105173824 (bHLH) and LOC105161270 (GRAS) in
turquoise module were also detected, which may play
vital regulation role in defence. These results suggest
that the genes encoding LRR-RLK and laccase may play
a major role in the sesame defence against MP. At the
same time, the activity of peroxidase in sesame may con-
tribute to the resistance of sesame. Notably,
LOC105161270 (GRAS) is not only a hub gene in the
turquoise module, but also a TF closely related to dis-
ease resistance in plants, indicating that it may be a cru-
cial regulatory gene in the resistance to MP.

TFs involved in sesame defence

To research the major TFs of sesame in the interaction
between sesame and MP, we investigated the expression
of all genes involved in transcriptional regulation. A total
of 3904 TFs were identified in the DEGs in sesame,
which were grouped into 49 gene families. In general,
the number of transcription factors increased with the
severity of stress (Additional file: Table S3). In DR,
bHLH gene family, the most abundant and active TF
family, was significantly more represented than other TF
families, followed by ERF, MYB, NAC, WRKY, C,H,,
LBD, GRAS, HD-ZIP, bZIP, ARF, MYB_related and
other transcription factor families. Additionally, many
DEGs were members of the TF families bHLH, MYB,
ERF, NAC, WRKY, HD-ZIP, bZIP, GRAS, LBD, C,H,,
ARF and HSF in DS (Fig. 8). In this research, it was dis-
covered that the bHLH transcription factor family was
the most abundant transcription factor in the interaction
between sesame and MP, indicating that bHLH proteins
may play a vital role in sesame charcoal rot resistance.

Real-time quantitative PCR

15 genes in two genotypes that responded to MP were
selected to confirm the RNA-seq results, including 8
genes involved in resistant to MP and 7 genes in phyto-
hormone signalling pathway (Additional file: Table S4).
The results show that the real-time quantitative PCR
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Table 1 DEGs between DR and DS in plant-pathogen interaction and plant hormone signal transduction pathways at 36 HPI

Gene ID

Gene symbol

LOG2(FC)

pathway

LOC105166461
LOC105171604
LOC105165972
LOC105159534
LOC105165460
LOC105171969
LOC105157411
LOC105160106
LOC105173039
LOC105165316
LOC105180110
LOC105173088
LOC105164060
LOC105172653
LOC105175642
LOC105174548
LOC105160898
LOC105162066
LOC105156670
LOC105159150
LOC105169513
LOC105178897
LOC105161291
LOC105167788
LOC105176748
LOC105174793
LOC105171637
LOC105171811
LOC105159880
LOC105156793
LOC105155428
LOC105174292
LOC105166772
LOC105171237
LOC105176696
LOC105156765
LOC105159175
LOC105177517
LOC105158452
LOC105164449
LOC105171710
LOC105155519
LOC105168467
LOC105172653

CALM
CALM
CDPK
CDPK
Rboh
RPM1
RPM1
RPM1
WRKY22
CALM
CALM
CNGC
HSP90
PR1
ARF
AUX1
AUX1
B-ARR
B-ARR
CYCD3
CYCD3
DELLA
ERF1
ERF1
GH3
GH3
IAA
IAA
NPR1
SAUR
SAUR
SAUR
SAUR
TGA
TGA
A-ARR
BKI1
DELLA
ERF1
ERF1
ERF1
GID2
JAZ
PR1

167
1.66
1.16
1.77
1.19
157
2.38
1.77
1.52
=141
-1.20
-1.28
=1.15
-2.70
1.06
141
1.22
3.56
1.25
1.23
1.72
5.08
4.08
3.12
1.70
122
1.27
1.18
1.87
217
233
3.22
1.55
1.80
209
-2.35
-1.44
-1.65
-1.08
-1.37
-1.09
-1.02
-3.20
-2.70

Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant-pathogen interaction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction
Plant hormone signal transduction

Plant hormone signal transduction
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Table 1 DEGs between DR and DS in plant-pathogen interaction and plant hormone signal transduction pathways at 36 HPI

(Continued)

Gene ID Gene symbol LOG2(FC) pathway

LOC105175593 ERF1 —345 Plant hormone signal transduction
LOC105171100 SAUR -1.26 Plant hormone signal transduction
LOC105158157 SAUR -1.55 Plant hormone signal transduction
LOC105173359 SAUR -1.82 Plant hormone signal transduction
LOC105165572 TCH4 -2.08 Plant hormone signal transduction

and RNA-seq are consistent with the overall expression
trend (Fig. 9), indicating that the RNA-seq used in this
study showed a high degree of reliability.

Discussion

Comparative transcriptome analysis

Plants are generally subjected to an assortment of biotic
and abiotic stresses, particularly pathogen stress, which
seriously affects their growth and development. In our
investigation, MP infection gradually changed the ex-
pression of the sesame transcriptomes and demonstrated
the most DEGs at 36 HPI, implying that it is the key
period for sesame to resist the invasion of the pathogens.
In addition, we found that DS had more DEGs and TFs
than DR regardless of the time point post-inoculation,
indicating that susceptible genotypes were more likely to

be interfered by MP at the transcriptional level, which
may be due to the lack of a corresponding mechanism
in DS to adapt to MP stress. Different decisions made by
DR and DS during pathogen infection may lead to their
disparities in resistance.

Based on GO enrichment analysis at all four time
points, a great deal of DEGs engaged in ribosome-
related procedures were collected in DR specifically,
however these DEGs were not found in DS, which indi-
cated that pathogen infection seems to specifically trig-
ger adapted transcription responses in DR. Ribosomes
are ‘factories’ that synthesize proteins at the cellular level
and various mechanisms have evolved to detect and
react to environmental changes rapidly at transcriptional
and translational levels in plants [23, 24]. More DEGs in-
volved in ribosome-related pathways in DR demon-
strates that DR might have a rapid and intense response
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Fig. 6 Heatmaps of gene expression patterns for yellow and turquoise modules

to MP stress with translational mechanisms activating
synergistically with that of transcription, which is con-
sistent with the consequences described by Supriyo
Chowdhury [25].

There were some DEGs constantly expressing in the
two genotypes under MP stress, which represent the
core genes mediating disease resistance against MP in
sesame. It was discovered that many of these genes were
PODs, and their expression increased significantly post-
inoculation. Numerous studies have demonstrated that
higher antioxidant enzyme activity helps to improve
plant disease resistance [26, 27]. POD participates in the
defence against pathogens through its role in the detoxi-
fication of HyO, and it assumes an essential job in the
process of disease resistance. When stressed by external
pathogens, the enhancement of POD activity can in-
crease the content of phenolic oxides to trigger hyper-
sensitive responses and subsequently inhibit the
proliferation and spread of pathogens [28].

There are many protein kinase genes and
pathogenesis-related genes in this core gene set. It is re-
alized that a significant number of receptor protein ki-
nases and pathogenesis-related proteins can confer plant
resistance against pathogens [29]. The PmDTM gene en-
coding receptor-like serine/threonine-protein kinase in
wheat can improve the resistance of wheat to Blumeria
graminis f. sp. tritici [30]. Similarly, the CsWAKLO8 gene
encoding a wall-associated receptor-like kinase was
found to regulate resistance against Xanthomonas citri
subsp. citri positively via a mechanism of ROS control
and JA signalling, which further highlights the signifi-
cance of this kinase family in plant disease resistance
[31]. ScPR10 was identified as a pathogenesis-related
gene from sugarcane, that positively regulates plant

resistance against Sporisorium scitamineum, Sorghum
mosaic virus, salicylic acid and methyl jasmonate stresses
[32]. Another important gene family identified in this
core gene set is cytochrome P450, one of the largest
gene families in the plant genome. In wheat, the cyto-
chrome P450 gene TaCYP72A was confirmed to confer
resistance to deoxynivalenol, which mediated the early
resistance of wheat to F. graminearum [33]. Likewise,
Guilin Wang et al. discovered that the GbCYP86A1-1
gene in Gossypium barbadense plays a positive role in
resistance against Verticillium dahlia and initiates the
downstream immune pathways of disease resistance. For
instance, GbCYP86A1-1 transgenic Arabidopsis signifi-
cantly increased the expression of genes encoding pro-
tein kinases, TFs and PRs, thereby increasing its
resistance [34]. Moreover, a few genes encoding laccase
were also reflected in this gene set. Yan Zhang et al. re-
ported that the GhLAC15 gene contained domains con-
served by laccases enhances resistance against
Verticillium dahliae by means of an increase in lignifica-
tion and the accumulation of arabinose and xylose [35],
which indicates that laccase may have a significant rela-
tionship with the resistance of plants to pathogens.

Furthermore, the gene expression of DR and DS dur-
ing stress was compared, and 52 genes were screened as
differentially and continuously expressed, indicating that
they may provide DR with a higher resistance against
charcoal rot. Accordingly, future research will focus on
these genes involved in disease resistance in sesame and
their biofunctions.

PTI and ETI contribute to sesame resistance against MP
To understand the mechanism of immune response of
sesame to MP, 174 DEGs related to PTI and ETI were
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screened for following discussion through literatures, nr
and KEGG annotation. These genes may be involved in
the process of resistance of sesame to MP. They include
75 pattern recognition receptor (PRRs) genes, 36 resist-
ance (R) genes, 1 respiratory burst oxidase homolog
(RBOH), 7 Ca*' influx related proteins, 3 MAPK cas-
cades, 20 WRKY and 32 hormone metabolism related
genes (Fig. 10, Additional file: Table S5).

Pathogen perception and recognition by PRRs

The defence of plants begins with the detection of
pathogen PAMP by PRR, then PRRs dynamically binds
to different coreceptors, regulatory receptor kinases and
receptor-like cytoplasmic kinases (RLCK) to initiate im-
mune signalling transduction and PTI starts [2, 36].
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Plant PRRs includes receptor-like kinase (RLK) and
receptor-like protein (RLP) [37, 38]. There were 73 dif-
ferentially expressed PRRs between the two genotypes
involved in sesame resistance against MP. PRRs were in-
duced in both genotypes, of which 12 were induced in
DS and 60 in DR (Fig. 10, Additional file: Table S5). Pre-
vious studies have shown that some key PRRs in PTI
such as brassinosteroid insensitive 1-associated kinase 1
(BAK1) [39], FLS2 [40] and chitin elicitor receptor kin-
ase (CERK) [41], play an important role in plant resist-
ance to pathogens. Notably, one CERK and two FLS2
genes exhibited differently between two genotypes.
What's more, WGCNA also showed that LRR-RLKs play
an important role in sesame resistance to MP. It is im-
plied that DR can identify PAMPs more rapidly and
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actively and induce PTI more strongly than DS, which
may be the main reason for the difference in resistance
between them.

MAPK cascades, WRKY TFs, Ca** influx and RBOH
PRR-derived signals are transmitted by further phos-
phorylation cascades including MAPK cascades and
calcium-dependent protein kinases (CDPKs) to the
downstream targets such as the RBOH [42]. Similarly, in
the process of sesame resistance to MP, there were three
MAPKs differentially expressed, of which DR induced
two (Fig. 10, Additional file: Table S5). WRKY TFs acti-
vated by MAPK cascades play a complex role in plant
defence responses, which act as both positive [43, 44]
and negative [45, 46] regulators. In this study, 20
WRKYs were differentially expressed in the two geno-
types, of which 6 were induced in DR and 10 in DS
(Fig. 10, Additional file: Table S5). It is unclear whether
WRKY TFs play a positive or negative role in pathogen
defence, which needs further study.

Furthermore, compared with DS, three calmodulin-
like (CML) and three CDPKs were significantly up-
regulated in DR post-inoculation (Fig. 10, Additional file:
Table S5). When PRRs recognize the PAMPs of patho-
gens, a transient increasing of Ca* concentration can be
observed in the cytoplasm. Ca** can bind to CML to in-
duce downstream cell wall reinforcment and hypersensi-
tive response, and it can also activate CDPK to
phosphorylate and transduce immune signals such as
RBOH proteins for downstream defence against patho-
gens [47]. It shows that Ca®* is an important second
messenger in sesame resistance to MP. One sesame gene
(LOC105165460), the putative function of which is
RBOH, was induced in DR. It is consistent with the ob-
servation of Fusarium wilt fungus pathogen in wheat,
cotton and cucumber [48], indicating that there may be
a higher level of ROS in DR post-inoculation, which
inhibited the infection and colonization of MP.

R proteins

Intracellular receptor R protein, an important compo-
nent of plant immunity encoding by R gene, can detect
and bind to pathogen effectors and trigger ETI, which
has been provided strong evidences by previous re-
searches. For example, R gene Pm60 mediates wheat re-
sistance against powdery mildew [49], and two R genes
RGA4 and RGAS5 can interact each other functionally to
mediate rice resistance to Magnaporthe oryzae [50]. In
this study, a total of 36 R genes were differentially
expressed between resistant and susceptible genotypes,
of which 33 R genes were induced by DR (Fig. 10, Add-
itional file: Table S5) and almost all R genes were differ-
entially expressed at 36 HPI, which further indicated
that 36 HPI was the key period. In addition, the up-
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regulated expression of R gene may represent the activa-
tion of ETI, indicating that DR induces a stronger ETI
response than DS and enhances its resistance against
MP.

JA/ET and SA signalling pathways in sesame immunity
Phytohormones play an important role in the plant re-
sistance to pathogens. It is believed that plant resistance
to biotrophic pathogens is controlled largely by SA sig-
nalling pathways, while resistance to necrotrophic patho-
gens is mediated by the JA/ET signalling pathways [51].
It is found that MP, a hemi-biotrophic pathogen, has an
obvious biological nutrition period of about 36 h and a
transition period to necrotic nutrition, and then the nec-
rotic nutrition stage in the interaction with sesame. The
sesame resistance to MP is mainly caused by the activa-
tion of JA/ET signalling pathway [25]. Similarly, JA treat-
ment or strong JA signalling pathway in strawberry
fruits can enhance its resistance to Botrytis cinerea, indi-
cating that JA was involved in grape resistance to Botry-
tis cinerea [52]. To study the potential role of JA/ET
signalling pathway in this investigation, we detected the
expression patterns of key DEGs involved in JA/ET sig-
nalling pathway and found that 17 DEGs were induced
in DR while 5 were induced in DS. For instance, com-
pared with DS, JA synthase genes (1 AOS, 1 LOX and 4
OPR) are up-regulated in DR. In addition, four JAZ pro-
teins, one defensin and two MYC2 TFs were induced in
DR (Fig. 10, Additional file: Table S5). Many literatures
have shown that JA signalling pathway can directly regu-
late MYC2 TFs with JAZ proteins, and then downstream
genes were induced [53]. In summary, JA signalling
pathway may play an important role in sesame immun-
ity. Compared with DS, there were 4 DEGs up-regulated
while 4 DEGs down-regulated ET biosynthesis and sig-
nalling transduction pathway (Fig. 10, Additional file:
Table S5), indicating that ET may not directly regulate
the resistance against MP but play a dynamically regu-
lated role in JA/ET signalling pathway.

NPR1 protein is the master regulator induced by SA-
mediated defence response, which is located in the
downstream of SA signalling transduction and upstream
of PR gene expression. NPR1, the positive regulatory
gene in the systemic acquired resistance (SAR) pathway,
can regulate the expression of PR proteins in SAR. For
example, BjNPR1 transgenic mustard showed strong re-
sistance against Alternaria brassicae and Erysiphe cruci-
ferarum, and activated SAR, indicating that BjNPR1 was
involved in the resistance to fungal pathogens [54]. In
our research, three up-regulated genes encoding one
NPR1 and two TGA TFs were detected in DR (Fig. 10,
Additional file: Table S5). It has shown that the complex
of TGA and NPR1 can enhance the binding of TGA and
promoter of PR1 gene and induce the expression of PR1
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actively [55]. In addition, one down-regulated gene en-
coding NIM1-INTERACTING2 (NIMIN2) was detected
(Fig. 10, Additional file: Table S5). It is known that
NIMIN2 can interact with NPR1, acting as its negative
regulator, and repress the repression of NPR1-regulated
genes [56]. All above showed that SA may assume a vital
job in the sesame resistance to MP. It is shown that
T.long gibrachiatum H9 can activate JA/ET and SA sig-
nalling pathways in cucumber, and then enhance the re-
sistance to Botrytis cinerea [57]. Based on our results, a
schematic illustration of the interactions between sesame
and MP was shown as Fig. 11.

Defence-related TFs

It has been reported that many TFs, such as bHLH [58,
59], MYB [60, 61], ERF [62-64], NAC [65, 66] and
WRKY [43, 67, 68], are related to various plant resist-
ance mechanisms against pathogens. In our study, the
bHLH transcription factor family was the most abundant
transcription factor in the interaction between sesame
and MP. It is known that many members of the bHLH
family are related to the abiotic stress resistance of
plants, such as drought tolerance [69], cold tolerance
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[70] and salt tolerance [71]. However, their roles in plant
biotic stress are rarely depicted. Qun Cheng et al. re-
cently revealed the role of the bHLH transcription factor
GmPIB1 in soybean phytophthora root rot and found
that GmPIB1 can directly bind to the promoter of the
key enzyme GmSPODI1, which encodes ROS and in-
hibits its expression, reducing the production of ROS
and enhancing the resistance of soybean to Phy-
tophthora [58]. Yan S et al. discovered that transgenic
cucumber plants with the bHLH transcription factor
CsIVP-RNAi had higher resistance to downy mildew
and could accumulate higher levels of SA. CsIVP can
physically interact with CsNIMIN1, a negative regulatory
factor in SA signalling pathway, thus CsIVP is a signifi-
cant regulatory factor in SA-mediated downy mildew re-
sistance in cucumber [59]. Here, the current
investigation also obtained a similar result: bHLH tran-
scription factors may play an important role in sesame
resistance (Fig. 7).

Conclusions
In summary, a set of core genes, including protein ki-
nases, disease-related proteins, cytochrome P450 and
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PODs and other genes closely related to disease resist-
ance, were obtained in the sesame resistance to MP via
comparative transcriptome analysis. Then, 52 genes
expressed continuously and differentially between DR
and DS were screened under MP press, which were
enriched in GO terms such as response to abscisic acid,
cell wall, hormone-mediated signalling pathway, re-
sponse to hormone, cell-cell junction, defence response
and signal transduction. Secondly, we preliminarily in-
vestigated the immune response mechanism of sesame
against MP. Compared with DS, DR can respond to MP
infection more quickly, with the translation mechanism
and transcription mechanism activated cooperatively.
DR is less likely to be interfered by MP at the transcrip-
tional level. Furthermore, 174 genes involved in the PTI
and ETI showed different expression patterns among re-
sistant and susceptible genotypes, including PRRs and R
genes that recognize pathogens, calcium ion influx
process related and MAPK cascades related genes that
phosphorylate and activate downstream signals, down-
stream genes such as RBOHs and genes related to hor-
mone metabolism and transduction (JA/ET and SA). Of
note, most of the PRRs, calcium ion influx related genes
and R genes were induced in DR, indicating stronger
PTI and ETI were triggered in DR. Finally, we found that
JA/ET and SA signalling transduction pathway are both
important in sesame resistance to MP. This is the first
report on the mechanism of the interaction between ses-
ame and MP using transcriptomic method, which pro-
vides more insights into the molecular mechanism of
resistance genes in sesame against MP infection.

Methods

Materials and stress treatment

Two kinds of sesame accessions with contrasting levels
of resistance disease-susceptible genotype (Ji 9014) and
disease-resistant genotype (Zhengzhi No.13) [72, 73]
used in this experiment were widely planted varieties
and both of them were provided by Sesame Research
Center, Henan Academy of Agricultural Sciences.
Macrophomina phaseolina (MP), the pathogen of char-
coal rot, was isolated and preserved by the Biocontrol
Lab, Institute of Plant Protection, Henan Academy of
Agricultural Sciences.

Preparation of stroma mixed with MP: The MP strain
stored in 25% glycerol at — 20 °C was activated on PDA
solid medium. After activation, MP was cultured in PDA
solid medium and incubated in a 30 °C incubator for 4
days. The PDA culture medium full of MP was divided
into pieces of approximately 0.5cm with a sterilized
toothpick, and then they were inoculated into the steril-
ized 200 mL liquid PD medium (each bottle was inocu-
lated with half a plate of PDA). The medium was shaken
and cultured for 5days at 30°C and 200 r/min. The
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mycelium suspension was obtained by breaking the cul-
ture medium full of mycelium with a tissue crusher.
Then each 100 mL mycelium suspension was mixed with
100 mL sterilized water and 200 g sterilized stroma (nu-
tritional soil: vermiculite = 3:1).

The sesame seedlings were cultured in the growth
bowl of stroma (soil: nutritional soil: vermiculite = 3:1:1),
thinning them in 2 pairs of true leaf stages, leaving 3
seedlings in each pot. They were cultured in an artificial
climate box under the condition of 16 h light (30 °C) and
8 h darkness (28 °C). DS and DR were transplanted from
the growth bowl to the stroma with mycelium at three
pairs of true leaves. The root tissues of DS and DR were
collected as samples (three biological replicates) for
RNA extraction during MP treatment (12h, 24 h, 36 h,
48 h) and before treatment (0 h).

mRNA library construction and sequencing

Total RNA extracted with the TransZol Up Plus RNA
Kit (Cat# ER501-01, Trans) was qualified by Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, US) electrophoresis and purified with the RNA
Clean XP Kit (Cat A63987, Beckman Coulter, Inc. Krae-
mer Boulevard Brea, CA, USA) and RNase-Free DNase
Set (Cat#79254, QIAGEN, GmBH, Germany). The qual-
ity of the total RNA was checked by a NanoDrop ND-
2000 spectrophotometer and an Agilent Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, US), and
the high-quality RNA after inspection could be se-
quenced later. According to the experimental operation
instructions, the purified total RNA was subjected to
mRNA separation, fragmentation, first-strand cDNA
synthesis, second-strand ¢cDNA synthesis, terminal re-
pair, 3'- terminal addition of A, adapter junctions, en-
richment and other steps to complete the construction
of the cDNA library. After the construction of the li-
brary, a Qubit®2.0 Fluorometer was used to detect the
concentration, and an Agilent 4200 was used to detect
the size of the library.

Sequencing: According to the corresponding process
shown by the cBot User Guide, cluster generation and
first-direction sequencing primer hybridization were
completed on the cBot equipped with an Illumina se-
quencer, and paired-end sequencing was carried out.
The sequencing process and real-time data analysis were
controlled by data collection software provided by
[lumina.

Transcriptome assembly

Before downstream analysis, unqualified reads with low
quality, primer sequences and low terminal quality were
removed. The Seqtk package was used to filter the raw
reads to obtain clean reads so that the reads could be
used for subsequent data analysis. After filtering, the



Yan et al. BVIC Plant Biology (2021) 21:159

clean reads were mapped to the sesame genome with
HISAT?2 (version:2.0.4) [74]. The data generated by map-
ping is a BAM file.

The sesame reference genome is S_indicum_v1.0 [22],
which can be downloaded from: ftp://ftp.ncbi.nlm.nih.
gov/genomes/all/GCF/000/512/975/GCF_000512975.1_
S_indicum_v1.0/GCF_000512975.1_S_indicum_v1.0_
genomic.fna.gz.

Analysis of DEGs
Standardize gene expression by transforming reads into
FPKM (fragments per kilobase of exon model per mil-
lion mapped reads) to calculate gene expression level of
each sample [75]. We first count the fragments number
of each gene after Hisat2 alignment by Stringtie (version:
1.3.0) [76, 77], then normalize it by TMM (trimmed
mean of M values) method [78], and finally use perl
script to calculate the FPKM value of each gene.
Differential genes between samples were analyzed by
edgeR package [79], and the p-value was corrected by
multiple hypothesis testing. The threshold of p-value
was determined by controlling False Discovery Rate
(FDR), and the corrected p-value was q-value [80, 81].
The differently expressed genes (DEG) were detected
based on the parameters: log, |Fold change| > =1 and g-
value <= 0.05.

Functional annotation and TFs prediction
DEGs were compared with the NCBI non-redundant
(NR) database and were functionally annotated into GO
and KEGG databases by KAAS.

To identify the transcription factors (TFs) in sesame
DEGs, the online website plantTFDB [82] (http://
planttfdb.cbi.pku.edu.cn/index.php?sp=Sin) was used.

Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCN
A) is a systems biology method used to describe gene
correlation patterns among different samples. It can be
used to identify gene sets with highly synergistic
changes, and to analyze the interconnectedness of gene
sets and the correlation between gene sets and pheno-
types. WGCNA package version: 1.69 [83] in the R soft-
ware was used to construct the gene co-expression
networks in this research. After removing the inferior
samples (meanFPKM < 0.1), the scale-free co-expression
network was constructed by using the FPKM matrix
transformed by log2, with the conditions that the merge-
CutHeight was 0.8 and the minModuleSize was 30. To
find out modules with biological significances, the cor-
relation coefficient between eigengenes of modules and
samples or sample traits was calculated. Cytoscape soft-
ware version 3.6.1 [84] was used to perform visualization
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of each module with a cut off of the weight>0.3 (ob-
tained from the WGCNA).

qRT-PCR

Relative expression levels of 15 genes in DS and DR
quantified by the CFX 384™ real-time System made in
Singapore and the 2x ChamQ Universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) were calculated
with the 272" method. Each sample had 3 replicates.
The primers for qPCR were designed and synthesized in
Sangon Biotech, they are shown in additional file: Table
S4. The relative expression levels of 15 genes were nor-
malized to that of the SiUBQ5 gene [85].

Statistical analysis

All data in this study are the mean values of three bio-
logical replicates. The FPKM value was used to depict
gene expression abundance.
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