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Abstract

Background: Gender and fertility variation have an impact on mating dynamics in a population because they
affect the gene exchange among parental members and the genetic composition of the resultant seed crops.
Fertility is the proportional gametic contribution of parents to their progeny. An effective number of parents,
derivative of effective population size, is the probability that two alleles randomly chosen from the gamete gene
pool originated from the same parent. The effective number of parents is directly related to the fertility variation
among parents, which should be monitored for manipulating gene diversity of seed crops. We formulated a
fundamental equation of estimating the effective number of parents and applied it to a seed production
population.

Results: Effective number of parents (N,,) was derived from fertility variation (¥) considering covariance (correlation
coefficient, r) between maternal and paternal fertility. The ¥ was calculated from the coefficient of variation in
reproductive outputs and divided into female () and male (y,,,) fertility variation in the population under study.
The N, was estimated from the parental ¥ estimated by the fertility variation of maternal (9 and paternal ()
parents. The gene diversity of seed crops was monitored by ¥ and N,.. in a 1.5 generation Pinus koraiensis seed
orchard as a case of monoecious species. A large variation of female and male strobili production was observed
among the studied 52 parents over four consecutive years, showing statistically significant differences across all
studied years. Parental balance curve showed greater distortion in paternal than maternal parents. The ¥ ranged
from 1.879 to 4.035 with greater y,, than y;, and the N, varied from 14.8 to 36.8. When pooled, the relative
effective number of parents was improved as 80.0% of the census number.

Conclusions: We recommend the use of fertility variation (i.e, CV, V), Person’s product-moment correlation (r), and
effective number of parents (N,) as tools for gauging gene diversity of seed crops in production populations. For
increasing N, and gene diversity, additional management options such as mixing seed-lots, equal cone harvest and
application of supplemental-mass-pollination are recommended.
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Background

Gender and reproductive output variation have a pro-
found impact on the mating dynamics in a popula-
tion, such as forest tree seed orchards, as they affect
the gene exchange among the parental populations’
members and the genetic composition of the resultant
seed crops [1-3]. In seed orchards, the theoretical ex-
pectation of reproductive output equality (uniform
production of male and female gametes) is hardly ful-
filled [4] and the extent of this variation has been the
subject of extensive research [5-11]. Quantitative as-
sessment of reproductive output in conifer seed or-
chards clearly indicated the presence of sexual
asymmetry between female and male fertility [7, 8, 12,
13]; however, this asymmetry could be further sepa-
rated if the observed reproductive output variation is
either negatively or positively correlated (e,
covariation).

Covariance is a measure of the joint variability of both
variables (e.g., female and male fertility) in statistical
probability theory. If greater values of female fertility
correspond with greater values of male fertility, the co-
variance of female and male is positive. Conversely,
when female and male fertilities tend to show opposite
behavior, the covariance is negative. The sign of the co-
variance therefore shows the tendency in their linear re-
lationship. The magnitude of the covariance is not easy
to interpret because it is not normalized and hence de-
pends on female and male fertilities magnitudes. How-
ever, correlation coefficient (i.e., the normalized version
of covariance) shows the strength of the linear relation
by its magnitude.

Effective population size (Ne) is one of the key genetic
indicators in plant breeding and conservation programs,
and it is central to population genetics and evolutionary
biology [14, 15]. Ne quantifies the magnitude of genetic
drift and inbreeding in the population under study. Sev-
eral theoretical effective number extensions have been
made such as inbreeding effective population size Ne®,
variance effective population size Ne™ [16], selection ef-
fective population size [17], and status number [18]. In
practice, Ne is, however, notoriously difficult to estimate.
In forestry context, Kang [19] indicated that the effective
number of parents is the number of individuals in which
an idealized population would produce the same number
of offspring (sibs) as the real population.

Pinus koraiensis Siebold & Zucc, commonly known as
Korean pine, is a coniferous white-pine tree species na-
tive to the temperate rainforests of Korea, Japan, and the
Ussuri River basin of China and Russia. Primordia differ-
entiation starts in year-1, pollination and fertilization is
completed in year-2, and seed and cone development is
completed in year-3 [20]. The Korean pine occupies
more than 25% of the total forest area in South Korea
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and is managed for timber and seed production for fur-
niture, construction and human consumption [21-23].
In South Korea, Korean pine genetic improvement
started with the selection of 300 phenotypically superior
individuals forming the breeding population in 1959 (i.e.,
plus-trees) and the establishment of open-pollinated
progeny tests in 1975 [24]. In 1970, the first-generation
seed orchard was established by grafts of the selected
plus trees. Volume growth, tree trunk volume, was the
main selection criterion used for the transition from
first- to 1.5-generation seed orchards [23, 24]. Thus, the
1.5-generation seed orchard represents the second-cycle
of the program’s seed orchard and superior parents were
selected based on their growth characteristics.
Investigating the extent of reproductive output (stro-
bili and seed production) variation and covariation as
well as the genetic composition of seed crops are essen-
tial to ensure the genetic quality of reforestation stock.
However, the reproductive output and success informa-
tion of P. koraiensis seed orchards have been limited.
Here, we utilized a 1.5-generation P. koraiensis clonal
seed orchard to develop a framework for estimating: 1)
the effective number of parents (i.e., effective population
size) considering the observed gender and reproductive
output variation and covariation and 2) the gene diver-
sity of the orchard’s seed crops. To do so, over four con-
secutive years, we surveyed strobili production difference
and correlation of the seed orchard’s 52 parents (clones)
and investigated gender (female and male strobili pro-
duction) and reproductive out variation and covariation.

Results

Fertility covariation and effective number of parents
Under various scenarios of female and male fertility co-
variation (i.e., joint variability of female and male fertility
related to correlation), the effective number of parents
was stochastically simulated under a range of correlation
coefficients (- 1.0<r<1.0) (Fig. 1). Generally, under no
or limited female and male parents reproductive output
fertility covariation, the effective number of parents (N),)
was always equivalent to the census number (N) as the
seed orchard parents are unrelated and assumed to be
non-inbred (Fig. 1).

Positive female and male parents reproductive output
fertility covariation increased the sibling coefficient (¥;
parental fertility variation) as V¥ is affected by variation
in both female (y and male (y,,), causing the effective
number of parents (N,) declined (Fig. 1la — 1.d), com-
pared to equal fertility with no correlation. On the other
hand, negative female and male parents reproductive
output fertility covariation mitigated the asymmetrical
variation between Yy and v, (fertility variation imbal-
ance), resulting the incremental increase of the effective
number of parents (Fig. le — 1.i).
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Fig. 1 Stochastic simulation of the effective number of parents (N,) with female and male fertility variation (CVj, CV,,,) under various covariation
(correlation coefficients, r) between female and male reproductive outputs. The census number was set to be 100 (N=100) in the population
.

Knowledge regarding the extent of gene diversity loss
(GD) when genes are transmitted from orchard parents
to their progeny is valuable. The GD is estimated using
Eq. (8) for new seed orchard establishment plans. If 5%
loss of gene diversity is tolerable, then the effective num-
ber of parents N, of 10 would be sufficient in providing
the desired seed crop’s gene diversity (Fig. 2). However,
striving to reach higher effective number of parents is
preferable to ensure capturing reasonable level of gene
diversity.

Case study: Pinus koraiensis seed orchard

The average number of female strobili per ramet (a
member of a clone) fluctuated across the studied years,
with 2015 and 2016 representing the highest and lowest
production with clone averages of 2.99 and 0.33, respect-
ively (Table 1). The clonal average number of male stro-
bili over years produced striking differences with 2017
and 2014, showing the highest and lowest production
with averages of 1912.2 and 1.82, respectively (Table 1).
The female and male strobili production over the
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Fig. 2 Relationship between seed orchard crops’ effective number of parents (N,) and gene diversity (GD) relative to their parental papulation

studied years was low and negating panmixia expecta-
tions in the 1.5 generation clonal seed orchard of P. kor-
aiensis. This was similar situation with previous
observation in the first-generation clonal seed orchards
of the same species.

The effective number of female parents (Np(f)) was
higher than that of male parents (Np(m)) except in the
year 2017 (Table 2, Fig. 3). The relative effective number
of female parents ranged 45.9% in 2016 (poor year) to
85.5% in 2014 (good year), and the expected loss of gene
diversity (GD) for female and male parents were 1.1 and
1.6%, respectively, which was not so alarming for a 52
clonal seed orchard (Table 2). The clonal effective num-
ber of parents (N,) under female and male strobili pro-
duction covariation varied between 14.8 and 36.8 for
2014 and 2017 across the four studied years (Table 3)
where N, was calculated using the CV and r of female
and male strobili production (see Eq. 6). The seed crops’
loss of gene diversity (GD) varied between 3.4 and 1.4%
for 2014 and 2017, presenting higher than expected
values for female and male parents and indicating the ef-
fect of covariation (correlation) between female and
male fertility.

The parental balance curves showed that clonal cumu-
lative gamete contribution was far from expectation (ie.,
equal contribution) specifically for 2016 female and 2014

Table 1 Average production of female and male strobili per
ramet and correlation coefficient estimates (r) for four successive
years in the 1.5-generation P. koraiensis clonal seed orchard

2014 2015 2016 2017 Pooled
Female strobili 269 299 033 0.92 1.73
Male strobili 1.82 84.44 51.24 1912.18 51244
r -0.02 036 -0.14 0.09 022

@Person’s correlation coefficient between female and male strobilus production

male (Fig. 4). The male strobili production cumulative
curves showed greater distortion than that for female.
The top 20% of clone contributed 59.6% of female stro-
bili production (2016) while 86.4% of male production
(2015). On the other hand, male strobili production was
limited to extremely limited clones as only two clones
contributed 50% of total production (Fig. 4).

Parental contribution as males, females or both sexes
should influence the seed crop’s genetic composition,
and this can be determined with assessment of the or-
chard’s initial reproduction and throughout the cone
crop development. The current study indicated that
there were 8 clones (15.4%) consistently ranked high on
the gametic contribution. On the other hand, 8 clones
were persistently ranked low across the orchard
reproduction years, which could contribute to the
needed reproductive output assessment. The genetic
worth of orchards’ seed crops is a function of parental
gametic contribution and their respective breeding value,
thus sibling coefficient could be one of the criteria
needed for evaluating the genetic composition as it de-
termines parental gametic contribution [19]. Large vari-
ation among orchard parents’ gametic contribution is
common and widely reported in many seed orchards
[25]. Thus, an evaluation of seed crops’ genetic compos-
ition should consider the entire parental population as
an analytical unit of gametic and genetic contribution.

By knowing the magnitude of fertility variation among
individuals in a seed orchard, the census number to col-
lect seed-cones could be chosen to achieve satisfactory
gene diversity of seed crops [26]. We exposed the prac-
tice of equal seed-cone harvest for a good crop year
(2015) in the P. koraiensis seed orchard. The equalizing
of female fertility should be preferentially set to the
most-fertile female parents, and the male fertilities were
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Table 2 Coefficient of variation for female (CV) and male (CV,,,) strobilus production, sibling coefficient of female (@) and male (),
effective number of female (Npm) and male (Np(m)) parents, relative effective number of female (N,m) and male (N,/™) parents, and
gene diversity (GD) in the 1.5-generation P. koraiensis clonal seed orchard (N=52)

2014 2015 2016 2017 Pooled

Female Male Female Male Female Male Female Male Female Male
CVyand CV,, 0412 3.158 0.664 2620 1087 1534 0918 0820 0403 0.831
Prand Py, 1.169 10972 1441 7.864 2.181 3353 1.843 1673 1.162 1690
N,? and N, 445 47 36.1 66 238 155 282 311 447 308
N and N, ™2 85.5 9.1 694 127 459 298 54.2 598 86.0 59.2
GD 0.989 0.895 0.986 0.924 0.979 0.968 0982 0.984 0.989 0.984

N and N,"™ are relative percentages (%) to the census number (N)

not changed. When the proportion of equal seed-cone
harvest increased, the effective number of parents in-
creased, but the relative seed-cone production was de-
creased when compared to the commercial harvest
(Fig. 5).

Discussion

Fertility variation and effective number of parents

Each gamete produced by a diploid tree only harbors
one allele of each gene, which is chosen at random
from the tree’s two copies. Under Mendel's law of
segregation, each of the two alleles in the tree has an
equal probability of being included in a gamete. How-
ever, the probability is expected to change due to the
present fertility variation between female and male
parents. The sibling coefficient (¥) describes the fer-
tility variation in the population under study as it is
derived from the variances of female and male fertility
(i.e., coefficient of variation, CV; and CV,,). It does
not depend on the genealogical relationship between
parents (i.e., related or otherwise: [19]). When all par-
ents, female and male, contribute equally (¥ =1),
which is proportionate to census number (1/N), then
the situation of covariance (Fig. 1) is similar to the
no covariation as described in Scenario A. The ¥ can

-

100

N, (%)

Al om N

l4fem 15fem

l4male I5male l6fem 16male 17fem 17male

Fig. 3 Relative effective number of parents (N, relative to census

number) for female and male parents in the 1.5-generation P.
koraiensis clonal seed orchard

also describe the expected increase of inbreeding (i.e.,
loss of gene diversity) in the seed crops following ran-
dom mating.

If there is no gene migration (gene flow from out-
side the orchard), the inbreeding in the following gen-
eration will be equal to W/(2N), which is the
probability that uniting gametes are identical-by-
decent in a random mating population [27]. In a seed
orchard of bisexual species, Pinus tabuliformis, and
over surveyed years, Li et al. [28] reported the pres-
ence of significant positive and negative correlations
between female and male parents’ contributions. Such
correlations should be taken into consideration when
the gene diversity of seed crop is estimated because
maternal and paternal contribution covariation would
mitigate or boost the difference of gametic contribu-
tion between gender as shown this study.

The effective number of parents (N,) is expected to be
equivalent to the status number (Nj) if the population
members are non-inbred and unrelated [12, 18, 29, 30].
The N, is a derivative of effective population sizes to es-
timate gene diversity in the real population, which con-
siders the variance of contribution (fertility variation)
among parents. Gene migration (pollen flow/contamin-
ation from outside sources) is expected to increase N,
and gene diversity but decrease orchard crops’ genetic
worth [18, 31-35]. It is worth noting that gene migration
only affects a portion of the male contribution, which
represents half of the seed crops’ parental input.

Table 3 Clonal sibling coefficient (¥), parental effective number
of parents (N,), relative effective number of parents (N,), and
loss of gene diversity (GD) in the 1.5-generation P. koraiensis
clonal seed orchard

2014 2015 2016 2017 Pooled
Yy 4.035 3326 2.384 1.879 1.713
N, 14.8 16.6 294 36.8 416
N, (%) 284 319 56.6 708 80.0

GD loss (%) 34 30 1.7 14 1.2
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Fig. 4 Cumulative contribution curves for female (upper) and male (lower) strobili production in the 1.5-generation P. koraiensis clonal seed

Manipulating reproductive output variation through crop
management

The reduced effective number of parents and the
presence of common parentage (i.e., relatedness
among clones) are expected to increase the inbreed-
ing in the resulted seed crops. The parental distor-
tion (i.e., fertility variation) was improved and in
turn the effective number of parents was increased.
When all crops are pooled across the four-years, in-
dicating that mixing seeds from several years could
be beneficial in enhancing gene diversity. While the
number of female and male strobili is an indication

of gametic contribution among the orchard parents,
it should be stated that this assumption can be af-
fected by other factors such as reproductive phen-
ology variation, pollen dispersal distances, pollen
viability and competition, self-compatibility, male-
female complementarity and/or frequency-dependent
male reproductive success as well seed viability and
germination [13, 36-38].

Implementation of equal seed-cone harvest caused a
substantial loss of seed production (Fig. 4). Thus, a
trade-off between seed production and the effective
number of parents (gene diversity) should be carefully
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considered. The fertility from over-represented female
parents would be the most concern in the equalizing
maternity in seed orchards [1, 39]. The trade-off be-
tween gene diversity and seed collection would be more
important in the ex-situ gene conservation program of
genetic resources [26].

Maternal, paternal, and parental (clonal) contribu-
tion can be appropriately estimated by analysis of re-
productive output and correlation (covariation)
between female and male parents across individuals
in a seed orchard. In turn, gametic and genetic con-
tribution of individuals to their seed crops can be
calculated [28]. To alter the genetic composition of
orchards’ gene pools and improve the genetic worth
of their resulting seed crops, intrusive management
options can be applied during cone crop develop-
ment. To effectively manipulate the gene pool, or-
chard crops’ genetic composition needs to be
predicted to assist the decision-making process and
the selection of the appropriate management option
to implement (e.g., genetic thinning, selective cone
harvest: [28, 40]).

Conclusions

We recommend the use of fertility variation (i.e., CV
and V), Person’s product-moment correlation (r) and ef-
fective number of parents (N,,) as tools for gauging seed
orchard crops’ gene diversity. The effective number of
parent (N,) is a characteristic of the seed crops derived
from unequally contributing parents. This could be

extended to orchard parents in advanced generation
seed orchards (or breeding populations) because the N,
does not depend on the relatedness of parents but solely
on the fertility variation.

The present study highlighted the presence of some
obstacles with female fertility (seed production) and
gene diversity loss in the studied 1.5-generation P. kor-
aiensis clonal seed orchard, which were mainly associ-
ated with large fertility variation, inadequate pollen
supply, panmictic disequilibrium, and parental unbal-
ance. Thus, the implementation of seed-cone crops man-
agement alternatives such as equal seed-cone harvest
among clones and/or supplemental-mass-pollination
could be effective options in improving the parental bal-
ance and the crop’s genetic worth, and increasing the
gene diversity.

Methods
Theoretical development of effective number of parents
and gene diversity estimation
Parental fertility is defined as the proportional gametic
contribution of female and male parents to their progeny
[9, 41]. Assuming that female and male strobili produc-
tion count is a good representative of their gametic con-
tribution [39, 42, 43], this count can then be used to
estimate potential gametic contribution and hence par-
ental fertility.

Fertility variation is described by the sibling coefficient
(W), which is the probability that two alleles randomly
chosen from the gamete gene pool originated from the
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same parent [19]. Furthermore, the sibling coefficient is
connected to the coefficient of variation (CV) of female
and male reproductive outputs [19, 43]. Female and
male parents are defined as those parents contributing
female and male gametes, respectively. Thus, the sibling
coefficient of parental fertility (W), which is based on zy-
gotes (i.e., seeds), can be further described separately as
female (y) and male (y,,) sibling coefficients as:

N
Y =NY fi=CVi+1 (1.1)

Y =N " mr=CVv2 41 (1.2)

where N is the population census number, f; and m;
are the proportional contributions of female and male of
the i-th individual, and CV;and CV,, are the coefficients
of variation of female and male reproductive outputs in
the population.

The effective number of female (Npm) and male
(Np(m)) parents can be calculated separately from the fe-
male (y,) and male (y,,) sibling coefficients, and are con-
nected with their respective coefficient of variation
(female CVyand male CV,,,) [19, 44] as follows:

N N

Npm =—=—— (2.1)
vy CVi+1

Np(m) - N = # (2.2)
¥, CV2 41

where N is the population census number, Yy and y,,
are the female and the male fertility variation (i.e., sibling
coefficients), and CVyand CV,, are the female and male
reproductive output’s coefficients of variation in the
population under study.

Scenario a (dioecious species): no covariation between
female and male fertility

When there is no covariation between female and male
reproductive outputs, the sibling coefficient (V) is calcu-
lated from egs. (1.1) and (1.2) components as:

2
¥= NZfilpf - NZ?; (fl _; W‘z’>

=025(y, +,,) +05 (3)

where N is the population census number, p; is the
total contribution (fertility) of the i-th individual, f; and
m; are the proportional contributions of the i-th individ-
ual as female and male parents, and Y and ,, are the
female and male parents’ sibling coefficients,
respectively.

The parental effective number of parents (N,) can be
calculated from the sibling coefficient (¥) (see also for-
mula 2.1 and 2.2). The N, is equivalent to the status
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number (N;) when the parents are non-inbred and unre-
lated [18, 39].
NN
0.25(y; +y,,) +1
B 4N
CCV 4+ CVim® + 4

(4)

where N is the population census number, Yy and y,,
are the female and male parent’s sibling coefficients, and
CVyand CV,, are the coefficients of variation for female
and male reproductive outputs in the population under
study, respectively.

Scenario B (monoecious or hermaphrodite species): positive
or negative correlation between female and male fertility
Under covariation between female and male fertility (i.e.,
between female and male reproductive outputs), the sib-
ling coefficient (¥) can be developed with the Person’s
correlation coefficient (r) as follows:

¥ =025 (\pf + \pm) + O.Sr\/(\pf - 1) (, - 1)
105 (5)

where yrand y,, are the female and male parent’s sib-
ling coefficients, and r is the Person’s product-moment
correlation coefficient between female and male repro-
ductive outputs in the population.

With the covariation (i.e., correlation) between female
and male reproductive outputs, the formulae (4) for the
parental effective number of parents (N,,) can further be
developed with the correlation coefficient (r) as:

NN AN
¥ (v - 1) + (W= 1) 2/ (9, 1) (v, - 1) + 4
(6)

where N is the population census number, WV is the par-
ental sibling coefficient, yyand y,, are the sibling coeffi-
cients of female and male parents, CVyand CV,, are the
female and male reproductive outputs coefficients of
variation, and r is the Person’s correlation coefficient be-
tween female and male reproductive outputs.

Animal breeders and geneticists use the number of fa-
thers (N) and mothers (N,,) to estimate the effective
population size as Net =4NN,, | (Ny+N,,) when the
sex ratio of a population departs from Fisherian sex ratio
(1:1), dealing with dioecies species [14, 17]. In woody
plant breeding, however, most gymnosperms are monoe-
cious species so that the correlated fertility between gen-
der should be considered for estimation the effective
population size.
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In this study, we provided different formula for dioe-
cious species (Scenario A) and monoecious or hermaph-
rodite species (Scenario B); however, the formulae (4)
has the same function when r is equal to zero as the for-
mulae (6), so we propose to use the formulae (6) as a
general equation of genetic indicator.

Relative effective number of parents and loss of gene
diversity

The relative effective number of parents (N,) is calcu-
lated as the relative proportion of the effective number
of parents (N,,) divided by census number (N) and it is a
description of the percentage of the real population
functioning as the idealized population. It is estimated
for female, male and combined parents as:

N(%) = % x 100, N, (%)

N,
— ?\/ x 100 and N, (%)
Np(m)
= 100 7
N~ (7)

The loss of gene diversity (GD) between generations
(from parents to offspring) is estimated following Nei
[45], Lacy [46] and Lindgren and Mullin [18] as:

GD loss (%) = ?V—S x 100 (8)
p

In small populations such as tree seed orchards, the ef-
fective population size and the genetic diversity of pro-
geny can be calculated from eqgs. 4, 6 and 8. In seed
orchards setting, determining the effective population
size and the genetic diversity of progeny can be esti-
mated easily using both coefficient of variation (CV) and
coefficient of correlation (r) for parental reproductive
outputs (e.g., either strobili, seed-cone or seed
production).

Pinus koraiensis seed orchard as a case population

Based on the above-theoretical representation, we esti-
mated the effective number of parents (genetic diversity
of the seed crops) and the factors influencing its pattern
in the 1.5-generation Pinus koraiensis clonal seed or-
chard. The seed orchard was established by the National
Institute of Forest Science, Republic of Korea in 1995
and located in the Gangwon province, South Korea
(N37°23"; E127°38") with 52 clones (total of 713 ramets;
average of 37 ramets/clone). Clones/ramets were ran-
domly allocated to the orchard’s grid at 5 x 5 m spacing.
The seed orchard is now owned and managed by the
National Seed Variety Center of the Korea Forest
Service.
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Over a consecutive four-year period (2014-2017), the
numbers of female and male strobili were assessed for
all ramets (100% sampling). The female strobili were in-
dividually counted over the entire crown while the num-
bers of male strobili were estimated by multiplying the
average number of strobili per branch by the total num-
ber of strobili-bearing branches.

Parental reproductive output balance was assessed
using a cumulative gamete contribution curve [9, 38]
after sorting the number of female and male strobili pro-
duced per clone in descending order and the cumulative
contribution percentages were plotted against the pro-
portion of clones.

Equal-cone harvest, collecting equal proportions of
cones from each clone, was proposed to mitigate the fe-
male fertility variation among clones. The equal-cone
harvest among clones was imposed in the seed orchard
of P. koraiensis, thus the female parents’ fertility vari-
ation was negated. It should be noted that equal-cone
harvest should be principally given to the most product-
ive clones and thus accepting some loss of cone produc-
tion is considered.
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