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Abstract

Background: Apocynum venetum L. is an important medicinal plant that is mainly distributed in the coastal areas
and northwest of China. In addition to its high medical and economic value, its adaptation to saline-alkali and
coastal saline lands makes A. venetum an ideal candidate for use in vegetation restoration. To date, the study of A.
venetum has been limited in the northwest region of China, little attention has been paid to the genetic diversity
and population structure of A. venetum populations in the coastal region. Here, we performed transcriptome
sequencing of total RNA from A. venetum leaves and developed efficient expressed sequence tag-simple sequence
repeat (EST-SSR) markers for analyzing the genetic diversity and population structure of A. venetum in the coastal
region.

Results: A total of 86,890 unigenes were generated after de novo assembly, and 68,751 of which were successfully
annotated by searching against seven protein databases. Furthermore, 14,072 EST-SSR loci were detected and 10,
243 primer pairs were successfully designed from these loci. One hundred primer pairs were randomly selected and
synthesized, twelve primer pairs were identified as highly polymorphic and further used for population genetic
analysis. Population genetic analyses showed that A. venetum exhibited low level of genetic diversity (mean alleles
per locus, Na=3.3; mean expected heterozygosity, Hg = 0.342) and moderate level of genetic differentiation among
the populations (genetic differentiation index, Fst=0.032-0.220) in the coastal region. Although the contemporary
(mean m.=0.056) and historical (mean m;, =0.106) migration rates among the six A. venetum populations were
moderate, a decreasing trend over the last few generations was detected. Bayesian structure analysis clustered six
populations into two major groups, and genetic bottlenecks were found to have occurred in two populations (QG,
BH).

Conclusions: Using novel EST-SSR markers, we evaluated the genetic variation of A. venetum in the coastal region
and determined conservation priorities based on these findings. The large dataset of unigenes and SSRs identified
in our study, combining samples from a broader range, will support further research on the conservation and
evolution of this important coastal plant and its related species.
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Background

Coastal habitats, which are located in the transition zone
between terrestrial ecosystems and marine ecosystems, are
characterized by unique, complex ecosystems with high
ecological value [1]. Their unique environmental features,
including poor soil structure with low water infiltration
and poor drainage, a high salt content and PH level, give
rise to unique plant diversity and many specialist species
[2]. However, due to the rapid urbanization process,
coastal habitats have been particularly affected by both
land transformation and mass tourism, leading to the se-
vere disturbance and loss of natural habitats [3]. Many
coastal plants are adapted to specific costal environmental
conditions and are thus highly vulnerable to habitat de-
struction [4—6]. Therefore, there is an urgent need to
evaluate and protect the irreplaceable, vulnerable biodiver-
sity found in the coastal zones, especially in the face of
continuing anthropogenic pressure.

The coastal area of Jiangsu Province accounts for one
quarter of the total coastal area in China, which mainly
falls within Yancheng City [7]. The coastline of Yan-
cheng City’s is 582 km long, and the beach area covers
6.83 million hm?, with an annual growth rate of 10,000
hm? [7]. The Yancheng coastal region not only provides
precious land resources, but is also an important wet-
land nature reserve. According to the plant surveys,
there are 688 kinds of vascular plants belonging to 391
genera and 114 families in the Yancheng tidal flat wet-
land [8]. Multiple large-scale beach reclamation projects
have been conducted in Yancheng city since 1949, and
the natural habitats of this region have been significantly
modified [7]. Many studies have shown that anthropo-
genic habitat alterations can affect both global biodiver-
sity and genetic diversity, which jeopardizes the long-
term survival of species and increases their risk of ex-
tinction [9-13]. There are many valuable plant re-
sources, such as Limonium sinense (Girard) Kuntze,
Apocynum venetum, Tamarix chinensis Lour., Tournefor-
tia sibirica, and Salicornia europaea L. etc. in the Yan-
cheng tidal flat, which are not only tolerant to salt stress
but also present high medical and economic values [8].
Whether the genetic diversity and genetic structure of
coastal plant populations have been affected by coastal
habitat changes has seldom been evaluated.

Apocynum venetum L. is a perennial shrub that is spe-
cifically distributed in the coastal region of Jiangsu Prov-
ince. It has also been referred to as “Luobuma” since it
was first discovered on the Luopu plains of Xinjiang
Province in the 1950s [14]. A. venetum not only provides
precious fiber and nectar resources but is also used as
an important medicinal plant for treating hypertension
and hyperlipidemia. Its high stress resistance to high salt
contents and poor soils also contribute to its great eco-
logical value. To date, studies of A. venetum have mainly
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focused on its medicinal effects and physiological char-
acteristics such as photosynthesis and water absorption
[15-17]. However, few studies have examined the gen-
etic diversity and genetic structure of natural A. venetum
populations. To better protect and utilize this important
plant species in the Yancheng coastal region, there is an
urgent need to evaluate the genetic diversity and popula-
tion structure of natural A. venetum populations.

Simple sequence repeat (SSR) markers have been
widely used in population genetic analysis and molecular
marker-assisted breeding because of their high poly-
morphism, repeatability and codominant inheritance [18,
19]. A number of transcriptome analyses have been con-
ducted on A. venetum [20-22], while SSR markers have
not yet been developed and used to evaluate the genetic
diversity of natural A. vemetum populations yet. Using
RAPD (Random Amplification Polymorphic DNA) and
AFLP (Amplified Fragment Length Polymorphism)
markers, researchers have detected moderate to high
levels of genetic diversity in A. vemetum populations
from Xinjiang and Inner Mongolia regions [23, 24]. Ex-
cept in the arid region, there has been no study that has
evaluated the genetic diversity of A. venetum populations
in the coastal regions. Therefore, in this study, we con-
ducted comprehensive transcriptome sequencing of A.
venetum from the coastal region of Jiangsu Province
using the Illumina sequencing platform. After data as-
sembly and annotation, we developed a set of novel
EST-SSR markers from the unigenes. By using these in-
formative markers, we successfully evaluated the genetic
diversity, population structure and demographic changes
in six populations across the natural distribution of A.
venetum in the Yancheng coastal region. We expect that
the genetic information identified in this study will facili-
tate the management and conservation of natural A.
venetum populations in the future.

Results

Assembly of A. venetum transcriptome data from Illumina
sequencing

Transcriptome sequencing generated 46,408,308 reads,
totalling approximately 6.96 Gb for A. venetum in this
study. After stringent quality filtering, 45,760,331
(98.6%) high-quality reads were obtained, exhibiting
98.31% Q20 bases and a GC value of 46.93% (Table 1).
A total of 86,890 unigenes were successfully assembled
using the Trinity software, with a mean length of 1767
bp and an N50 of 2580 bp. Among all the assembled
unigenes, 3119 of which (approximately 3.58%) were less
than 300 bp, and 14,657 unigenes (16.85%) were longer
than 3000 bp, whereas most of the unigenes (69,204)
(79.56%) ranged from 300 to 3000 bp (Additional file 1:
Fig. S1A). The number of reads mapped to each unigene
analysis revealed that 13,065 unigenes (about 47.90%)
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Table 1 Sequencing, assembly, and annotation results of A.
venetum transcriptome

Description Number

1. Raw sequences and Assembly statistics
High-quality reads 45,760,331
Total nucleotides of high-quality reads (bp) 16,326,427,500
Q20 percentage 98.31%
GC percentage of high-quality reads 46.93%
Number of unigenes 86,980
Range of unigenes length (bp) 201-17,334
N50 length of unigenes (bp) 2580

2. Bioinformatics annotations of unigenes
Gene annotated against NR(%) 63,975 (73.55)
Gene annotated against NT(%) 48,088 (55.28)
Gene annotated against KO(%) 28,505 (32.77)
Gene annotated against SwissProt(%) 53,436 (61.43)
Gene annotated against PFAM(%) 451 (59.15)
Gene annotated against GO(%) 1,733 (5947)
Gene annotated against KOG(%) 23,428 (26.93)
Gene annotated against all Databases(%) 13,207 (15.18)
Gene annotated against at least one Database(%) 68,751 (79.04)
Gene Unannotated 18,229 (20.96)

and 5506 unigenes (approximately 20.19%) consist of
more than 100 and 1000 reads each, respectively, only a
few unigenes (3.3%) were derived from less than 10
reads (Additional file 1: Fig. S1B).

Functional annotation

Using NCBI BLAST tools, all assembled unigenes were
searched against Nr, Nt, SwissProt, Pfam, GO, KO and
KOG databases for functional annotation. Among the
86,980 unigenes, the greatest number of matches were
annotated in the Nr database (63,975 unigenes, 73.55%
of all unigenes), followed by the Swiss-Prot (53,436,
61.43%), GO (51,733, 59.47%) and Pfam (51,451, 59.15%)
databases (Table 1). In total, 68,751 (79.04%) unigenes
exhibited homologous matches in at least one database
and 13,207 (15.18%) unigenes were annotated in all
seven databases (Table 1).

Functional classification by GO and KOG

To further evaluate the functions of these unigenes, we
used GO assignments to annotate and analyze each uni-
gene. A total of 51,733 unigenes were assigned to 54
functional subgroups. Among the three ontology cat-
egories, the largest was biological process (47.6%),
followed by cellular component (29.5%) and molecular
function (22.9%) (Fig. 1). In the biological process group,
the most frequent category was cellular process
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(22.04%), followed by metabolic process (20.99%). Cell
(19.40%) and cell part (19.40%) were the most highly
represented groups in the cellular component category.
For the molecular function category, binding (45.49%)
and catalytic activity (38.16%) accounted for the greatest
proportions. Then we submitted all the assembled uni-
genes to the KOG database for further functional predic-
tion and classification. Among the 25 KOG categories,
posttranslational modification, protein turnover and
chaperones consist the largest group (13.36%), general
function prediction only (12.71%) and translation, ribo-
somal structure and biogenesis (10.60%) also showed
high percentages (Additional file 2: Fig. S2).

Functional classifications by KEGG

A total of 28,505 unigenes were assigned to 130 KEGG
pathways that belonged to five categories, namely, meta-
bolic pathways (44.08%), genetic information processing
(22.55%), cellular processes (4.5%), environmental infor-
mation processing (3.25%) and organismal systems
(2.89%) (Fig. 2). The majority of the unigene pathways
were associated with translation (2847 unigenes), carbo-
hydrate metabolism (2553 unigenes), folding, sorting and
degradation (1941 unigenes).

Development and characterization of SSR markers

In this study, a total of 14,072 SSRs with motifs ranging
from di- to hexanucleotides were identified from 86,980
unigenes. Among all the SSR types, dinucleotide repeats
accounts for the major proportion (9399, 66.8%),
followed by trinucleotides (4328, 30.76%). Tetranucleo-
tide (210, 1.49%), hexanucleotide (93, 0.66%) and penta-
nucleotide (42, 0.30%) repeats were very low-frequency
types. The numbers of tandem repeats of these SSRs
ranged from five to 36, and the most abundant repeat
unit was six (3571, 25.38%), followed by five tandem re-
peats (2670, 18.97%) and seven tandem repeats (1950,
13.86%) (Table 2). Among the dinucleotide repeats, the
most abundant motif type was AG/CT (34.50%),
followed by AT/AT (23.39%) and AC/GT (8.66%).
Among the trinucleotide repeats, AAG/CTT (8.99%) was
the most frequent motif type, followed by AAT/ATT
(6.07%). The remaining motif types accounted for 18.4%
of these repeats (Table 2).

Within the 14,072 SSRs, 10,243 primer pairs were suc-
cessfully designed. We randomly selected 100 pairs from
these primer pairs for amplification, and 35 were suc-
cessfully amplified at expected sizes. Using twelve indi-
viduals from four A. vemetum populations, these 35
primer pairs were applied to screen for polymorphism
and twelve showed allelic polymorphism (Table 3).
Using these 12 polymorphic EST-SSR markers, a total of
39 alleles were detected across the 103 samples from the
six coastal A. venetum populations, with 2 to 5 alleles
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Fig. 1 Functional classification of Gene Ontology (GO) for assembled unigenes of A. venetum. A total of 51,733 unigenes were assigned into 54
functional groups of three GO categories

per locus. Using the Micro-Checker program, we found
no evidence of null alleles and scoring errors in the data-
set. Linkage disequilibrium analysis was performed be-
tween each pair of loci in each population. The results
showed that 6 of 396 comparisons (Av39 and Av88 in
population LD; Av02 and Av88 in population XY; Av08
and Av39, Av08 and Av63, Av39 and Av63, Av39 and
Av75 in population SY) were significant after Bonferroni
correction (P =0.00013). Given that there is no overlap
between these six pairs of loci, we treated these 12 EST-
SSR markers as independent loci in the following ana-
lyses. For all loci, the expected (Hg) and observed het-
erozygosities (Hp) ranged from 0.030 to 0.651 and from
0.030 to 0.653, respectively. The polymorphism informa-
tion content (PIC) was between 0.029 (Av55) and 0.575
(Av39), with an average of 0.297 (Table 3). Among 72
population-by-locus tests, departure from HWE was ob-
served at locus Av02 in the LD population, loci AvO8
and Av39 in the QG population after sequential

Bonferroni correction (P <0.004). Due to the significant
P values of these three loci that were only present in a
single population, their departures from HWE most
likely reflect population-specific rather than locus-
specific problems.

Analyses of population genetic diversity and structure

For A. venetum, the average estimates of genetic diversity
were generally low at the population level (AR =2.34, Hg =
0.314, Ho = 0.350). Population SY showed the lowest level
of genetic diversity (AR=1.96, Hg=0.244, and Ho =
0.264) and population XY showed the highest (AR =2.52,
Hg=0.363, and Ho=0.410). The values of inbreeding
(Fis) ranged from - 0.012 to - 0.138, with an average of —
0.08 (Table 4). The Fst values of population pairs ranged
from 0.032 to 0.220 (Table 5), with an overall value of
0.101, suggesting low to moderate levels of genetic differ-
entiation across all the populations. Thirteen of the 15
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pairwise comparisons were significant after sequential
Bonferroni correction (Table 5).

In the structure analysis, we used LnP(D) and AK sta-
tistics to determine the most likely value of population
genetic cluster K. Because the LnP(D) increased progres-
sively from K=1 to 6, it was difficult to determine the
true number of genetic clusters (K). However, the AK
statistic of Evanno et al. (2005) detected the highest peak
at K=2 (Fig. 3a, b). Figure 3c exhibits the assignment of
individuals to each cluster (‘red’ and ‘blue’ represent
cluster I and cluster II, respectively) when K'=2. The in-
dividuals that contain both colors represent the mixed
origin of two gene pools. Cluster I and II were present at
a high frequency (78 and 88%) (Q > 0.80) in the DF and
SY populations. For the QG and XY populations, nearly

Table 2 The distribution of A. venetum EST-SSRs based on the
number of repeat units

Number of repeat unit  Di- Tri- Tetra- Penta- Hexa Total
5 0 2395 174 27 74 2670
6 2502 1008 28 14 19 3571
7 1487 456 7 0 0 1950
8 1151 209 1 1 0 1362
9 944 118 0 0 0 1062
10 639 91 0 0 0 730
Inl 545 Il 0 0 0 556
12 448 13 0 0 0 461
13 255 0 0 0 0 255
14 345 12 0 0 0 357
215 1083 15 0 0 0 1098

half of the individuals were assigned to each cluster re-
spectively. For the LD and BH populations, 10 to 50% of
all local samples were assigned to each cluster, and the
remaining 30% consisted of mixed individuals. With in-
creased values of K (K=3), we observed that the SY
population was assigned to a separated cluster III (‘yel-
low’) (Fig. 3c), suggesting the potential genetic differenti-
ation of this population from the rest of the populations
in the Yancheng region.

Historical and contemporary gene flow

The MIGRATE-N results revealed that the mutation-scaled
effective population size (®) for the six A. venetum pop-
ulations ranged from 0.0342 to 0.0438. Historical gene
flow (m,,) that inferred from the mutation-scaled migra-
tion rate (M) was highest from population LD to QG
(mp =0.169), and lowest from population LD to DF
(myp = 0.041), with an average value of 0.106 across all
the populations (Additional file 3: Table S1). Asymmet-
ric gene flow was observed in two pairs of populations,
with the predominant direction of gene flow occurring
from population DF to LD and XY to BH. Using BAYE-
SAss software, we found that the six populations were
largely composed of individuals (the average 72%) that
originated from within the same site, while approxi-
mately 6% of the individuals were exchanged with each
other site (Additional file 3: Table S1). Although a mod-
erate level of gene flow was detected among the six A.
venetum populations, the Wilcoxon signed rank test in-
dicated that the contemporary estimates (mean mi, =
0.056) were significantly lower than the historical esti-
mates of migration rates (mean m, =0.106, P<0.001),



Yuan et al. BMC Plant Biology (2020) 20:408

Page 6 of 15

Table 3 Characteristics of 12 compound microsatellite loci developed for A. venetum across all the samples. Shown for each locus
are the locus name, the forward (F) and reverse (R) primer sequence, allele size, repeat motif, genetic characteristics and GenBank

accession number

Locus Forward Reverse Size SSR motif Nx  Ho He PIC  HWE GenBank accession
(bp) number

Av02  AAAAATGGGCAATGGTGGGC  AGGCGTAGGTGAAGAGGA 224 (AT)1, 5 0515 0511 0462 NS MT737291
GT

Av08  AATCAGCCACCGAGTTACCG  ACCTCCTGCAAGCTGAAT 220 (CATe 5 0653 0639 0574 NS MT737292
CcC

Av13  ACGAGAAGTTGGAAACAG GTATTTGGTGTCTTCGGCGC 269 (G 3 0050 0.049 0048 ND MT737293

ACCA

Avl5  ACTCGTTGGACATGATGTGCT — GGACCTTCTCATCAGCCTCG 208 (CNg 3 0228 0204 0184 ND MT737294

Av21  AGCAGGGGAGAAGAATGCAC  GGGTCTTGATGAGGTGAG 250 (ACAA)s 4 0.109 0.114 0110 ND  MT737295
GG

Av33  CCAAACCACACAGCTCAACG  CCAAACCACACAGCTCAA 180 (AT)g 3 0337 0339 0312 ND MT7372%
CG

Av39  CGCTTGCTGCCTCATCATTC CCCTCTCACACCATCCCA 271 (TGO)g 3 0.545 0651 0575 NS MT737297
AC

Av43  CTGCATTCCCGCAAGTAACAG  TGATGCAGCTTAGGAGGG 258 (AAG)s 2 0356 0294 0250 ND  MT737298
TC

Av55  GCTCCGAGAAATCCTGCTCA  GCACTGCACCCTCCTACTAC 218 (AG)g 3 0.030 0030 0029 ND MT737299

Av63 GGG GCTTCTGGGCATG GAGCCAATCCGAACCCCAC 157 (TO)g 2 0327 0301 0254 ND  MT737300

Av75  TCACTAGTACCCACCACCCC  AGTGGTGGCGTTGCTA 212 (GN(AT)s 2 0485 0490 0369 NS  MT737301
TGAA

Av88  TGCATCATGTAGGGTACA GCAAGTGTTCGCTGAGTTCC 159 (AAT);, 4 0396 0487 0400 NS  MT737302

CACC
Mean 325 0336 0342 0.297

Notes: Ny number of alleles, Ho observed heterozygosity, He expected heterozygosity, PIC polymorphism information content, HWE Hardy-Weinberg equilibrium,
NS Not significant for departure from HWE, ND Not detected for departure from HWE

suggesting a decrease in gene flow over the last few gen-
erations. The Mantel test for isolation by distance did
not detect a significant correlation between genetic and
geographical distance (r=0.164, P=0.251) (Add-
itional file 4: Fig. S3).

Changes of effective population size

Under both the stepwise mutation model (SMM) and
two-phase mutation model (TPM), our Wilcoxon test
detected no significant heterozygote excess for most of
the populations (Table 6). For the BH population, we

detected an evidence of a historical bottleneck (P < 0.05;
Table 6). Likewise, the mode-shift test revealed that
most populations showed an L-shaped distribution of al-
leles, suggesting the absence of a recent bottleneck. The
observation of a shifted mode in the two populations
(QG, BH) suggested the occurrence of bottleneck events
over the last few generations (Table 6).

Table 4 Geographic information and genetic characteristics of A. venetum populations based on 12 EST-SSR markers in the

Yancheng coastal habitats of Jiangsu Province

Population 1D Location Latitude (°N) Longitude (°E) Altitude (m) Sample size Na Ho He AR Fis

QG Qianggang 32764 120.931 44 14 2.25 0.369 0.332 2.19 —-0.075
LD Liangduo 32.874 120912 9.0 24 225 0303 0293 2.09 -0.012
DF Dafeng 32952 120.898 =25 18 217 0.361 0310 2.06 -0.138
XY Xinyang 33.690 120.287 -80 13 258 0410 0363 252 —0.090
SY Sheyang 33.877 120432 =22 24 225 0.264 0244 1.96 —-0.061
BH Binghai 34.008 119.789 -05 10 2.00 0392 0.340 2.00 -0.102
Mean 225 0.350 0314 234 —0.080

Notes: Ny number of alleles; Ho observed heterozygosity, Hg expected heterozygosity, AR allelic richness, Fis within-population inbreeding coefficient
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Discussion

Characterization of A. venetum transcriptome and its
potential use in germplasm resources evaluation

With the decreasing costs of sequencing, the develop-
ment of molecular markers that based on next-
generation sequencing technology has become the most
efficient method for molecular studies of non-model
plants [25, 26]. Using the Illumina sequencing platform,
we acquired a well-assembled transcriptome sequencing
data and developed a set of novel EST-SSR markers for
A. venetum. As an important medicinal species and
source of fiber, A. venmetum has been the subject of

Table 5 Pairwise Fsr values among the six populations of A.
venetum
QG LD DF XY SY BH
QG 0.000
LD 0.032 0.000
DF 0.082 0.068 0.000
XY 0.084 0.059 0.064 0.000
Sy 0.123 0.094 0.220 0.181 0.000
BH 0.099 0.085 0.061 0.100 0.171 0.000

Note: Values in bold were significantly different from zero after sequential
Bonferroni correction.

extensive genetics and pharmacology studies. So far,
ISSR (Inter-Simple Sequence Repeat), AFLP and RAPD
molecular markers have been developed for A. venetum
[23, 24, 27]. In recent years, a number of transcriptome
analyses have been conducted on A. venetum [20-22].
Using leaf material, we acquired a similar amount of

Table 6 Bottleneck analysis for six populations of A. venetum. P-
values are shown for Wilcoxon's sign-rank test under both the
stepwise mutation model (SMM) and the two-phase mutation
model (TPM), along with the shape of the allelic distribution
inferred from the mode-shift test

Population Wilcoxon's sign-rank test Mode-shift
M SMM Egisgtributiom

shape) °

QG 0.116 0348 shifted mode

LD 0.348 0.688 L-shaped

DF 0.102 0.326 L-shaped

XY 0483 0.711 L-shaped

SY 0.688 0.839 L-shaped

BH 0.007 0.007 shifted mode

? Note that an L-shaped distribution of alleles is expected in the absence of a
bottleneck, whereas a distribution with a shifted mode is expected in a
population that has gone through a bottleneck
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transcriptome data (6.96 Gb) to that obtained by Chen
et al. [20] (6.57 Gb) but greater numbers of unigenes
(86,890 vs. 52,983) and SSRs (14,072 vs. 7579). Li et al.
[22] identified 101,918 SSRs in the whole genome of A.
venetum. Their study indicated that AT/TA and AAT/
TTA accounted for the highest proportions of dinucleo-
tide and trinucleotide repeats, respectively. In our study,
we found that AG/CT (34.50%) was the most frequent
motif among the dinucleotide repeats and that AAG/
CTT (8.99%) was the most common trinucleotide repeat.
In the study of EST-SSRs in 55 dicotyledonous species,
Kumpatla and Mukhopadhyay [28] found that AG/GA/
CT/TC (14.6 to 54.5% of the total SSRs observed in a
species), and AAG/AGA/GAA/CTT/TTC/TCT (2.7 to
15.5%) were the predominant di- and trinucleotide SSRs.
The consistent composition of EST-SSR repeats com-
pared with most other plant species and the differences
in nuclear SSRs found in A. venmetum might suggest a
transcriptional preference and conservative function of
these SSR motifs in plant genomes. For instance, studies
have shown that CT microsatellites in 5° UTRs play a
role in gene regulation and are involved in antisense
transcription and that CTT repeats occur in 5° UTRs
and transcribed regions at a high frequency [29, 30]. A.
venetum is widely distributed from the northwest region
to the coast of the Yellow Sea in China; however, the
genetic studies of A. vemetum published to date have
only focused on the arid northwest region of China. Our
transcriptome data enriched the available genetic infor-
mation for A. venetum from subhumid region and will
facilitate the screening of germplasm resources, espe-
cially in coastal regions.

A. venetum has been used to lower blood pressure and
lipemia as a traditional medicine for a long time in
China, and the roasted leaves of A. venetum have been
commercialized as a sedative and anti-ageing supple-
ment. A. venetum is rich in flavonoid compounds, which
provide its broad pharmacological activities [31, 32]. Fla-
vonoids are synthesized through a long, complex path-
way [33]. Identifying the regulatory mechanisms
underlying flavonoid biosynthesis is essential for under-
standing the chemical composition or pharmacological
activities of Apocynum. Previous studies have shown
that A. venetum has a higher flavonoid content than its
related species Apocynum. hendersonii, and some flavon-
oid components such as hyperoside have been identified
as suitable chemical markers for the discrimination of
the two species [34]. In a recent metabolome and tran-
scriptome analyses of Apocynum, Gao et al. [21] found
that the flavonoid biosynthetic pathway is responsible
for a considerable proportion of the diversity between A.
venetum and A. hendersonii, and identified anthocyanin
as the key component that determines the phenotypic
diversity of the stem and leaf color of A. venetum and A.
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hendersonii. In our KEGG analysis, 28,505 unigenes were
clustered into 130 pathways, including the flavone and
flavonol biosynthesis (ko00944), flavonoid biosynthesis
(ko00941), isoflavonoid biosynthesis (ko00943), and
anthocyanin biosynthesis (ko00942) pathways. Among
the 88 unigenes related to these pathways, 84 unigenes
have an average FPKM (Fragments per kilobase of exon
per million fragments mapped) value greater than one
and 24 of these were above 50. In addition, 23 out of
these 88 unigenes contain SSR loci (Additional file 5:
Table S2). For example, unigenes that annotated as fla-
vonol synthase (NR ID: BAD34463.1) and flavonoid 3-
O-galactosyltransferase (NR ID: BAF49284.1), both con-
tained SSRs and exhibited an average FPKM value of
50.38 and 22.16, respectively. Although ITS and cpDNA
sequences have been used to identify A. venetum and its
related species, these sequences are conservative within
the genus and only provide limited genetic information
[35]. The flavonoid biosynthesis related transcripts that
contain SSRs identified in our study will serve as good
candidates for the development of novel molecular
markers in the future, which might aid in both the spe-
cies identification in the Apocynum genus and the selec-
tion of A. venetum germplasm resources with high bast
fiber and flavonoid content.

Low level of genetic diversity in A. venetum coastal
populations

The disturbance of natural habitats poses a major threat
to global biodiversity [36]. The ongoing process of habi-
tat alteration generally has strong negative impacts on
the species composition and genetic diversity of species
[37-39]. The genetic evaluation of natural populations is
an essential step in the conservation and utilization of
plant resources, especially for vulnerable and threatened
species. Using RAPD and AFLP markers, researchers
have detected moderate to high levels of genetic diver-
sity in natural A. venetum populations from the Xinjiang
and Inner Mongolia regions [23, 24]. They have also
found that the genetic diversity of A. venetum is signifi-
cantly correlated with environmental factors such as pre-
cipitation, elevation and latitude. Based on EST-SSR
markers, we detected a low level of genetic diversity in
natural A. venetum populations from the coastal habitats
(H.=0.342) (Table 4). Although EST-SSRs are expected
to be more conserved and exhibit a lower rate of poly-
morphism than genomic SSRs [40-43], there are also
studies showing that there is no significant differences
between these two types of markers [44—46]. Consider-
ing the small population size of the A. venetum popula-
tions in the coastal region, future studies that combine
the analysis of genomic SSR markers or genome-wide
SNPs could better represent the real level of genetic di-
versity in A. venetum from this region.
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Coastal plant species are expected to be highly vul-
nerable to habitat alteration, due to their high
specialization to coastal environments [6]. Through
nuclear SSR analysis, a low level of genetic diversity
has been observed in coastal herb, shrub and tree
species [47-49]. Peng et al. [50] investigated the gen-
etic diversity of nine wild A. vemetum populations
from eight provinces of China using RAPD markers,
and their study showed that populations from coastal
regions such as Jiangsu and Jilin exhibit lower genetic
diversity than those from the arid northwest regions
such as Xinjiang, Inner Mongolia and Ningxia. In a
comparative study of Fraxinus angustifolia Vahl popu-
lations from the Continental region and the Mediter-
ranean region, Temunovi¢ et al. [51] detected a
significantly lower genetic diversity and higher popu-
lation divergence in the latter region, revealing the in-
fluence of environmental heterogeneity in shaping the
genetic variation between divergent habitats. There-
fore, coastal A. vemetum populations might represent
a divergent ecotype, and environmental factors may
cause differences in genetic diversity between arid and
subhumid regions. By including environmental data in
our future analyses, we could further test whether the
differences are correlated with diverse natural condi-
tions (subhumid vs. arid areas). Another plausible ex-
planation for this low level of genetic diversity is that
A. venetum populations in the coastal region have ex-
perienced severe reductions in population size, leading
to the loss of genetic diversity and increased suscepti-
bility. Using Bottleneck software, we found that two
populations (QG and BH) showed distortions (mode-
shifts) in their allele frequency distributions, suggest-
ing recent bottleneck events, and Wilcoxon’s test also
revealed significant heterozygote excess in the BH
population (P <0.05; Table 6). According to our field
observations, for populations such as BH and SY, sit-
uated along the highway road, the natural habitat is
severely being disturbed. In addition, the population
size of most populations is quite small (N < 30). Based
on scaled effective population sizes ® (4N,p), the esti-
mated N, of the A. venetum populations in the Yan-
cheng region is approximately 10-11 individuals.
According to a genetic model predicting the propor-
tion of initial heterozygosity retained per generation
[1-(1/2N,)] [52], A. venetum populations would be ex-
pected to lose 4.5% of their heterozygosity per gener-
ation. Therefore, with declining genetic diversity and
continuing demographic changes over time, the A.
venetum populations in the Yancheng coastal region
are of potential concern in terms of decreases in indi-
vidual fitness and population viability, and an in-
creased risk of extinction in the future.
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Moderate level of gene connection with a decreasing
trend in A. venetum coastal populations

Gene flow is crucial for population resilience and per-
sistence following habitat disturbances and environmen-
tal changes. This process may provide a source of
recruitment and maintain genetic diversity by introdu-
cing adaptive alleles from other populations [53-55]. In
this study, we found little evidence of strong genetic
structuring in the A. vemetum populations across the
Yancheng coastal region. Genetic structure analysis
grouped all of the sampled populations into two clusters,
and in the majority of populations, a number of admixed
plants existed (Fig. 3c). Negative multilocus Fis values
(mean value of - 0.08) were found for A. venetum, indi-
cating an absence of inbreeding in the coastal popula-
tions of this species (Table 4). In accordance with this,
contemporary migration rates among A. venetum coastal
populations were found to be moderate (mean m, =
0.056) (Additional file 3: Table S1). Together, these re-
sults indicate that population connectivity in A. venetum
coastal populations has not yet been greatly disturbed
yet. In general, life-history traits of plant species such as
their pollen and seed dispersal mode, often affect the
genetic connection between populations [55, 56]. The
study of pollination biology has shown that Apis melli-
fera and Ichneumon sp. are the main pollinators of A.
venetum [57]. Due to the limited foraging distances of
these pollinators, gene dispersal through pollen alone
seems insufficient to maintain the species’ population
connectivity across the coastal region. The seeds of A.
venetum are less than 1 mm in size and are covered with
pappus-like hair, which enables an anemochorous dis-
persion [58, 59]. The high seed dispersal capabilities of
A. venetum may play a key role in maintaining the mod-
erate levels of ongoing gene flow and population con-
nectivity across the coastal region. Although studies
have shown that plants relying on wind for pollination
or seed dispersal may be subject to less negative effects
of habitat alteration on their genetic diversity or popula-
tion connection [55, 56], we still detected a decrease in
gene flow over the last few generations compared to the
historical level of migration rates (mean my, =0.106).
Under the persistent pressures of anthropogenic and cli-
mate disturbances, whether natural A. venetum popula-
tions, especially those with low genetic diversity and a
small population size, have a sufficient capacity to sur-
vive following disturbance or adapt to future environ-
mental change still requires long-term monitoring.

Conclusion

In this study, we acquired a high-quality transcriptome
from A. venetum leaves by using the Illumina sequencing
platform and successfully developed twelve polymorphic
EST-SSR  markers in A. venetum. Using these
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informative makers, we detected a low level of genetic
diversity and bottleneck events in A. venetum popula-
tions across their natural distribution in the Yancheng
coastal region of Jiangsu Province. Although population
connectivity between A. vemetum populations has been
maintained by the high seed dispersal ability of the spe-
cies, considering the ongoing anthropogenic activities,
long-term monitoring and conservation strategies should
be implemented to better protect these small popula-
tions. The conservation of available genetic diversity is
essential to enable the continued utilization of this eco-
nomically important plant. Based on the results of this
study, we suggested that populations that have under-
gone bottlenecks (e.g., population BH and QG) and
those with a high level of genetic diversity (population
XY), should be given conservation priority. In addition,
there are not enough comparative data available on the
extent of genetic diversity in A. venetum across its global
biogeographical ranges, and further studies combining
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samples from arid regions and more markers should be
conducted to gain a more precise understanding of the
genetic diversity, population structure, and evolutionary
history of this important plant species.

Methods

Sample collection and DNA and RNA extraction

A total of 103 leaf samples of A. venetum were collected
from 10 to 24 individuals in six wild populations, repre-
senting most of the distribution area of this species in
Jiangsu Province (Fig. 4). Detailed information for all the
populations is listed in Table 4. A. venetum is mainly
distributed along the riversides or roadsides, and permis-
sion was not necessary to collect these samples. The col-
lection of plant material complied with national
guidelines. All sampled leaves were immediately dried in
silica gel. The materials were identified by Jiangsu Prov-
ince and Chinese Academy of Sciences, China. We used
QIAGEN Plant DNA kit (Gaithersburg, MD) to extract
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Fig. 4 Sample localities of Apocynum venetum in the Yancheng coastal habitats of Jiangsu Province. Population code is listed in Table 4
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the total genomic DNA according to the manufacturer’s
protocol. Besides, fresh leaves of three individuals from
the LD population were immediately frozen in liquid ni-
trogen and stored at —70°C for total RNA extraction.
Total RNA from these individuals was extracted using
the QIAGEN RNeasy Plant Mini Kit following the man-
ufacturer’s procedures (Chatsworth, CA). Then the
quantified total RNAs were sent to Novogene Bioinfor-
matics Institute (Beijing, China) for further processing.

cDNA library construction and transcriptome sequencing
First, the RNA concentration and integrity of the samples
were measured using the Qubit RNA Assay Kit in a Qubit
2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA)
and the RNA Nano 6000 Assay Kit with the Agilent Bioa-
nalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA). Then, for each sample, cDNA library were con-
struction and sequenced by using equal amounts of quali-
fied RNA according to the standard procedures of
Novogene Bioinformatics Institute (Beijing, China). The
NEBNext® Ultra™ RNA Library Prep Kit for Illumina®
(NEB, USA) were used to generate sequencing libraries.
After purification and quality assessment, the three library
preparations were sequenced on the Illumina HiSeq plat-
form (Illumina, USA).

Transcriptome assembly and functional annotation

Raw RNA-seq reads were processed using in-house Perl
scripts to remove reads containing adapters and ploy-N
sequences (greater than 5%) and reads with more than
20% low-quality bases (quality scores < 10). Then, we
used Trinity software [60] with the default parameters to
assemble the high-quality clean data. All unigenes were
queried against the NCBI Nr (non-redundant protein)
and Nt (non-redundant nucleotide) databases; the Swis-
sProt protein database (http://www.expasy.ch/sprot);
Pfam (Protein family database); the KOG (Clusters of
Orthologous Groups of proteins) database and KO
(KEGG Orthology) database. Gene ontology (GO) anno-
tation [61] of the unigenes was performed using BLAS-
T2go [62]. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (https://www.genome.jp/
kegg/) were determined with an E-value cut-off of le-5.
The WEGO [63] were used to plot the distributions of
level-2 GO terms with functional classification.

Identification of EST-SSRs

The MicroSAtellite (MISA) program [64] was used to
detect transcripts containing EST-SSRs. A minimum re-
peat number of six for dinucleotide motifs and five for
tri-, tetra-, penta-, and hexanucleotide motifs were set as
detection criteria. The sequences containing SSRs were
submitted to Primer premier 5.0 software (Premier Bio-
soft International, Palo Alto, CA, USA) to design
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primers. The parameter settings were as follows: product
size ranging from 100 to 300 bp; primer length ranging
from 18 to 25bp; GC content between 40 and 60% and
the annealing temperature between 55 and 65 °C [65].

PCR amplification was carried out in a 15 pL total re-
action volume containing 20—40 ng genomic DNA, 7.5 pl
of 2 x Taq PCR MasterMix (Tiangen, Beijing, China) and
0.3 uM of each primer. The PCR procedure included an
initial denaturation for 3 min at 94 °C, followed by 35 cy-
cles of 30s at 94°C, 30s at optimal annealing
temperature for each locus, and 15s at 72°C, followed
by a final extension of 5 min at 72 °C. The PCR products
were checked using silver-stained nondenaturing poly-
acrylamide gels. Then the optimized SSR primers were
further labelled with 6-FAM or HEX fluorescein dye
(Sangon Biotech, Shanghai, China). After PCR amplifica-
tion, allele identification and genotyping were performed
with GeneMarker version 2.2.0 (SoftGenetics, State Col-
lege, Pennsylvania, USA).

Genetic diversity analyses

The number of alleles (N,), polymorphism information
content (PIC), expected heterozygosity (Hg) and ob-
served heterozygosity (Hp) of each EST-SSR locus were
estimated with Cervus 2.0 [66]. Hardy-Weinberg equi-
librium (HWE) and linkage disequilibrium (LD) tests
were performed using GENEPOP version 4.2 with a Bon-
ferroni correction [67]. Null allele frequencies, stuttering,
and large allele dropout were detected using the Micro-
CHECKER version 2.2.3 [68] program. For each population
of A. venetum, the number of alleles (N,), allelic rich-
ness (AR), expected heterozygosity (Hg), observed het-
erozygosity (Hp), inbreeding coefficient (Fis) and
differentiation among populations (Fst) were calculated
using FSTAT version 2.9.3.2 [69].

Population genetic structure, gene flow and demographic
analyses

Population structure was investigated by using the SrRuc-
TURE 2.3.4 program [70] implementing a model based
Bayesian approach. The value of genetic clusters (K) was
set from 1 to 6, assuming an admixture model and inde-
pendent allele frequencies. Ten independent runs were
conducted for each K with a burn-in of 10,000 and 100,
000 Markov Chain Monte Carlo replicates. The most
possible K value was chosen by calculating AK [71] in
STRUCTURE HARVESTER [72].

Contemporary inter-population migration between A.
venetum populations was estimated using BAYESASS ver-
sion 1.3 [73]. The delta values for allele frequencies, mi-
gration rates, and inbreeding coefficients were adjusted
accordingly to ensure that the acceptance rates fell be-
tween 40 and 60% [73]. We performed the software for
107 iterations with a burn-in of 10° generations. Ten
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replicate runs were conducted with a different initial
seed. We assessed the model convergence by comparing
the posterior probability densities of parameter estimates
across these ten runs. The results presented were from
the best-fit run. We also estimated historical gene flow
using a coalescent-based Bayesian method implemented
in the program MIGRATE-N version 3.6 [74]. The process
used the Brownian motion approximation as the muta-
tion model following 107 iterations with a burn-in of
10°. The static heating scheme was used with four
chains at different temperatures (1.0, 1.5, 3.0, and 100,
000.0) [75]. Two parameters, scaled effective population
sizes O (4N, where N, is effective population size, y is
the average mutation rate of microsatellites as 10~ > per
generation) and scaled immigration rates M (my/y,
where my, is historical migration rate) between pairs of
populations over around 4N, generations were estimated
simultaneously. The number of immigrants per gener-
ation Nm was estimated by the equation Nm = ®@M/4. A
Wilcoxon signed-rank test was conducted to compare
historical and contemporary gene flow estimates among
the A. venetum populations.

To test for isolation-by-distance (IBD), the correl-
ation of pairwise geographical distance (log geograph-
ical distance in km) and genetic distance (Fst/1-Fsr)
values was evaluated. Statistical significance was tested
with 1000 permutations of the Mantel test via the R
package Vegan [76]. Wilcoxon’s signed rank test and
the mode-shift test in BOTTLENECK version 1.2.02 [77]
were used to determine whether the A. venetum pop-
ulations in the Yancheng coastal region have under-
gone significant reductions in the effective population
size (N.). The first methodology compares the hetero-
zygosity expected (Hg) at Hardy-Weinberg equilibrium
with the heterozygosity expected at mutation-drift
equilibrium (H.q) [78], which is suitable for detecting
bottlenecks occurring in the last 2-4N, generations.
The second methodology is based on the allele fre-
quency distribution, which is more appropriate for
detecting population declines that have occurred more
recently (approximately the last few dozen genera-
tions) [79, 80]. For population that has not experi-
enced bottleneck event, a large proportion of alleles
at a low frequency and a smaller proportion of alleles
at intermediate frequencies distribution (L-shape dis-
tribution) presents. While in bottlenecked popula-
tions, a shifted mode of allele frequency distribution
would be detected. We performed 10,000 simulations
under both the stepwise mutation model (SMM) and
the two-phase model (TPM) with 95% single-step mu-
tations and 5% multistep mutations for each A. vene-
tum population. P-values were assessed for statistical
significance at the 0.05 level.
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