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Abstract

sunlight and shade.

response.

artificial breeding to develop new albino tea varieties.

Background: Camellia sinensis ‘Huangjinju’ is an albino tea variety developed recently in China. Young leaves of
‘Huangjinju’ demonstrate bright yellow when cultivated under natural sunlight, but regreens under reduced light
intensity. To elucidate the physiological and molecular mechanisms of this light-sensitive albinism, we compared
leaf pigmentation, metabolites, cellular ultrastructure and transcriptome between plants cultured under natural

Results: Shading treatment doubled the chlorophyll concentration and regreened albino leaves; carotenoid also
increased by 30%. Electron microscopy analyses showed that chloroplast not only increased in number but also in
size with a complete set of components. In addition, regreened leaves also had a significantly higher concentration
of polyphenols and catechins than albino leaves. At transcriptomic level, a total of 507 genes were differentially
expressed in response to light condition changes. The most enriched pathways include light harvest protein
complex, response to stimuli, oxidation-reduction process, generation of precursor metabolites and energy

Conclusion: The integrated strategy in this study allows a mechanistic understanding of leaf albinism in light-
sensitive tea plants and suggested the regulation of gene networks involved in pigmentation and protein
processing. Results from this study provide valuable information to this area and can benefit the domestication and
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Background

Leaf color is a plastic phenotype and changes under dif-
ferent environmental conditions (e.g., light intensity,
temperature and media composition). Leaf albinism is
often considered deleterious and not favored in agricul-
ture because it lacks essential pigmentation for normal
functions such as photosynthesis [1, 2]; on the other
hand, it produces specialties with some unique charac-
teristics. In tea plant, for example, young albino leaves/
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shoots are commercially grown because of its unique
flavor compared to regular green tea [3]. There are two
types of albinism in Camellia sinensis: temperature-
sensitive (e.g., cultivars ‘Anji Baicha’, ‘Baiye 1’ and
“Xiaoxueya’) and light-sensitive (e.g., cultivars ‘Huangjinju’,
‘Huangjinya’ and ‘Baijiuan’) [4]. As albino tea becomes
internationally popular and the market continues to grow,
understanding its molecular basis is in high demand and
has a great economic value.

Light-sensitive albinism in tea plants involves modifi-
cation in physiological and biochemical processes such
as pigmentation, intracellular structure and metabolites
[4]. The early development of leaves in albinistic plant
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typically experiences three stages: pre-albinistic stage, al-
binistic stage and regreening stage [5]. Most leaf albin-
ism occurs in the albinistic stage, which lasts from
several weeks to months. Reducing light intensity by
artificial shielding often regreens leaves to the normal
level. In the albinistic stage, leaf color varies from white
to yellow depending on the level of deficiency in chloro-
phyll and carotenoids. Associated with the decrease in
pigmentation is the often-observed abnormal develop-
ment of chloroplasts and thylakoid membranes [6].
Albinism is also coupled with modified biochemical pro-
cesses that contribute to changes in metabolites [7],
which determines the flavor of brewed tea. Specifically,
for example, high levels of amino acids bring an ‘umami’
taste; low levels of caffeine and catechins decrease the
astringency and bitterness [3, 6, 8].

In recent years, molecular techniques such as
transcriptome sequencing provide opportunities to study
the molecular mechanisms of tea albinism. Some
photosynthesis-related genes and pathways have been
shown to be involved in leaf albinism in tea plant, in-
cluding pigmentation synthesis, protein processing,
oxidation-reduction and flavonoid biosynthesis [9]. Path-
ways that contribute to essential metabolites are also
shown to be involved, such as flavonoid biosynthesis and
amino acid metabolism [4]. Although some genes and
pathways are expected to be universally present in plant
albinism, the ones that contribute to unique characteris-
tics of each tea cultivar is of the greatest interest. The
majority of existing literature has focused on several
major cultivars such as C. sinensis ‘Anji Baicha’ [3, 5, 7,
10-12]. Study on new tea varieties that are being actively
developed is still limited.

‘Huangjinju’ is a light-sensitive albino cultivar of C.
sinensis propagated from a natural variant in Jiangxi
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province, China [13]. Young leaves of ‘Huangjinju’
demonstrate yellow under natural sunlight, but grad-
ually regreen as development progress. This study
marks the first effort to explore the albinism mechan-
ism in this cultivar. We applied integrated approaches
to examine the response of pigmentation accumula-
tion, metabolites, ultracellular structure and transcrip-
tome to different light conditions by culturing plants
under natural sunlight and shade. Results confirmed
the role of some genes and pathways in photosyn-
thesis and protein processing, but also identify add-
itional pathways that are regulated to produce the
unique characteristics in albino leaves.

Results

Leaf pigmentation, chloroplast and metabolites
concentration

Young shoots of ‘Huangjinju’ emerged after trimming
were yellow (Fig. 1). After 5 days of shading treat-
ment, pale yellow leaves under shade gradually turned
green. To quantify the “greenness” of leaves, we first
measured Soil-Plant Analyses Development (SPAD)
values in the field. By taking measurements on a total
of 60 leaves for each treatment, SPAD values in
shaded leaves were 36.8-52.3% higher than that in
exposed leaves (Fig. 1g). The concentration of
chlorophyll-a and chlorophyll-b in shaded leaves was
twice as much as that in leaves under natural sunlight
(Table 1), which agreed with the SPAD results. Simi-
larly, carotenoids were also 30% higher in shaded
leaves. We also observed that regreened leaves under
shade had a significantly higher concentration of poly-
phenols and catechins than albino leaves under nat-
ural sunlight (Table 2).

D)

day 5, 33 and 48 after treatment

Fig. 1 Color differences in C. sinensis ‘Huangjinju’ cultured under natural sunlight versus under shade. a-c natural sunlight. d-f shade treatment. a
and d before treatment. b and e 20 days after treatment. ¢ and f 33 days after treatment. g a bar plot of SPAD value for leaves under natural
sunlight and shade. The asterisks indicate significant differences between treatments (p < 0.05). SPAD values were measured in the same day on
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Table 1 Pigment concentration of young shoots in C. sinensis ‘Huangjinju’ under natural sunlight (NS) and shade (S)

Sample mass (g) Chlorophyll-a (mg/g)

Chlorophyll-b (mg/g)

Total chlorophyll (mg/g) Carotenoids (mg/g)

NS-1 0.2032 040 0.08
NS-2 0.2085 0.50 0.10
S-1 0.2072 097 0.24
S-2 0.208 0.83 0.22
NS/S 10 0.5 04
S/NS 1.0 20 26

0.5 3203
06 3737
1.2 490.8
1.1 4418
0.5 0.7
2.1 13

Pigmentation concentration was measured twice for both treatments. Each measurement used 100 randomly harvested leaves. The ratio of the average values

between treatments is also calculated

Cell ultrastructure

Transmission electron microscopy (TEM) images
showed abnormal cellular ultrastructure in leaves cul-
tured under different light conditions. Chloroplast of
leaves under natural sunlight had fewer starch granules
(SG), osmiophilic granules (OG), and thylakoids (Th)
stacking (Fig. 2a and c). In contrast, chloroplasts were
fully developed in shaded leaf and no abnormity was
found in thylakoid membranes and granular stacking
(Fig. 2b and d).

Differential gene expression

A total of 304.8 million raw reads were obtained from
the sequencer. After applying quality filtering pro-
cesses, 301.8 million clean reads were retained for
downstream analysis. An average of 85.2% of the total
reads was uniquely aligned to the reference genome.
A total of 41,444 unique transcripts were identified.
Compared to plants under natural sunlight, plants

Table 2 Concentrations of tea metabolites in C. sinensis
‘Huangjinju’ under natural sunlight and shade

Natural sunlight Shade
N 8 8
Amino acid 209 +£0.05 2.13+£0.05
Caffeine 323+007 3414014
Polyphenol 198+ 16° 249+13°
Total Catechin 151 +15° 182+ 1.1°
Gallate 0.030 £ 0.007 0.026 + 0.005
Epigallocatechin 0.22+001° 028+002°
Catechin 0.08+0.01° 0.12+001°
Epicatechin 047 +£0.07 0.53+0.03
Epigallocatechin gallate 122+£17 143+£10
Gallocatechin gallate 0.18£0.05 0.17+£0.04
Epicatechin gallate 178 +04° 251+04°
Catechin gallate 0.13+001° 020+ 0.03°

All numbers are relative weight (%). Data are presented as mean + s.e.m.
Significant differences (p < 0.05) between treatments are denoted with
different lower-case letters

under shade treatment significantly regulated 507
genes (Fig. 3), which includes 198 up-regulated genes
and 309 down-regulated transcripts (Details of the
differentially expressed gene (DEGs) are given in sup-
plementary Table S1). The most significantly up-
regulated gene is WRKY30 (WRKY DNA-binding pro-
tein 30) with a 9.4-fold increase, while the most sig-
nificantly down-regulated DEG is CYP (cytochrome
P450) with 111-fold decrease. The gene that held the
greatest absolute difference is LHCB (light-harvesting
complex II chlorophyll a-b binding protein) followed
by LIP (light-inducible protein).

Gene ontology (GO) analysis suggested that DEGs
were mostly involved in three categories: “response to
stimulus”, “oxidation-reduction process” and “generation
of precursor metabolites and energy response” (Fig. 4
and Fig. S1). The child terms of “response to stimulus”
include functions related to “response to heat”, “re-
sponse to organic substance” and “response to hor-
mone”. Some DEGs in “generation of precursor
metabolites and energy response” are involved in photo-
synthesis processes. Pathways of processing denatured
proteins and misfolded proteins became less active as
suggested by the downregulation of heat shock protein
genes. Functional categories of DEGs from GO analyses
are listed in supplementary Table S2.

Mapping to Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) ortholog database revealed three signifi-
cantly enriched pathways: “Photosynthesis - antenna
proteins” (ath00196) (Fig. 5a), “Protein processing in
endoplasmic reticulum” (ath04141) (Fig. 5b) and “Brassi-
nosteroid biosynthesis” (ath00905). Some DEGs in “Pro-
tein processing in endoplasmic reticulum” pathway was
also involved in endocytosis, plant-pathogen interaction,
spliceosome and protein export processes. DEGs were
also discovered in other pathways such as “Photosyn-
thesis”, “flavonoid biosynthesis pathway”, “Biosynthesis
of amino acid pathway” and “Carotenoid biosynthesis”,
which are known to be involved in response to light
condition changes. Functional categories of DEGs KEGG
analyses are listed in supplementary Table S3.



Jiang et al. BMC Plant Biology (2020) 20:216

Page 4 of 11

Fig. 2 Cellular ultrastructure of young shoots in C. sinensis ‘Huangjinju’ under direct sunlight and shade. a and ¢ leaves under natural sunlight. b
and d leaves under shade. Ch: chloroplast; SG: starch granule; OG: osmiophilic granule; Th: thylakoid; Gr: grana

Discussion

Light intensity is among the most critical environmental
factors affecting plant physiology and biochemistry. In
most situations, albinism is a hereditary condition
caused by mutations that may have occurred in the nu-
clear or chloroplast genomes. The molecular mechanism
likely not only involves a group of genes but also some
degree of interaction among them. Here we show that
albino tea plants significantly regulated the expression of

light. Reducing light intensity causes the pale yellow
‘Huangjinju’ leaves to regreen with increased chlorophyll
and carotenoid deposition. Regreened leaves also had
significantly higher polyphenols and catechins content
than pale leaves. Meanwhile, the gene expression profile
significantly differed between treatments in pathways
such as photosynthesis, protein folding, amino acid me-
tabolism, cellular structure and oxidation.

Leaf color variation is determined by pigmentations,

numerous structural and regulatory genes in response to  including  chlorophyll and  carotenoid. = Albino
N
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Fig. 3 Heatmap of differentially expressed genes in plants under shade (S) versus under natural sunlight (NS)
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‘Huangjinju’ leaves under natural sunlight are low in
chlorophyll, therefore, lack the green pigmentation.
Leaves also demonstrated some yellow color, despite
that carotenoid was decreased by 20%. Lack of chloro-
phyll accumulation is a result of the maldevelopment of
chloroplast [14]. Aberrant chloroplast has been found to
be universal in both light-sensitive and temperature-
sensitive albino cultivars. Direct exposure to natural sun-
light induces hypoplasia of chloroplasts in young shoots
by suppressing the development of grana stacking and
thylakoids.

Photosynthesis pathway

The light-harvesting complex is an aggregate of pro-
teins and photosensitive pigments that absorb light
and transfer energy. The contents of pigment—protein
complexes gradually increase during the regreening
stages in albino plants [10]. We observed significant
upregulation of transcripts from chlorophyll a-b bind-
ing protein genes in regreened leaves under the
shade, suggesting the recovery of photosynthesis activ-
ities. Antenna complex also contains carotenoids, lu-
tein, violaxanthin and b-carotene. Beta-carotene
isomerase gene was downregulated, which reduced
the digestion of [B-carotene and helped to accumulate
[-carotene. We also observed the downregulation of
9-cis-epoxycarotenoid ~ dioxygenase that catalyzes

Violaxanthin / Neoxanthin to Xanthoxin. Xanthoxin
is a precursor of abscisic acid that is important for
plants to deal with environmental stressors. This re-
sult is suggesting that the stress level of plants under
reduced light intensity has decreased. It is a similar
result as that in C. sinensis ‘Huangjinya’, where carot-
enoid biosynthesis-related genes were induced by
shading treatment [15]. We also observed the upregu-
lation of light-responsive gene PORA (protochloro-
phyllide reductase, chloroplastic), which is involved in
chlorophyll biosynthesis by catalyzing the formation
of chlorophyllide from protochlorophyllide during bio-
syntheses of chlorophylls and bacteriochlorophylls.

Management of proteins

External stresses disturb the process of protein synthesis
and denaturation. Cells deal with denatured proteins via
either rescue or degradation. Cells produce heat shock
proteins, which act as molecular chaperones to rescue
and stabilize misfolded proteins pathway [16]. Therefore,
heat shock protein is sometimes considered as an indica-
tor of stress level. Here we found that heat shock protein
DEGs were all downregulated under shade, suggesting
that plants became less stressed under shade, which sup-
ports the conclusion from the photosynthesis pathway
analysis. For proteins that are damaged and cannot be
rescued, cells engage the process of protein degradation
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Fig. 5 KEGG pathway analysis of differentially expressed genes in C. sinensis ‘Huangjinju’ under shade (S) and natural sunlight (NS). a Significantly
regulated genes in KEGG pathway “Photosynthesis - antenna proteins (ath00196)" and bar plots of gene expression. b Significantly regulated
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through the ubiquitin/proteasome pathway [17]. Similar
to previous studies [18, 19], three of the four
ubiquitination-related DEGs were downregulated, sug-
gesting a decreased need for disposal of denatured pro-
teins under reduced light conditions. Gene expression
patterns of protein rescue and degradation indicate that

protein synthesis is more disrupted in albino leaves,
which may have caused the accumulation of total amino
acids during the albinism process [8]. Indeed, we have
identified that DEGs are involved in the metabolism of
cysteine, methionine, lysine, glycine, serine, threonine
and tyrosine.
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Oxidation stress reduction

Reactive oxygen species (ROS) is a group of molecules
produced from metabolic processes in chloroplast, mito-
chondria and peroxisome. ROS include superoxide
anion, hydrogen peroxide, and hydroxyl radicals, which
are all highly reactive molecules and affect normal cellu-
lar functions by interacting with nucleic acids, proteins
and lipids [20]. ROS is normally controlled within a safe
range through detoxification processes, but can be trig-
ger by environmental stresses, e.g., strong light condition
[21, 22]. On the one hand, ROS causes molecular dam-
ages and affects cellular processes [20, 21]; on the other
hand, the effect of ROS might be a strategy for cells to
survive stressful conditions by temporarily turning off
some processes [22]. For example, in Chinese poplar
Populus simonii, ROS production in the early chilling
response resulting in inhibition of photosynthesis to
produce a survival advantage [23]. Cytochrome P450
catalyzes most of the steps in the detoxification process
of secondary metabolisms in plants [24]. In this study,
we identified nine transcripts from Cytochrome P450
were significantly more expressed in plants under shade
than that in plants exposed to natural sunlight. Similar
results were also discovered for other enzymes involved
in the oxidation-reduction process, including flavonoid
3’-hydroxylase 2, flavonoid 3'-hydroxylase 3, leucoantho-
cyanidin dioxygenase, carbamoyl-phosphate synthetase 2,
aspartate transcarbamylase, and dihydroorotase. There-
fore, the albino leaves might be caused by the accumula-
tion of ROS, which is a response of plants to deal with
strong light conditions.

Transcription factors

Transcription factors (TFs) regulate the complex tran-
scription network and therefore are involved in a series
of mechanisms to cope with abiotic stresses. We ob-
served significant downregulation of TFs after shading,
suggesting the reduction of environmental stress. The
differentially expressed TFs in this study belong to gene
families of MYB, bHLH, Ethylene Response Factors
(ERFs), NAC, GRAS, WRKY, etc. Regulation of these
gene families has been previously shown responsive to
abiotic stressors [25], such as temperature [26—28], che-
micals [29, 30], salinity [31], light condition [9, 32]. It is
not surprising that NAC and WRKY were both signifi-
cantly regulated as they are two of the largest TF fam-
ilies in plants. In C. sinensis, NAC and WRKY have been
shown to be responsive to all the aforementioned
stressors [9, 28, 29, 31]. In C. sinensis ‘Shuchazao’, the
expression of MYB family genes has been shown to be
positively associated with the UV level [32]. Therefore,
the upregulation of MYB family genes in the natural
sunlight exposed group in this study may be a result of
strong UV radiation. In addition, MYB TFs are involved
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in flavonoid biosynthesis [33], which has been shown to
be significantly different between treatment groups in
this study, e.g., catechins and polyphenols. However, the
direct association warrants further investigation. Previ-
ous studies showed that bHLH TFs likely function co-
operatively with MYBs to deal with environmental
stressors and affect flavonoid biosynthesis [34]. The
ERFs are involved in the ethylene signaling pathway that
regulates many processes in development stress re-
sponses. We observed three downregulated genes (CRF4,
ERF4 and RAP2-4) and one up-regulated gene (WIN1).

Conclusions

Taking together, tea is the most consumed non-
alcoholic beverages around the world and new varieties
are still continually being developed. Knowledge on the
molecular basis of albinism provides valuable informa-
tion that is commercially relevant. This paper provided
some mechanistic understanding of albinism at multiple
biological levels from transcriptome, molecular to cellu-
lar, which all suggest albinism in young leaves might be
a result of stress responses. Further research in this area
should lead to the accumulation of adequate information
to allow a comprehensive understanding of how leaf
color is affected by different environmental factors.

Methods

Plant and treatments

Twenty-year-old tea plants of C. sinensis cultivar
‘Huangjinju’ were grown at Eco-tea Garden of Jiangxi
Sericulture and Tea Research Institute, Jiangxi province,
China (28°22'14.5"N 116°00°'05.8"E). Elevation of
experiment field is 36 m. Abiotic and biotic condi-
tions, except the light condition, were maintained the
same throughout this study. On May 10, 2018, tea
plants were trimmed and divided into two groups:
one group was under natural sunlight, the other
group was covered with black polyethylene shading
net (width,15.0m; length 6.0 m; height: 1.8 m) that
blocks out 70% of sunlight. On June 10, 2018 when
plants reached one bud and two leaves stage, the dif-
ference in leave color was visually apparent. Leaf sam-
ples were randomly sampled and snap-frozen in
liquid nitrogen before stored at — 80 °C.

Determination of pigmentation content

Pigmentation content in leaves was quantified using two
methods: Soil-Plant Analyses Development (SPAD) and
high-performance liquid chromatography (HPLC). The
SPAD method is a quick measurement of relative
chlorophyll amount in fresh leaf samples using a hand-
held device SPAD-502PLUS (Spectrum Technologies,
Konica Minolta, Japan). This SPAD device takes readings
directly from fresh leaves and therefore, does not require
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additional sample processing. The SPAD measurements
were conducted on six biological replicates for each
treatment. In each replicate, a total of ten leaves were
measured and the average value was logger as a SPAD
value. The HPLC analysis of pigments including chloro-
phyll a, chlorophyll b, and b-carotene was previously de-
scribed in Li et al, 2015 [6]. Briefly, 100 randomly
harvested fresh young shoots were ground, and 0.2 g of
the ground product was extracted with 10 ml acetone
and 0.1g polyvinylpolypyrrolidone. The mixture was
centrifuged at 12,000 rpm for 15 min (4 °C). The super-
natant was analyzed on the LC-20AT HPLC System
(Shimadzu, Kyoto, Japan) with a TC-C18 column
(Agilent Technologies Inc., Santa Clara, CA, USA). The
injection volume was 20 pl. The column was eluted at
35°C with a linear gradient increasing from 80 to 100%
mobile phase B (acetonitrile/methanol/chloroform:15/4/
1, v/v/v) over 20 min at a flow rate of 1 ml min~'. After
an additional 15 min at 100% mobile phase B, the gradi-
ent was linearly decreased from 100 to 80% over 5 min,
and then 80% mobile phase B for an additional 5 min.
The eluent was detected at the wavelength of 440 nm.
An external standard was used as an authentic reference
to quantify detected pigments.

Determination of free amino acids content

Free amino acid content was determined according to the
national standard (GB/T 8314-2013). Briefly, fresh shoots
(one bud and two leave stage) were fixed by steaming for
three min. Fixed leaves were then dried at 80°C for 3 h.
Dried leaves were ground to powder and passed through a
0.45 mm-mesh sieve. Then, 3.0 g of the fine power were
placed in 450 ml of boiling water for 45 min to make the
extract solution. The extract solution was then filtered
through a Double-Ring No. 102 filter paper (Xinhua Paper
Industry Co. Ltd., Hangzhou, China), and the volume was
increased to 500 ml by adding distilled water. Next, 1 ml
of the solution was transferred to a 25 ml flask, followed
by the addition of 0.5 ml of buffer (pH 8.0) containing 63
mM Na,HPO, and 3 mM KH,PO,, 0.5 ml of a 2% ninhyd-
rin solution (2g ninhydrin and 80 mg SnCl,2H,O dis-
solved in 100 ml of water). The flask was incubated at
boiling temperature for 15 min. The volume was then in-
creased to 25 ml with H,O. The absorbance (570 nm) of
the mixture was measured with a UV Spectrophotometer
U-2800 (Hitachi High-Technologies Corporation, Tokyo,
Japan). Total free amino acid content was calculated from
a standard curve generated with varying concentrations of
glutamine.

Determination of total polyphenols, catechins and
caffeine content

The concentration of total polyphenols was determined
by spectrophotometry, as described in the national
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standard of China (GB/T 8313-2018) with minor modi-
fications. Briefly, 100 randomly harvested fresh young
shoots (one-bud and two-leaf stage) were ground, and
0.2 g of the ground product was mixed with 5.0 mL 70%
ethanol. The mixture was incubated at 70 °C for 10 min
and stirred every 5 min. After the mixture was cooled to
room temperature, it was centrifuged at 3500 rpm for
10 min. The supernatant was separated and added to a
10 mL volumetric flask. The sediment was remixed with
5.0 mL 70% ethanol and repeated the procedure. Super-
natants from each step were collected in a volumetric
flask and adjusted to 10 mL with deionized water (4 °C)
to form the extract solution. A volume of 1 mL of ex-
tract solution was placed in a measuring flask and ad-
justed to 100 mL with deionized water to form the test
solution. To measure total polyphenols, test solution (1
mL) was then mixed with 10% Folin Ciocalteu reagent
(5mL) in a test tube for 5min. Next, 4 mL of Na,CO;
solution (75 gL’l) was added to the test tube, and the
mixture was stirred for one h at room temperature. The
absorbance of test solution was measured with a UV
Spectrophotometer U-2800 (Hitachi High-Technologies
Corporation, Tokyo, Japan) at 765 nm. Gallic acid at dif-
ferent concentrations (10, 20, 30, 40, and 50 ug mL™ ")
was used as a reference, and the polyphenol results were
presented as gallic acid equivalent concentrations. To
measure catechins and caffeine, test solution (2 mL) was
first mixed with 25mL stabilizing solution (25ml
EDTA-2Na at 10 mgmL™'; 50 mL chromatographically
pure Acetonitrile; 25 mL ascorbic acid at 10 mgmL™:
water, 400 ml) and then filtered through a 0.45 um mem-
brane (Millipore, Billerica, MA, USA). An aliquot of
10 L filtrate was measured using an LC-10ATVP HPLC
system (Shimadzu, Tokyo, Japan). The HPLC conditions
were as follows: inject volume, 20 pl; C18 column, 5 pum,
250 mm x 4.6 mm (Agilent Technologies Inc., Santa
Clara, CA, USA); 35°C; gradient elution: started with
phase A (100%) for 10 min, in 15 min phase A decreased
to 68% phase A and 32% phase B and held for 10 min,
reaching 100% phase A; flow rate: 1 mlmin~'; mobile
phase A (2ml EDTA-2Na at 10 mgmL™'; 90 mL chro-
matographically pure Acetonitrile; 25 mL Acetic acid at
20mgmL™': water, 888 ml), mobile phase B (2ml
EDTA-2Na at 10 mg mL~'; 800 mL chromatographically
pure Acetonitrile; 20 mL Acetic acid at 10 mgmL ™ ":
water, 178 ml); detection wavelength: 278 nm.

Chloroplast ultrastructure analysis

The chloroplast ultrastructure was analyzed using trans-
mission electron microscopy (TEM) facilities at the In-
stitute of Virology, Chinese Academy of Science, Jiangxi
Province, China, following the protocol previously de-
scribed in Wang et al, 2014 [35]. Briefly, fresh leaves
were firstly cut into 1cm x 2 cm pieces. Pieces without
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leaf veins were chosen and fixed in glutaraldehyde solu-
tion (2.5%) at 4 °C overnight. Samples were then washed
with phosphate buffer (0.1 M, pH 7.0) three times (20
min each). After washing, samples were fixed again in
050, solution (1%, 4°C) for 2-3h and washed three
times with phosphate buffer (0.1 M, pH7.0). After fix-
ation steps, samples were sequentially subjected to a
graded ethanol series (50, 70, 80, 85, 90, 95 and 100%)
for dehydration. Each dehydration step lasted 15 min,
followed by soaking in 100% ethanol for 20 min. Dehy-
drated samples were sequentially drenched in the mix-
ture of acetone: epoxy resin (2:1), acetone: epoxy resin
(1:1) and epoxy resin. Drenched samples were embedded
in pure epoxy resin at 60 °C for 48 h. After embedding,
60—100 nm thick sections were cut with an EM UC6
microtome (Leica, Vienna, Austria) and stained with sat-
urated uranyl acetate in 50% ethanol for 15min and
0.2% (w/v) lead citrate for 15 min. Images were taken
under a Tecnai G* 20 TWIN transmission electron
microscope (FEI, Oregon, United States).

RNA-Seq and bioinformatics

Total RNA was extracted using a TRlzol reagent (Invi-
trogen™ Life Technologies, CA, USA) according to the
manufacturer’s manual. The RNA concentration was
quantified using Qubit® RNA Assay Kit in Qubit® 2.0
Flurometer (Life Technologies, CA, USA) while RNA in-
tegrity was tested with RNA Nano 6000 Assay Kit of the
2100 Bioanalyzer Instrument (Agilent Technologies, CA,
USA). RNA-Seq libraries were prepared using NEBNext®
Ultra™ RNA Library Prep Kit (NEB, USA) according to
the manufacturer’s manual. Libraries were pair-end se-
quenced on an Illumina Hiseq 2500 platform (Novogene,
Beijing, China). Raw reads were quality controlled by fil-
tering adapter sequences, reads containing more than
10% ploy-N and low-quality sequences using customized
Perl script. Clean reads were aligned to tea plant Camel-
lia sinensis reference genome [36] (http://tpia.teaplant.
org/) using Hisat2 v2.0.4 [37]. HTSeq v0.9.1 was used to
count the reads numbers mapped to each gene.

Differential gene expression

Gene counts were normalized to FPKM (Fragments Per
Kilobase of transcript sequence per Millions base pairs
sequenced) based on the length of the gene and number
of reads mapped to this gene [38]. Differentially
expressed gene (DEGs) analysis of two light conditions
(three biological replicates per condition) was performed
using the R package DESeq (1.18.0) [39]. DESeq deter-
mines differential gene expression using statistical
methods modelled with the negative binomial distribu-
tion. A Benjamin -Hochberg’s approach was used to ad-
just the p-values with cutoff at 0.05 [40].
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Enrichment analysis of DEGs

Functional category and pathways of DEGs were anno-
tated by searching against public databases to form a bet-
ter understanding of the molecular mechanism. Gene
Ontology (GO) enrichment analysis of DEGs was imple-
mented by the GOseq R package [41], in which gene
length bias was corrected. The significance level of enrich-
ment analysis was tested using Fisher’'s Exact test. GO
terms with over-represent p-value less than 0.05 were
considered significantly enriched by DEGs. Kyoto
Encyclopedia of Genes and Genome (KEGG) pathway
database is a collection of pathway maps representing
current knowledge on molecular interaction and reaction
networks [42]. Transcripts were aligned against the KEGG
database for ortholog annotation. Statistical enrichment of
pathways was tested in KOBAS software [43].

Statistical analysis

Significant differences between treatments were deter-
mined using a Student’s two-tailed t-test with SPSS 20.0
software (IBM Corporation, Chicago, IL, USA) and
values of p<0.05 were considered statistically
significant.
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