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Abstract

four TFs.

Background: White rot is one of the most dangerous fungal diseases and can considerably affect grape berry
production and quality. However, few studies have focused on this disease, and thus, finding candidate white rot
resistance genes is of great importance for breeding resistant grapevine cultivars. Based on field observations and
indoor experiments, the cultivars “Victoria” and “Zhuosexiang” showed significant differences in white rot resistance.
For understanding the molecular mechanisms behind it, different phenotypes of grapevine leaves were used for
RNA sequencing via lllumina and single-molecule real-time (SMRT) sequencing technology.

Results: A transcript library containing 53,906 reads, including known and novel transcripts, was constructed following
the full-length transcriptome sequencing of the two grapevine cultivars. Genes involved in salicylic acid (SA) and
jasmonic acid (JA) synthesis pathways showed different expression levels. Furthermore, four key transcription factors
(TFs), NPR1, TGA4, Pti6, and MYC2, all involved in the SA and JA signal pathways were identified, and the expression
profile revealed the different regulation of the pathogenesis related protein1 (PR1) resistance gene, as mediated by the

Conclusions: Full-length transcript sequencing can substantially improve the accuracy and integrity of gene prediction
and gene function research in grapevine. Our results contribute to identify candidate resistance genes and improve
our understanding of the genes and regulatory mechanisms involved in grapevine resistance to white rot.
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Background

Grapevine (Vitis spp., family Vitaceae) is a perennial woody
vine with a history of cultivation extending over 8000 years
[1]. Due to its ability to adapt to different environments and
high economic and social values, grapevine has been culti-
vated worldwide. Based on International Wine and Vine
Organization data, the cultivation areas of grapevine reached
8.7 million hectares in 2017 [2]. According to the statistical
data of the Food and Agriculture Organization of the United
Nations (FAO), China ranked first in global grape berries
production with 13.1 million tons, and accounted for 15.1%
of grape berry worldwide production in 2017 (http://www.
fao.org/faostat/zh/#home). In China, Vitis vinifera L. is the
major table grape berry species, but, due to the high
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temperature and precipitation that are characteristic of the
East Asian monsoon climate, V. vinifera cultivars are vulner-
able to a variety of fungal diseases [3-5]. Grape white rot
(caused by Coniothyrium diplodiella (Speg.) Sacc.) is one of
the major fungal diseases affecting grapevines. In many grape
berry-producing regions affected by this disease, production
has been reduced by at least 16.3% [6, 7]. The tissues infected
by white rot include leaves, berries, and new shoots. Wounds
caused by weather events, insects, and other fungal diseases
are the major entry points for the white rot pathogen. In
grape berry production, the use of antifungal agents is not
recommended, as it causes serious environmental pollution
and food safety problems. At present, many grapevine culti-
var resources are resistant to white rot disease, comprising
powerful resources for resistance genes identification and
baseline information for white rot resistance breeding.

In nature, plants can convert light energy into carbo-
hydrates and energy for their development, and these
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carbohydrates are also the infection targets several mi-
croorganisms, including biotrophic, hemibiotrophic, and
necrotrophic species [8]. Plants have evolved sophisti-
cated mechanisms of pathogen recognition and defense.
Pattern recognition receptor (PRR)-triggered immunity
(PTI) is the first tier of plant immunity in systemic ac-
quired resistance (SAR), which is mediated through the
recognition of pathogen-associated molecular patterns
(PAMPs), and is very effective against most pathogens
[9-11]. However, pathogens can synthesize effector
proteins and release them into plant cells, counteracting
the induction of PTI and enhancing their survival in the
host cell. Plants have evolved resistance genes to re-
spond to this effector-triggered susceptibility; these
genes recognize effectors and mediate effector-triggered
immunity (ETI), the second tier of plant immunity [12—
14]. Pathogenesis-related proteins (PRs) are induced by
biotic and abiotic stresses and play crucial roles in plant
SAR [15]; following infection by pathogenic bacteria, the
expression of PRs can enhance plant resistance [16].
Pathogenesis-related 1 (PR1) is a major disease resist-
ance response protein in the PR family involved in plant
protection against environmental stresses [14, 17]. Sali-
cylic acid (SA) and jasmonic acid (JA) play crucial roles
in plant SAR, and the expression mechanism of PR1 is
regulated by a complex mechanism involving several en-
zymes and transcription factors (TFs) in these pathways
[18-21].

Next-generation sequencing (NGS), which is a high-
throughput and low-cost technology, has greatly facili-
tated the development of genomics. However, a major
challenge in NGS is the short length of the obtained
reads [22-25]. Single-molecule real-time (SMRT) se-
quencing from Pacific Biosciences (Menlo Park, CA,
USA), belongs to the third-generation sequencing [26],
provides a possible solution to this shortcoming. With
SMRT sequencing, it is possible to achieve full-length
reads based on real-time imaging of fluorescently tagged
nucleotides as they are synthesized along individual
DNA template molecules [27], and it can be widely used
for identifying novel genes and transcripts [28, 29]. In
the present study, two grapevine cultivars with different
resistance to white rot, namely “Victoria” (VT, V. vinif-
era) and “Zhuosexiang” (ZX; V. vinifera x V. labrusca
L.), were infected with white rot spores following an
in vitro leaf culture method. Different infection periods
(Oh and 72 h) were used for grapevine leaves from the
two cultivars, which were then subject to RNA sequen-
cing (RNA-Seq) analysis based on the Illumina (San
Diego, CA, USA) X Ten and Pacific Biosciences Sequel
platforms. The important white rot resistance gene PRI
and its regulatory network mediated by SA and JA were
identified. Genes involved in these two pathways provide
the reference genes required for grapevine white rot
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resistance breeding, and the full-length transcripts ob-
tained here will greatly improve the accuracy and integ-
rity of grapevine transcripts’ analyses in future research.

Results

Evaluation of white rot resistance

Leaves from different branches of cultivars VT and ZX
were infected using a white rot spore suspension. At 0, 24,
48, and 72 h post infection, the leaves were evaluated for
white rot resistance based on the lesion area. After 72 h,
the leaves from the two cultivars presented different
degrees of white rot infection (Fig. 1a). The lesion areas of
VT leaves were 1141.86+29.13mm? which was
significantly higher than that of ZX (241.88 + 19.51 mm?)
(Fig. 1b). Our results showed that white rot had a strong
ability to infect grapevine leaves and that ZX showed
higher resistance to white rot, compared with VT.

lllumina and SMRT sequencing data analyses

Grapevine leaves at 0 and 72 h post infection were used
for RNA-Seq analysis. Twelve samples (three replicates
for each infection period) from each cultivar were used
for Illumina sequencing. After removing low quality
reads and trimming adapter sequences, 321,687,667
clean reads were obtained (Additional file 1: Table S1).
The Pacific Biosciences Sequel platform was used for
SMRT sequencing with two SMRT cells. The 647,947
circular consensus sequence (CCS) reads obtained in-
cluded 569,624 full-length non-chimeric (FLNC) reads
and 78,323 no-FLNC reads. The average length of the
FLNC reads was 1059 bp. Proovread software was used
for the correction of FLNC reads based on Illumina se-
quencing data [30], and 493,335 FLNC reads were
retained and used for further analyses (Additional file 2:
Table S2).

Gene structure and function annotation

The V. vinifera genome based on the Pinot Noir inbred
line PN40024 obtained in 2007 contains 26,346 anno-
tated transcripts (http://www.genoscope.cns.fr/ externe/
GenomeBrowser/Vitis/). The 493,335 FLNC reads ob-
tained in the present study were used for identifying
gene loci and transcripts based on the reference genome.
The removal of redundant transcripts reduced transcript
number to 37,010, corresponding to 18,698 gene loci,
and each transcript represented a unique full-length
transcript. Overall, 14,699 gene loci were annotated in
the grapevine genome previously, and 3999 gene loci
and 27,560 transcripts were first identified in our study
based on SMRT sequencing (Table 1). The length and
exon number of the new isoforms (Additional file 3:
Data S1; the start and end sites of each exon are repre-
sented as “,” and the different exons of each isoform as
“”), as well as their annotations and expression levels [in
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Fig. 1 Lesion area identification of VT and ZX after white rot infection. a VT and ZX represent grapevine cultivars “Victoria” and “Zhuosexiang”. 0,
24, 48, and 72 represent the hours after infection with white rot. The scale bar is 2 cm. b Light-grey bars represent grapevine cultivar VT and dark-
grey bars represent grapevine cultivar ZX. The X-axis indicates the infection period of white rot. Error bars represent the standard deviation from
three independent experiments. The lowercase letters on the bar chart represent significant differences between two cultivars and different infection

fragments per kilobase of exon model per million reads
mapped (FPKM) values] (Additional files 4 and 5: Data
S2 and Data S3, respectively), were obtained. The num-
ber of transcripts ranging between 0 and 2500 bp, pro-
duced via SMRT sequencing, was significantly higher
than that of the reference genome (Fig. 2a). For the

Table 1 Statistics of gene loci and isoforms for SMRT
sequencing data

Categories Number of Loci  Number of isoforms
Known genes and isoforms 2381 9450

Known genes and new isoforms 12,318 23,001

New genes and isoforms 3999 4559

Total genes and isoforms 18,698 37,010

SMRT sequencing data, the median exon size was 122
bp, which was identical to that of the reference genome.
The median gene size and average number of coding
exons per gene were 4080bp and 10.13, respectively,
which were higher than those of the reference genome.
Alternative splicing (AS) is one of the factors determin-
ing the diversity of proteins involved in development
and stress responses [31, 32]. In both the SMRT and
[lumina datasets, most of the splicing junctions (SJs) re-
sided in the coding sequences (CDS), indicating the po-
tential of AS to affect protein products (Fig. 2b). Most of
the splicing donor-acceptor sites were canonical GU-AG
sites (96.84% for Illumina and 94.86% for SMRT) (Fig.
2¢,d), followed by GC-AG with 2.14% in Illumina and
1.54% in SMRT(Fig. 2c,d). AU-AC splice sites only
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account for 0.53% in Illumina and 0.1% in SMRT(Fig.
2¢,d), as also called Ul2-type introns, it was reported to
have important regulatory role [33]. Interestingly, the
exon number of AS genes was higher than that of non-AS
genes (Fig. 2e). Among these AS types, exon skipping had
the largest gene number (SKIP, 6376), followed by alterna-
tive exon ends (AE, 5084) and intron retention (IR, 5272)
(Fig. 2f and Additional file 7: Data S4). For the known
genes, 3275 were identified underwent alternative splicing,
the isoform number and ID of each gene were shown in
Additional file 6: Data S5, transcript GSVIVT01031973001
had 34 isoforms and encoded galactinol synthase, and
gene GSVIVT01031973001 had 30 isoforms and encoded
the glycine-rich RNA binding protein GRP2A. We also
found 1841 long non-coding RNAs (LncRNAs) (Add-
itional file 8: Data S6), accounts for 6.47% of all novel iso-
forms; 76 fusion genes (Additional file 9: Data S7), the
number of different fusion types (Inter-chromosome and
Intra-chromosome) were 38 respectively. Besides that, we
also identified 22,638 polyA sites from 9039 genes, 5364
of which presenting alternative polyadenylation (APA)
(Additional file 10: Data S8).

We constructed a new transcript library containing 53,
906 transcripts (26,346 from reference genome and 27,
560 novel isoforms from novel and known loci) after the
combination of novel transcripts identified by SMRT se-
quencing and annotated transcripts from the reference
genome (Additional file 11: Data S9). All these tran-
scripts were then used to search against the National
Center for Biotechnology Information (NCBI) non-
redundant (NR), Swiss-Prot, gene ontology (GO), and
clusters of euKaryotic orthologous genes (KOG) protein
databases and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway database, the details of which
are shown in Table 2.

Gene expression analysis based on lllumina and SMRT
data

The 321,687,667 clean reads produced by Illumina se-
quencing were aligned to the newly constructed tran-
script library using Bowtie software [34], and the
matching rate is shown in Additional file 12: Table S3.
The gene expression patterns of VT1, VT2, ZX1, and
ZX2 samples were calculated using the FPKM values
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Table 2 Summary of transcripts annotated in different database

Database Number Percentage (%)
NR 51,866 96.22
Swiss-Prot 40,363 74.88

GO 35,965 66.72

KEGG 22,148 41.09

KOG 17,753 3293

Total 53,906 100

and the RSEM software [35]. The differentially expressed
genes (DEGs) were statistically evaluated using the
DESeq method [36]. Our results revealed that 7645
DEGs were discovered in VT1 vs. VT2, 2817 in ZX1 vs.
7X2, 3902 in VT1 vs. ZX1, and 3734 in VT2 vs. ZX2;
148 DEGs were common to the four libraries (Fig. 3a,b).
The VT1 vs. VT2 and ZX1 vs. ZX2 comparisons re-
vealed more down-regulated than up-regulated genes in
VT and more up-regulated than down-regulated genes
in ZX after white rot infection. The white rot-
susceptible VT cultivar showed more DEGs during
infection than the white-rot resistant cultivar ZX, indi-
cating that grapevine white rot is more successful at
modifying leaf metabolism in the susceptible form. Based
on VT1 vs. ZX1 and ZX2 vs. VT2 comparisons, there
were more genes down-regulated genes in ZX than in
VT at 0 h post infection, and more up-regulated genes in
ZX than in VT at 72h post infection, indicating that
more white rot resistance genes were highly expressed in
the resistant cultivar after infection. Using the KEGG
pathway database to search the functional networks of
biological interactions, we assigned 2078 DEGs to 263
KEGG pathways. The top 20 enriched KEGG pathways
are shown in Fig. 4 and Additional file 13: Data S10.

Differential expression analyses of candidate genes
The KEGG enrichment analysis evidenced many differ-
ently enriched genes in the “MAPK signaling” (P-value
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<6.34E"°),  “plant-pathogen interaction”  (P-value
<1.73E"'Y), and “alpha-linolenic acid metabolism” (P-
value <1.51E™°) pathways at 72 h post infection (Fig. 4).
According to our results, the grape PRI gene
(GSVIVTO01038540001, Additional file 11: Data S9) was
differentially expressed in both the “MAPK signaling”
and “plant-pathogen interaction” pathways. After quanti-
tative real-time (qRT) and semi-quantitative PCR ana-
lyses, the expression of PRI was down-regulated in VT
after white rot infection and there is a decreased expres-
sion at 24 h post infection in ZX and then up-regulated
from 48 h to 72 h (Fig. 5). In plant SAR, the regulation
mechanism of PRI involves a complex network, and PRI
expression is mainly induced by SA and JA. The expres-
sion of genes related to JA and SA synthesis and signal
pathway were identified by the qRT-PCR and semi-
quantitative PCR analyses. The result showed that, after
white rot infection, several key enzyme genes located up-
stream JA synthesis were up-regulated in both VT and
ZX. The expression level of Iysyl oxidase (LOX;
GSVIVT01025340001, Additional file 11: Data S9) con-
tinuously increased in both ZX and VT, peaking at 72 h
post infection; in addition, the expression level in VT
was higher than that in ZX. Allene oxide synthase (AOS;
GSVIVT01009616001, Additional file 11: Data S9) and
acyl-coenzyme A oxidase (ACOX; GSVIVT01016325001,
Additional file 11: Data S9) were also induced after in-
fection and their expression levels peaked at 48 h post
infection; the expression level of these two genes in VT
was higher than that in ZX from 48 to 72 h post infec-
tion. The expression of 12-oxo-phytodienoic acid reduc-
tase (OPR; GSVIVTO01013386001, Additional file 11:
Data S9) was induced in both ZX and VT, and its ex-
pression peaked from 24 to 48 h post infection in ZX
and at 48 h post infection in VT, and it was higher in
ZX than in VT. Gene OPC-8:0 CoA ligase 1 (OPCLI;
GSVIVT01008694001, Additional file 11: Data S9) was
repressed in ZX at the onset of white rot infection, but

VT1svT2 2X2v53T2
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Fig. 3 Statistics and Venn diagram analysis of DEGs in different cDNA libraries. Pink and green colors represent up-regulated and down-regulated
DEGs, respectively. VT1 and VT2 represent DEGs of VT at 72 h relative to DEGs at 0 h; ZX1 and VT1 represent DEGs of VT at O h relative to DEGs of
ZX at 0h; ZX1 and ZX2 represent DEGs of ZX at 72 h relative to DEGs of ZX at 0 h; ZX2 and VT2 represent DEGs of VT at 72 h relative to DEGs of
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induced in VT peaking at 48 h post infection. As a key
enzyme-coding gene involved in SA synthesis, PAL
(GSVIVT01006148001, Additional file 11: Data S9) was
up-regulated and peaked at 48 h post infection in both
ZX and VT, and its expression level was higher in ZX
than in VT. The expression of genes and TFs located
downstream the JA and SA pathways were also identi-
fied. In the JA pathway, jasmonic acid resistance 1
(JARI; GSVIVTO01030558001, Additional file 11: Data
S9) was up-regulated in both ZX and VT and peaked at

24h post infection for VT and 48 h post infection for
ZX. Transcription factor MYC2 (GSVIVT01027162001,
Additional file 11: Data S9) was repressed after white rot
infection, although its expression level was higher in VT
than in ZX from 24 to 72 h post infection. Regarding the
SA pathway, NPR! (GSVIVT01015181001, Additional
file 11: Data S9) and TGA4 (GSVIVT01033632001, Add-
itional file 11: Data S9) were significantly up-regulated
in ZX and peaked at 48 h post infection; in VT, NPRI
was repressed at 48 h after infection, and no significant
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Fig. 5 Semi-quantitative PCR and gRT-PCR analyses of PRT expression
at different infection periods. Light-grey bars represent cultivar VT and
dark-grey bars represent cultivar ZX. Error bars represent the standard
deviation of three biological replicates. The lowercase letters on the
bar chart represent significant differences between two cultivars and
different infection period according to Duncan’s multiple range test
(DMRT) at P<0.05

difference was evidenced for TGA4. The expression level
of these two genes was higher in ZX than in VT from 48
to 72h post infection (Fig. 6). These results indicated
that SA and JA may mediate the expression of PRI in
opposite directions after white rot infection (Fig. 7).
Some TFs, which may play important roles in plant de-
velopment and resistance, presented large fold-changes in
their expressions in VT2 vs. ZX2 comparisons. Two MYB
TFs and one basic helix-loop-helix (b HLH) TF were differ-
entially expressed after white rot infection. Whereas
MYB3R (GSVIVT01027493001, Additional file 11: Data
S9) and bHLH137 (GSVIVT01008628001, Additional file
11: Data S9) were both up-regulated in ZX and VT with
higher expression levels in ZX than in VT from 24 to 72 h
post infection, MYB58 (GSVIVT01036802001, Additional
file 11: Data S9) was induced in ZX and VT after white rot
infection, but its expression level peaked at 24 h post in-
fection for ZX and at 72 h post infection for VT (Fig. 6).

Discussion

Plant hormones are small signal molecules; in addition
to regulate plant development, they also play an import-
ant role in plant defense against biotic and abiotic
stresses via SAR. Many studies have highlighted the role
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of PRI in SAR for resistance against pepper Phy-
tophthora disease and bacterial wilt [37], powdery mil-
dew in barley [38], and Phytophthora disease and gray
mold in tobacco [18, 39], among others. In the present
study, grapevine white rot, caused by a canonical necro-
trophic pathogen, induced a series of genes and TFs
including LOX, AOS, OPR, OPCL1, ACOX, JARI, PAL,
NPRI, TGA4, and MYC2 in JA and SA synthesis and sig-
nal pathways.

An increasing number of studies have focused on the
crosstalk between SA and JA signals in plant SAR, in-
cluding the mediation of PRI expression [17, 40-42].
Jasmonate ZIM-domain (JAZ) proteins play important
roles in the JA signal pathway. Without environmental
stress, JAZ proteins can bind MYC2 and inhibit its regu-
latory function. In the SA signal pathway, NPRI and
TGA interaction is required for positively promoting the
activity of PR mediated by SA [20, 21]. According to the
present results, the interaction between NPR1 and TGA4
may play an important role in PRI expression and white
rot resistance. Gu et al. indicated that SA could induce
the expression of PRI through Pti4/5/6 TFs and enhance
plant defense to Erysiphe orontii and Pseudomonas syrin-
gae pathovar tomato [18]. Interestingly, in Arabidopsis
thaliana, the ethylene response factor (ERF) AtEBP can
interact with TGA and then regulate the expression of
PR genes [43]. Here, we found that Pti6 (chr6.849.1,
Additional file 11: Data S9), a TF of the ERF family in-
duced after white rot infection and higher expressed in
ZX than in VT (Fig. 6). Based on our results, the inter-
action between TGA4 and Pti6 may also play a crucial
role in promoting PRI expression in white rot
resistance.

According to the results obtained here, MYC2, NPRI,
TGA4, and Pti6 may play crucial roles in PRI expression,
while SA and JA signal pathways showed antagonistic
roles in the regulation of these TFs. Spoel et al. found
that, as a key regulatory factor in the SA signal pathway,
NPRI could suppress the expression of LOX, which is
involved in JA synthesis, thereby repressing the effect of
JA on PRI expression [44]. However, Li et al. indicated
that the interaction between MdMYC2 and ERF2 sup-
presses the regulatory effect of ERF2 on its target gene
in ethylene synthesis [45]. Thus, the interaction between
MYC2 and Pti6 may also play important role in PRI ex-
pression and white rot resistance. Overall, transcription
factor MYC2 negatively regulates grapevine white rot re-
sistance whereas TFs NPRI, TGA4, and Pti6 positively
regulate it. The results obtained so far indicate that the
regulatory mechanisms of these TFs on PRI expression
are complex and important in grapevine white rot
resistance.

Transcription factors within the MYB superfamily
have a conserved MYB domain and play an important
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role in mediating plant development and response to
environmental stresses. In A. thaliana, AtMYB96 me-
diates the defense against bacterial infection by indu-
cing SA biosynthesis [46], AtMYB30 is involved in the
resistance and associated cell death responses to bac-
terial infections through the transcriptional activation
of very-long-chain fatty acid metabolism [47], and
AtMYB44 plays a critical role in resistance against the
phloem-feeding generalist green peach aphid (Myzus
persicae Sulzer) and leaf-chewing specialist diamond-
back moth (Plutella xylostella L.) larvae [48]. Many
other MYB TFs, such as AtMYBI3, AtMYBIS5,
AtMYB33, AtMYB70, AtMYB73, AtMYB77, and
AtMYB101, have been reported as involved in A.
thaliana defense against environmental stresses [49,
50]. To date, there have been no reports on the MYB
TFs mediating grapevine defense to white rot. Here,
two MYB TFs (MYB3R and MYB58) were induced by
white rot infection in grapevine leaves, especially
MYB3R, which showed a higher expression level in
ZX than in VT.

Transcription factors within the bHLH superfamily
also mediate plant resistance. Under abiotic stress,
bHLHI122 can improve A. thaliana resistance to drought
and osmotic stress [51]. Several studies have shown that,
under biotic stress, bHLH25, bHLH27, and bHLHO60 are
negative regulators of A. thaliana defense against the
cyst nematode Heterodera schachtii Schmidt. and
Pseudomonas syringae [52, 53]. In the present study,
bHLHI137 was significantly induced in VT and ZX after
white rot infection, thus revealing that this TF might be
a positive regulator in grapevine white rot defense.

The KEGG pathway analysis performed here revealed
many DEGs were enriched in the top-six categories, in terms
of the -logl0 Q value. The “carotenoid biosynthesis” pathway
showed the highest enrichment, and DEGs enriched in this
pathway were related to 15-cis-phytoene synthase (crtB),
beta-carotene isomerase (DWARF27), beta-carotene 3-
hydroxylase (crtZ), zeaxanthin epoxidase (ZEP), capsorubin
synthase (CCS1), 9-cis-epoxycarotenoid dioxygenase (NCED),
abscisic-aldehyde oxidase (AAO3), (+)-abscisic acid 8'-hy-
droxylase (CYP707A) and abscisate beta-glucosyltransferase
(AOG) synthesis. The DEGs enriched in the “drug metabol-
ism - cytochrome P450” and “metabolism of xenobiotics by
cytochrome P450” pathways were related to dimethylaniline
monooxygenase (FMO), glutathione S-transferase (GST),
cytochrome P450 family 1 subfamily A polypeptide 1
(CYP1Al). In the “toll-like receptor signaling pathway”,
enriched DEGs were related to lipopolysaccharide-binding
protein (LBP), interleukin-1 receptor-associated kinase 1
(IRAK1), and interleukin-1 receptor-associated kinase 4
(IRAK4). In the “flavonoid biosynthesis” pathway, enriched
DEGs were related to chalcone synthase (CHS), flavonoid 3'-
monooxygenase (CYP75B1), bifunctional dihydroflavonol 4-
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reductase/flavanone  4-reductase (DFR), naringenin 3-
dioxygenase (F3H), flavonoid 3,5 '-hydroxylase (CYP75A),
anthocyanidin synthase (ANS), leucoanthocyanidin reductase
(LAR), and anthocyanidin reductase (ANR). The functions of
most of the abovementioned DEGs have been studied,
although focusing mainly on plant secondary metabolic reac-
tions, as is the case of the DEGs in the carotenoid and fla-
vonoid biosynthesis pathways, and CYP450-related DEGs
[54—68]. The DEGs enriched in the “plant-pathogen inter-
action” pathway were mostly involved in hypersensitive re-
sponse, such as the DEGs related to respiratory burst oxidase
(RBOH) [69, 70] and heat shock protein 90 (HSP90) [71],
and their expression level were higher in ZX than in VT after
white rot infection. Overall, the expressions of most DEGs
enriched in the abovementioned pathways were higher in
ZX than in VT, especially that of the DEGs in the “caroten-
oid biosynthesis” and “flavonoid biosynthesis” pathways. This
suggested that, in addition to the genes involved in plant
SAR, some genes involved in plant secondary metabolite bio-
synthesis might play important roles in grapevine white rot
resistance. However, this regulatory network is complex and
needs further research.

Conclusions

We conducted SMRT and Illumina sequencing of the
grapevine transcriptome following a biotic stress (white
rot infection). The SMRT data revealed 18,698 gene loci
and 37,010 full-length transcripts, including 3999 novel
gene loci and 30,860 novel transcripts. By combining
these new transcripts with that annotated in the grape-
vine reference genome, we constructed a new library
containing 53,906 transcripts. The new full-length tran-
scripts obtained here provide important reference full-
length transcript resources that help identifying new re-
sistance genes in grapevine, especially those involved in
biotic stresses response. We also found that PRI expres-
sion, mediated by the crosstalk of SA and JA, is crucial
in grapevine white rot resistance. The candidate genes
revealed in the present study enrich our understanding
of and provide basis for grapevine white rot resistance
breeding.

Methods

Plant materials and white rot infection

Young and healthy leaves of the “Victoria” (V. vinifera)
and “Zhuosexiang” (V. vinifera x V. labrusca L.) culti-
vars were collected from the grapevine experimental gar-
den of Shenyang Agricultural University, Liaoning
Province, P. R. China (E123°24", N41°50°). Coniothyrium
diplodiella strain JZB3700001 was obtained from the
Beijing Academy of Agriculture and Forestry Sciences,
Beijing Key Laboratory of Environmentally Friendly
Management of Fruit Diseases and Pests in North China.
Surface sterilization of the collected leaves was
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performed as previously described [72]. After
sterilization, the leaves of each cultivar were placed in
plastic Petri dishes and punctured on the left, middle,
and right regions. A 10-uL 10°/mL white rot spore sus-
pension was then dropped on the wounding points to
induce white rot infection. All leaves were incubated in a
moist chamber at 28°C with 95% relative humidity.
Seventy-two hours later, the infected leaves were used
for a white rot infection survey, and the lesion areas of
the infected regions were measured using the YMJ-C
smart leaf area meter (Tuopu Instrument Co. Ltd,
China). Leaves from two infection stages, 0 and 72h,
were then rapidly frozen in liquid nitrogen and stored at
- 80 °C for further analyses.

RNA extraction and sequencing

Total RNAs were extracted from the leaves of the differ-
ent grapevine cultivars using the Plant Total RNA Isola-
tion Kit (Sangon Biotech, Shanghai, China; No. SK8631),
according to the manufacturer’s instructions. The RNA
purity and integrity were measured in the NanoDrop
2000 (Thermo Fisher Scientific, Waltham, Ma, USA)
and Agilent 2100 (Agilent Technologies, Santa Clara,
CA, USA) equipments, respectively.

For SMRT sequencing, pure RNAs of each leaf sample
were pooled, and ¢cDNA synthesis was performed using
the SMARTer™ PCR cDNA Synthesis Kit (Takara Bio
Inc., Mountain View, CA, USA). The reverse transcript-
ase (RT) begins synthesis at the poly(A) tail of the frag-
ment and then synthesizes a ¢cDNA complementary to
the RNA. Full-length ¢cDNA fragments assayed by the
BluePippin System were then amplified for a second
time. Once the double-stranded cDNA was prepared,
the remaining overhangs were converted into blunt ends
via exonuclease, and then, a SMRT adaptor with a hair-
pin loop structure was ligated to the end of the cDNA.
The SMRTbell templates were then sequenced on the
Pacific Biosciences Sequel System using two SMRT cells.
Using SMRT Link v5.0 to conduct raw data preprocess-
ing and filtering, the major parameter were: Minimum
Number of Passes = 1; Minimum Predicted Accuracy =
0.8; Minimal Read Score = 0.65.

For Illumina sequencing, the cDNA libraries were con-
structed for infected grape leaves at 0 and 72 h post in-
fection, using three replicates per cultivar. The cDNA
libraries were sequenced on the Illumina X Ten high-
throughput sequencing platform, with pair-end reads of
150 bp.

Identification of gene loci and isoforms

Error correction of FLNC reads with the high quality
[lumina short reads was performed using Proovread
version 2.12 with the default parameters [30]. After cor-
rection, FLNC reads were aligned to the grapevine
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reference genome (http://www.genoscope.cns.fr/externe/
GenomeBrowser/Vitis/) using GAMP software [73]. Iso-
forms supported with at least two FLNC reads, or one
FLNC read with percentage-of-identity (PID) higher
than 99%, or all junction sites that were fully supported
by Illumina reads or annotations of the grape genome
were retained. Isoforms with overlap >20% (at least one
exon overlap >20%) were considered to be from the
same gene locus. New loci and isoforms were identified
as follows: 1) no overlap or the overlap region was less
than 20% when blast with the genome annotation; 2) the
overlap region was more than 20% but the isoform dir-
ection was opposite. Known gene novel isoforms were
determined as follows: 1) when compared with the gen-
ome annotation, one or more new splice sites were dis-
covered in the isoforms; 2) isoform in our study and the
annotated transcript of reference genome are not signal
exons gene at the same time.

Alternative splicing events

AS events were classified and characterized by compar-
ing different isoforms of the same gene locus using
Asprofile software [74] based on the full length isoforms
achieved by SMRT sequencing, the AS events in this
study were exon skipping and cassette exons (SKIP,
MSKIP), retention of single (IR) and multiple (MIR) in-
trons, alternative exon ends (5', 3', or both) (AE), ap-
proximate exon skipping (XSKIP) and cassette exons
(XMSKIP), approximate retention of single (XIR) and
multiple (XMIR) introns and approximate alternative
exon ends (XAE).

Fusion genes, Lnc RNA and alternative polyadenylation
(APA) prediction

Fusion genes were identified as follows: 1) the FLNC over-
lapped two or more gene loci of the reference genome
and the overlap region of each gene locus was less than
10 bp; 2) the distance of each gene loci was more than 50
kb in reference genome; 3) FLNC meet with global PID =
10% and local PID >90%; 4) each of the gene locus must
be supported with at least two Illumina reads. Lnc RNA
and APA prediction in this study were according to the
introduction [75, 76] by using CPATv1.2.2 and Tapis
software.

Gene function annotation

To understand gene functions, the data produced by
SMRT sequencing were annotated using Diamond soft-
ware against the NCBI NR, Swiss-Prot, and KOG data-
bases [77]. The alignments against the NR database were
used in Blast2GO (https://www.blast2go.com/) to obtain
GO annotations. The KEGG pathway assignments were
performed using KOBAS software [78].
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Differential gene expression analysis and qRT-PCR
validation

[llumina data were queried to the newly constructed
library (including known and novel isoforms) using
Bowtie software [34]. Gene expression levels were cal-
culated via FPKM using RSEM [35]. The DESeq pack-
age was used to identify DEGs with a threshold false
discovery rate (FDR)<0.05, and |log, fold-change
(FC)| > |1]| [35]. Gene ontology and KEGG pathways
enrichment analysis were performed using a hyper-
geometric test and Benjamini-Hochberg multiple test-
ing adjustment. The RNA extraction from each
cultivar at each infection stage was performed as de-
scribed above. The c¢DNAs were synthesized from
RNAs using the PrimeScript"RT Kit (TaKaRa Bio
Inc., Kusatsu, Japan; Cat. RR047A). A five-fold dilu-
tion of cDNA was used as the template. The reaction
solution contained SYBR® PremixExTaq™ II (Tli RNa-
seH Plus) (TaKaRa; Cat. RR820A) and the qRT-PCR
was conducted in an ABI QuantStudio 6 Flex System
(Applied Biosystems, Foster City, CA, USA). The rela-
tive expression levels of the selected genes, normal-
ized to grapevine fS-actin [79], were calculated using
the 24" method. All reactions were performed
using three biological replicates. The primers for the
validation of DEGs are listed in Additional file 14:
Table S4.
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