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Abstract

increased yield.

stature in B. napus.

Background: Plant height is one of the most important agronomic traits in many crops due to its influence on
lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop
improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with

Results: Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from
tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a
conventional line to develop a segregating F, population. Bulks were formed from plants with either dwarf or
conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap).
The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis
revealed that one SNP causing an amino acid change in the domain Il of Bna./AA7.CO5 may contribute to the dwarf
phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in
Bna.lAA7.CO5 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin
related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant.

Conclusion: Our studies characterize a new allele of Bna.lAA7.C05 responsible for the dwarf mutant generated from
tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant
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Background

Plant height is a key trait related to lodging resistance,
harvest index and fertilizer response [1]. Within import-
ant crops, such as wheat and rice, the green revolution
brought about significant increases in yield by combin-
ing the breeding of high yielding dwarf varieties with
agricultural mechanisation and fertilizer application [2].
Extreme dwarf varieties are usually correlated with poor
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agronomic performance and traits such as smaller
grains, excessive tillering, or narrow leaves [3, 4], there-
fore semi-dwarf varieties are used to enhance yield and
lodging resistance [5, 6].

Specific genes contributing to plant height are widely
used in crop improvement. In rice, the semi-dwarf gene
sd1, which regulates a key step in gibberellic acid (GA)
biosynthesis, has been used worldwide in rice production
[5]. The use of Rht (Reduced height) genes, involved in
GA signaling transduction, was instrumental in bringing
about the “green revolution” in wheat as well as other
crops [7]. Many phytohormones, including GA, brassi-
nosteriod (BR), strigolactone (SL), auxin, abscisic acid
(ABA) and ethelyne (ETH), have been reported to influ-
ence crop height [3, 8-12]. Additional dwarfing genes
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involved in other pathways have also been shown to de-
termine plant height [13]. The mechanisms underlying
this complex trait are still largely not understood.

B. napus (oilseed rape) is one of the most important
oilseed crops in China and the second most important
oilseed worldwide [14]. Plant height is a key agronomic
trait for rapeseed production as its heavy canopy makes
it prone to lodging. Dwarfing can increase both lodging
resistance and yield performance [15]. Within B. napus
several dwarf mutants have been identified and the
causal genes have been cloned. Dwarf gene BREIZH, de-
rived from oilseed rape through chemical mutagenesis,
was mapped by RAPD and RFLP markers [16, 17].
Dwarf gene Brrgal-d, encoding a DELLA protein, was
first identified in the diploid, Brassica rapa, before being
transferred to B. napus [18, 19]. Genetic analysis showed
that mutation of Brrgal-d alters GA signaling pathway
thus reducing plant height [20]. Semi-dwarf gene DS-1,
mapped to chromosome A06, also encodes a DELLA
protein. The single amino acid substitution of proline to
leucine in the VHYNP motif causes a gain-of-function
mutation in GA signaling [21]. Another semi-dwarfing
gene, ds-3, encoding a mutant DELLA protein, also has
the substitution of proline to leucine in the conserved
VHYNP motif [6]. The recessive dwarfing gene,
BnaC.dwf, was demonstrated to be insensitive to ex-
ogenous GA3 [22]. Dwarf mutant “NDF-1" in B. napus
was found to be controlled by one major gene with three
base pair mutations in the pyrimidine box of GIDI pro-
moter [23]. Another dwarf mutant with down-curved
leaf (Bndwf/dcll) was mapped to a 175kb region on B.
napus chromosome C05 [15].

Auxin regulates many aspects of plant development
[24]. Auxin signaling controlled by ARFs and Aux/IAA
has been well studied in Arabidopsis [25]. Under low
auxin concentration, Aux/IAA proteins interact and in-
hibit the activity of AUXIN RESPONSE FACTOR (ARFs),
thereby repressing the auxin response gene expression
[26]. At high intracellular auxin concentrations, auxin is
perceived by TIR1/AFB1-3 receptors and the Aux/IAA
proteins are then degraded by the ubiquitin-proteasome
pathway. This releases the repression of ARFs and auxin
response genes are activated [25]. Loss-of-function mu-
tants of any of the twelve Aux/IAA genes in Arabidopsis
do not show an obvious phenotype [26]. However, amino
acid mutation in the conserved motif of domain II in
Aux/IAA proteins causes dramatic gain-of-function phe-
notypes [27]. Gain-of-function mutants of 10 out of 29
Arabidopsis Aux/IAA, including iaal, 3, 6, 7, 12, 14, 17,
18, 19 and 28, have been reported [28—39]. All mutants
were caused by one amino acid substitution in the con-
served GWPPV motif of domain II. This leads to reduced
TIR binding, disrupting the degradation of Aux/IAA and
therefore increasing the suppression of ARFs [40, 41].
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In the present study, one dominant dwarf mutant was
identified during the genetic transformation in B. napus.
Transgenic element and expression results showed that
this effect was not due to T-DNA insertion and therefore
was most likely caused by somatic mutation generated
during tissue culture. Following the construction of a seg-
regating population, we performed MutMap to map the
candidate region to one 0.6 Mb interval on chromosome
BnaC05. Further, phenotype and correlation analysis of
this region was consistent with the region for a B. napus
dwarfism mutant reported recently [42, 43]. Eighteen
candidate genes in this region were found to contain non-
synonymous SNPs within coding regions. A single nucleo-
tide substitution (G to A) in the conserved domain II of
candidate gene Bna.IAA7.CO5 resulted in changing the
GWPPV motif to EWPPV. A C to T substitution in the
conserved domain II of BnalAA7 changing the GWPPV
motif to GWLPV has been shown to cause a dwarfism
phenotype recently [42, 43]. Thus, we speculated that an-
other allelic mutation in the conserved domain II of
Bna.IAA7.C0S leads to the dwarfism phenotype of G7. Ex-
ploitation of this dwarf mutant, with a compact plant stat-
ure and reduced plant height phenotype, will be valuable
to assist breeding lodging resistant varieties.

Results

Generation and phenotype of the G7 dwarf mutant

To determine the function of miR169d in B. napus, we
previously performed overexpression of miR169d in oil-
seed rape using the vector illustrated in Fig. 1la. We ob-
tained 14 transgenic plants after genetic transformation,
only one of which exhibited a dwarf phenotype with
down-curved leaves. Detection for NPT and NOS presence
within the vector (Fig. 1a) showed that the dwarf mutant
contained no transgenic element (Fig. 1b), indicating this
phenotype was not caused by overexpression of miR169d.
Stem-loop RT-qPCR to check expression level of miR169d
showed no significant increase in expression (Fig. 1c).
Therefore, we hypothesized that this mutant was gener-
ated during the tissue culture process.

This dwarf mutant displayed down-curved leaves and
reduced height compared to WT at seedling stage (Fig. 2a).
Following the floral transition, mutant plants exhibited a
compact and significantly dwarf plant stature (Fig. 2b).
Plant height of the dwarf mutant was significantly shorter
(~30cm) than WT (~ 150 cm) due to reduction of inter-
node length. The leaves of this dwarf mutant became
slightly crinkled and down-curved (Fig. 2c). Microscopy
revealed that the cell size in dwarf plant leaves (Fig. 2e)
was significantly decreased compared to WT (Fig. 2d).

Inheritance of the dwarf phenotype
The dwarf mutant, henceforth known as “G7”, and the WT
variety “48,557” were used to construct a segregating
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Fig. 1 a. Schematic representations of the key components of the
transformation vector. b. Transgenic elements kanamycin (NPTII) and
NosT could not be detected in dwarf mutants. P. positive transgenic
plant. M. marker. c. Expression level detection of miR169d by RT-
gPCR showed no difference between G7 dwarf mutants and WT

population. The resulting F; plants (48,557 x G7) exhibited
down-curved leaves and crinkled phenotype, indicating the
G7 mutation was controlled by a dominant gene. Mutant
G7 displayed curled and wavy leaves and the yield-related
traits were decreased compared with normal variety 48,557.
The F1 plants showed intermediate plant height between
two parents. Though the branch number and total silique
number was decreased, higher density of pod layer were ob-
served in the F1 plants. Plants from the F, population could
be divided into two distinct groups: WT (tall plants with
normal leaves) and those displaying the G7 phenotype
(dwarf plants with down-curved leaves). At seedling stage,
255 plants from the F, population contained 190 G7 plants
to 65 WT plants. A Chi-squared test revealed that this seg-
regation pattern agreed with the 3:1 Mendelian segregation
ratio (P=0.857>0.05 x> 005=00327<X> 005 =3.842).
Twenty-four G7 mutant plants from the F, population died
before flowering. Plant height of the remaining F, individ-
uals displayed a bimodal distribution (Fig. 3) again demon-
strating a 3:1 Mendelian segregation ratio (P =0.2443 >
0.05, X2 005 = 1.356 < X2 0.05 = 3.842). Therefore, we consid-
ered that the G7 dwarfism phenotype is likely controlled by
one single dominant gene.

Identification of candidate genomic region by MutMap
Genomic DNA of the two parents (G7 and 48,557) and
the two pools (dwarf-pool and WT-pool) was sequenced,
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resulting in 510,946,104, 523,601,254, 438,302,148 and
411,082,480 clean reads, respectively. After aligning
clean reads with the reference genome sequence, we ac-
quired 232,279,673 and 215,670,613 unique mapped
reads from dwarf-pool and WT-pool respectively, corre-
sponding to 53 and 52.46% coverage of the genome. Ul-
timately, 5,388,850 and 5,370,965 SNPs were identified
between the two DNA pools and the reference genome.
After calculating the SNP-index from the dwarf-pool
and WT-pool, the A SNP-index was plotted against the
A and C sub-genome positions (Fig. 4a). At 99% signifi-
cance level, one significant locus for dwarf phenotype on
chromosome CO05 (from 28.0-28.6 Mb) was identified
with a peak A SNP-index value (Fig. 4b).

Candidate gene identification by MutMap

Within the candidate region on BnaC05, SNPs resulting in
amino acid variation were identified within 18 candidate
genes (Additional file 1: Table S1). Putative gene function
prediction revealed none of the candidate genes had been
implicated in the control of plant architecture except
BnaC05¢29300D, a homolog of AtIAA7 in Arabidopsis.
The SNP in BnaC05¢29300D results in a glycine to glu-
tamic acid (G to E) amino acid substitution in
Bna.IAA7.CO5 (Fig. 5a) within conserved domain II result-
ing in the core sequence change from GWPPV to EWPPV.
Many auxin gain-of-function mutant alleles of aux/iaa
which exhibit morphological abnormalities, including de-
creased apical dominance, reduced plant height and severe
stunting, have been reported in Arabidopsis. Thus, this
gene is the most likely candidate gene for the G7 dwarf mu-
tation. Expression analysis showed that Bna.IAA7.COS5 gene
was constitutively expressed in leaf, flower, stem and pod
(Fig. 5b). No obvious difference of expression level was de-
tected between the mutant and wild type (Fig. 5b).

Dwarf phenotype co-segregates with the dCAPs marker
for SNP variation in Bna.lAA7.C05

The Bna.IAA7.C0O5 gene has been cloned from two dwarf
EMS mutants and the function confirmed by genetic
transformation [42, 43]. Sequence analysis showed that
the dwarf phenotype of both these mutants were due to
amino acid mutation in the GWPPV motif (GWPPV to
GWLPV) of Bna.IAA7, thus leading to the same dwarfism
phenotype. Based on the SNP within Bna.IAA7.C0S5, we
developed a dCAPs marker to classify the individual type
from F, population (Fig. 5c). This marker co-segregated
with plant height (Fig. 5d) and therefore is a suitable early
diagnostic tool for the G7 dwarf mutation.

RNA-seq analysis revealed enrichment of the auxin
signaling pathway in the G7 dwarf mutant

To further understand the regulatory mechanism, we
performed transcriptome analysis of the G7 dwarf and
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Fig. 3 Distribution of plant height in the F2 population derived from
the cross of G7 and 48,557 showing bimodal distribution. Arrow
indicated the plant height of F1 from dwarf mutant G7 and normal
plant 48,557 which was about 50 to 60 cm

WT plants. A total of 9516 differentially expressed genes
(DEGs) were found between G7 and 48,557 (Fig. 6a).
Within the biological process classification, auxin acti-
vated signaling pathway was detected to be overrepre-
sented (Fig. 6b). To investigate the potential role of DEGs,
we performed KEGG (Kyoto Encyclopedia of Genes and
Genomes) analysis. Five processes including cellular, me-
tabolism, genetic environment and organismal were found
to be enriched for DEGs (Fig. 6¢). We also found that the
signaling transduction pathway category was overrepre-
sented in environment processes (Fig. 6¢).

Auxin plays a major role in regulating numerous pro-
cesses for plant growth and development. Mutation of do-
main II of TAA proteins significantly suppressed auxin
induced expression of other IAA genes in Arabidopsis [41].
In the present study, we found that 12 IAA genes were
downregulated in the G7 dwarf mutant compared with
WT (Fig. 7a). The expression of small auxin up RNAs
(SAUR) was triggered by auxin. Overexpression of various
Arabidopsis SAURs leads to induction of cell elongation
and growth [44]. The expression level of many SAURs
genes was also suppressed in the dwarf mutant (Fig. 7b).
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Fig. 4 a. Plots showing the ASNP-index value (blue) and the average value of the ASNP-index for all SNP within a 4 Mb sliding window (red) for
all chromosome in the B. napus A sub-genome (upper panel) and C sub-genome (middle panel). Green and yellow lines indicates the 95% (P <
0.05) and 99% confidence level (P < 0.01). b. The candidate region on chromosome C05 showing a ASNP-index peak between 28,049,398

to 28,686,245 bp

Discussion MutMap can be used to easily screen and map genes
Many studies have been performed for plant height, but  to precise location by sequencing of DNA pools and has
the application of dwarfing genes is still rare. Newly been successfully used in many species, such as Arabi-
identified genes for dwarfism offered important sources  dopsis, rice, cucumber and oilseed rape [45, 52, 53]. In
of variation for breeding crops with lodging resistance the present study, one significant locus with a peak A
and compact plant architecture [45]. Dwarfism and com-  SNP-index value for the G7 dwarf phenotype on
pact mutants have also been shown to possess improved  chromosome CO05 (28.0-28.6 Mb) was identified by Mut-
response to fertilizer applications [1]. In the present Map (Fig. 4b). A new dwarf mutant Budwf/dcll from
study, one dwarf mutant was casually obtained in tissue =~ EMS-mutagenesis has been recently reported. Mutant
culture when we conducted miR169d overexpression  Bndwf/dcll displayed a sharply down-curved and crin-
transformation. Genetic variation can be induced by kled phenotype with short petioles at the seedling stage
chemical mutagens and physical treatment or tissue cul-  [15]. In the present study, we also observed the same
ture [46], therefore tissue culture alone or combined phenotype in the G7 mutant. Bndwf/dcll has been
with chemical and biological agents can be utilized to in-  mapped to a 6.58-cM interval on BnaCO05. Further map-
crease genetic variability and provide resources for new  ping narrowed the interval of Budwf/dcll to 175kb
commercial cultivar production [47, 48]. Within tissue  (C05: 29.76—-29.94 Mb) in length. This region is adjacent
culture itself, mutations can arise from calli, organ cul- to the peak of the ASNP-index value in our study. Puta-
tures, protoplasts and somatic embryogenesis [48]. Mu-  tive gene function prediction revealed that one of candi-
tants induced from somatic variation have been date genes, BnaC05¢29300D encoding IAA7, has been
successfully utilized to create potential new varieties in  reported to cause dwarfing and other plant architecture
potato, millet and other crops [49-51]. The dwarf mu-  variation in Arabidopsis. Meanwhile, fine mapping of two
tant generated from tissue culture in our study has the = EMS dwarf mutant also identified causal variation within
potential for breeding varieties with increased lodging Bna.JAA7.CO5 [42, 43]. Sequence analysis revealed that
resistance and improved fertilizer response. these two mutants both have a SNP variation causing an
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amino acid change in the conserved GWPPV motif
(GWPPV to GWLPV) of domain II in Bna.IAA7.C05. In
present study, the nucleotide variation in conserved motif
leads to change of GWPPV to EWPPV. One another EMS
mutant of JAA7 gene in B. napus A3 genome also has one
SNP in the conserved GWPPV domain (GWPPV to
EWLPYV) [54]. Thus, this is an allelic mutation in the con-
served GWPPV motif of IAA7 genes in B. napus that
caused dwarfism phenotype.

In Arabidopsis, the AUX/IAA family contains four con-
served domains and exhibit strong gene redundancy, with
even triple loss-of-function mutants showing no defects in
plant phenotype [26]. Conversely, AUX/IAA gain-of-
functional mutations reveal a dramatic change to develop-
ment as compared to WT. Many gain-of-function mutants
of Aux/IAA have been reported in Arabidopsis [39],
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including those caused by single amino acid substitutions
in the conserved GWPPV motif of domain II [55-57].
Gain-of-function mutation of JAA mutants in Arabidopsis
exhibit decreased apical dominance with shorter stems.
The dCAPs marker developed from the sequence vari-
ation in the GWPPV motif co-segregated with the dwarf
phenotype of G7. Thus, we hypothesize that the dwarf
phenotype with down-curved leaf of G7 is most likely to
be caused by the G to E amino acid substitution in the
GWPPV motif of Bna.IAA7.CO5.

In wild type plants, auxin will combine with TIR
(auxin-transport inhibitor response) when auxin concen-
tration is increased, causing Aux/IAA ubiquitination and
degradation. This releases ARFs and eventually their ex-
pression is promoted [24]. However, the amino acid
change in the GWPPV motif reduces the TIR binding
activity and the degradation of Aux/IAA is disrupted,
resulting in Aux/IAA protein accumulation and in-
creased repression of ARFs [40]. Small auxin up RNAs
(SAUR), are the largest gene family triggered by auxin
[58]. SAUR proteins are involved in cell expansion,
growth and development of plants [59-61]. In present
study, auxin-induced response genes, including many
SAURs, were suppressed in the dwarf mutant (Fig. 7b).
The low expression level of ARFs and other auxin re-
sponse genes eventually leads to auxin overproduction
and developmental defects.

Conclusions

In summary, a gain-of-function mutant with dwarfism
and down-curved leaf was isolated from tissue culture
processes. The candidate region for dwarfism was
mapped to a 0.6 Mb region of B. napus chromosome
C05 through the MutMap method. These results are
consistent with previous dwarf mutant mapping results
reported in B. napus. Further candidate genes analysis
revealed that one amino acid substitution from G to E in
in the conserved motif GWPPV of Bna.JAA7.COS might
also lead to dwarfism phenotype. This mutation of
Bna.IAA7.COS resulted in decreased expression of other
IAA and auxin response genes expression. Our findings
identified one new allele of Bna.JAA7.COS5 responsible
for plant dwarf phenotype and provide insights for un-
derstanding a dominant dwarfism mutant in B. napus.

Methods

Plant materials and phenotyping for plant height

The B. napus dwarf mutant was originally isolated from
tissue culture (Gansu Academy of Agricultural Sciences).
A cross was made between 48,557 (wild type, female
parent) and the G7 dwarf (pollen donor) to create F;
plants which were subsequently selfed to create a segre-
gating F, population. All plant materials were grown at
the field in Oil Crops Research Institute of the Chinese
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Academy of Agricultural Sciences (OCRI-CAAS), Wu-
han, China. Plant height was measured when plants
attained maximum height at the final flowering stage.
DNA samples from 50 of 277 F, plants with the dwarf
phenotype were mixed to form the dwarf bulk, and from
50 tall plants to form the tall bulk for MutMap analysis
as described by [52].

Microscopy analysis

Stem segment of Brassica napus at the early flowering
time stage was fixed by 50% FAA (Formalin—acetic
acid—alcohol) solution. Samples were then embedded in
Paraffin Plus after dehydration and infiltration steps. Tis-
sues were sliced into about 8 to 10 um (Leica RM2265)
and stained by 0.05% toluidine blue. Image was observed
under microscope (Nikon).

Generation and analysis of NGS data of MutMap analysis
DNA was extracted by DNA sample preparation Kits
(Tiangen, Beijing, China) according to the manufac-
turer’s instructions. The quantification and quality verifi-
cation was detected by Nanodrop one (Massachusetts,
America). About 2 pg genomic DNA from two DNA
bulks or two parents were prepared for sequencing li-
brary construction. Sequence data were generated by
[lumina HiSeq X ten (San Diego, California, USA) with
paired-end (PE150) and 350 bp of reads length. Sequence
quality and adaptor trimming was conducted by SOAP-
nuke 1.4 (BGI, Shenzhen, China) and analyzed by Bena-
gen company (Wuhan, China) for both DNA bulks and
parental lines. Raw reads including adapter sequences
and low-quality reads were removed after processed by
Trimmomatic software [45]. Then clean reads with high
quality were then aligned to the B. napus reference gen-
ome by the BWA (Burrows-Wheeler Aligner) software
[62-64]. BAM files were created from alignment file by
using SAMtools software [65].

MutMap analysis to determine candidate gene variation

SNP calling and SNP index was performed as previous
study reported [52]. After aligned GFF3 files to the B.
napus genome with ANNOVAR, homozygous SNPs be-
tween the dwarf mutant and the normal line were realized
from VCF files generated by Variant Filtration-GATK
software using defaulting settings [45, 66]. SNP index is
the ratio of reads with SNP (harboring nucleotide different
to reference genome) to the total reads contained the SNP
[52]. The A SNP-index was obtained by subtracting the
SNP-index between dwarf and normal DNA pools. Sliding
window method was conducted to detect the SNP-index
across the B. napus genome [45]. A SNP-index across the
chromosome of B. napus genome was performed by
sliding-window analysis with 1 Mb window size and 10 kb
step size [45]. Statistical confidence intervals of the ASNP
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index were defined at 95 and 99% following the descrip-
tion reported before [53, 67].

Expression analysis of dwarfing candidate genes by semi-
quantitative RT-PCR and RT-qPCR

To detect expression pattern of candidate gene, different
samples including stem, leaf and floral bud, were taken
from five individuals from dwarf mutant G7 and Westar.
RNA was extracted by RNAprep Pure kit (Tiangen,
China). After quality detection, reverse transcription was
conducted by using FastQuant RT kit according to the
instruction (Tiangen, China). Semi-quantitative RT-PCR
for gene Bna.IAA7.CO5 (BnaC05g29300D) was per-
formed for 32 cycles by using the primers (AHC5F and
AHCS5R) listed in Additional file 2: Table S2. BnaActin
gene (BnaC02g00690D) from B.napus was used as the
control for the RNA sample. The reaction of semi-
quantitative RT-PCR was performed for 32 cycles, with
30s at 95°C, 455 at 57°C and 50s at 72 °C. Stem-loop
RT-qPCR was used to examine miR169d expression
level according to previous method [68]. Stem-loop
qRT-PCR was performed in CFX96 Real Time System
(Bio-Rad, Hercules, California, USA) using SYBR Green
mix (Transgen Biotech, Beijing). The reactions were per-
formed as following program: 30s at 95 °C, 40 cycles of
5s at 95°C, and 30s at 60°C. Primers used for stem-
loop RT-qPCR were listed in Additional file 2: Table S2.

RNA-seq of differential gene expression

Seedlings of G7 dwarf and WT (Westar) were selected
to extract the RNA. Samples were collected and frozen
in liquid nitrogen and stored at — 70 °C for RNA prepar-
ation. Total RNA from bulked samples was extracted in
accordance with the manufacturer protocol (RNA-kit
Tiangen, China). The integrity of the total RNA was de-
tected by 1% agarose gel electrophoresis. All RNA sam-
ples were detected by Nanodrop 2000 to analyze A260/
A280 value for protein contamination and A230/A280
value for reagent contamination. The concentration was
detected by Nano-Drop (Thermo Scientific, La Jolla, CA,
USA) and purity of RNA was also checked by Agilent
2100 Bio-analyzer (Agilent-USA). 10 ul RNA sample was
used to construct the sequencing library according to
manual instruction. Sequence data was generated by
[lumina HiSeq X ten (San Diego, California, USA) with
paired-end (PE150) and 350 bp of reads length. Sequence
quality and adaptor trimming was conducted by SOAP-
nuke 1.4 (BGI, Shenzhen, China). Clean reads were
mapped to the reference genome of B. napus by BWA
software [62—64].

Transcriptome analysis was mostly conducted as the
description in the previous study [68]. False discovery
rate (FDR) cutoff of less than 0.01 was used to determine
the DEGs. The absolute value of log2 Ratio > 2 between
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different samples with FDR <0.001 were determined as
DEGs by using DEseq2 software [67]. All annotated
genes were mapped to the GO and KEGG database.
DEGs in the KEGG pathway were enriched by KOBAS
software [69]. GO annotation was performed by Blas-
t2GO software [70]. For each sample, three biological
replicates were conducted. The value of log2 trans-
formed FPKM value was used to create heat maps. Color
key from yellow to purple represented the expression
level with log2 transformed FPKM values. Negative and
positive values represented the low and high level, re-
spectively. For each gene, the log2 transformed FPKM
value was normalized in each row.

Statistical analysis

The analysis of RT-qPCR results was carried out by Stu-
dent’s t-test (P<0.05) or (P<0.01). The RT-qPCR was
performed for three biological repeats.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-019-2094-2.

Additional file 1: Table S1. Genes on the candidate region of
chromosome CO5 of Brassica napus.
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