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Abstract

Background: Buckwheat (Fagopyrum esculentum Moench.) is an annual crop that originated in southern China. The
nutritious seeds are used in cooking much like cereal grains. Buckwheat is an outcrossing species with
heteromorphic self-incompatibility due to its dimorphic (i.e., short- and long-styled) flowers and intra-morph
infertility. The floral morphology and intra-morph incompatibility are both determined by a single S locus. Plants
with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s)
at this locus, and the S/S genotype is not found. Recently, we built a draft genome assembly of buckwheat and
identified the 5.4-Mb-long S-allele region harbored by short-styled plants.
In this study, the first report on the genome-wide diversity of buckwheat, we used a genotyping-by-sequencing
(GBS) dataset to evaluate the genome-wide nucleotide diversity within cultivated buckwheat landraces worldwide.
We also investigated the utility of the S-allele region for phylogenetic analysis of buckwheat.

Results: Buckwheat showed high nucleotide diversity (0.0065), comparable to that of other outcrossing plants,
based on a genome-wide simple nucleotide polymorphism (SNP) analysis. Phylogenetic analyses based on genome-
wide SNPs showed that cultivated buckwheat comprises two groups, Asian and European, and revealed lower
nucleotide diversity in the European group (0.0055) and low differentiation between the Asian and European groups.
The nucleotide diversity (0.0039) estimated from SNPs in the S-allele region is lower than that in genome-wide SNPs.
Phylogenetic analysis based on this region detected three diverged groups, S-1, S-2, and S-3.

Conclusion: The SNPs detected using the GBS dataset were effective for elucidating the evolutionary history of
buckwheat, and led to the following conclusions: (1) the low nucleotide diversity of the entire genome in the
European group and low differentiation between the Asian and European groups suggested genetic bottlenecks
associated with dispersion from Asia to Europe, and/or recent intensified cultivation and selection in Europe; and
(2) the high diversification in the S-allele region was indicative of gene flows from wild to cultivated buckwheat,
suggesting that cultivated buckwheat may have multiple origins.

Keywords: Buckwheat, Crop evolution, GBS, Heteromorphic self-incompatibility

Background
Buckwheat (Fagopyrum esculentum Moench.; 2n = 2x = 16),
a member of the Polygonaceae family, is an annual
crop that originated in southern China [1, 2]. The
seeds (strictly achenes) are used as cereal grains in
the same way as rice (Oryza sativa) and wheat (Triti-
cum aestivum); because buckwheat does not belong
to the Poaceae family, it is often referred to as a
pseudo-cereal. Buckwheat has excellent cultivation
properties, with a short growing period and tolerance

of cool climate and high elevation. Buckwheat is
therefore widely cultivated in temperate zones
throughout Eurasia and is used in many traditional
foods, such as soba (Japanese noodles), memil guksu
(Korean noodles), pizzoccheri (Italian pasta), and
galettes (French pancakes). Buckwheat seeds are dense
in starch and high-quality protein with a
well-balanced amino acid composition [3] and are an
important source of dietary fiber, trace elements, and
phenolic compounds [4, 5]. Because of its high nutri-
ent content and lack of gluten, buckwheat is now
widely cultivated in regions beyond Eurasia, including
in the USA, Canada, Australia, and New Zealand.
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To identify agronomically useful genes, buckwheat
linkage maps have been constructed using various
molecular markers, including isozyme variations [6],
simple sequence repeats (SSRs) [7], and amplified
fragment-length polymorphisms (AFLPs) [8]. Recently, a
microarray marker system and a genome-wide linkage
map for common buckwheat were developed [9]. They
later confirmed that genomic selection using
genome-wide microarray markers was an effective ap-
proach for improving buckwheat yield [10]. In addition,
our research group constructed the Buckwheat Genome
DataBase (BGDB) [11]. Using BGDB, various agronomi-
cally useful genes, such as those controlling flavonoid
biosynthesis and encoding 2S albumin-type allergens
and granule-bound starch synthases (GBSSs), have been
identified [11–14]. Thus, the genetic tools for buckwheat
breeding are highly developed.
Evaluating genetic diversity is a crucial step for

exploring agronomically useful genes in crop species.
Buckwheat is an outcrossing species with heteromorphic
self-incompatibility (SI) due to its dimorphic flower
types (i.e., short- and long-styled flowers), each incom-
patible with flowers of the same morph, but compatible
across morphs [15, 16]. The floral morphology and
intra-morph incompatibility are both determined by a
single genetic locus, S. Plants with short-styled flowers
are heterozygous (S/s) and those with long-styled flowers
are homozygous recessive (s/s) at this locus [15, 17].
Thus, like other outcrossing crops such as maize (Zea
mays), buckwheat is expected to maintain substantial in-
traspecies diversity. Indeed, isozyme analysis indicates
that buckwheat has great genetic diversity, comparable
to that of outcrossing wild plant species [18]; the
heterozygosity of cultivated populations is higher than
that seen in wild populations of the ancestral species, F.
esculentum ssp. ancestrale, which is found in southern
China. Subsequent AFLP and SSR analyses suggested
that F. esculentum ssp. ancestrale is composed of two
distantly related phylogenetic groups, the Tibetan and
the Yunnan-Sichuan groups, and that cultivated buck-
wheat landraces belong to the Tibetan group [1, 19].
However, these analyses were based only on similarity of
DNA banding patterns, and the average number of nu-
cleotide differences per nucleotide site (i.e., the nucleo-
tide diversity) [20] was not estimated. To date, no
information on genome-wide nucleotide diversity within
F. esculentum is available. Thus, there is great interest in
investigating the nucleotide diversity of F. esculentum
using newer and superior genomic tools.
Recently, we built a draft genome assembly of

buckwheat and then applied genotyping-by-sequencing
technology (GBS) [21] to a group of buckwheat
landraces from around the world [11]. The GBS method,
which uses sequences of amplified genomic DNA

fragmented by restriction enzymes, has become increas-
ingly popular for detecting large numbers of SNPs [22].
We used the draft genome assembly as reference for
GBS markers, and successfully identified the S-allele re-
gion, which consisted of 332 scaffolds encompassing 5.4
Mbp [11]. The region contains sites at which GBS reads
were mapped in short-styled plants but not in
long-styled plants, and harbors two S-allele-specific
genes, S-ELF3 and SSG2, that exist only in the genomes
of short-styled plants. The genotypes of short-styled and
long-styled plants are thus hemizygous and null homo-
zygous, respectively [15]. This is similar to the situation
for human sex chromosome genes; the hemizygous state
of Y-chromosome genes has proved a useful feature for
clarifying human phylogenetic structure [23]. Thus, we
predicted that comparisons of DNA sequences in the
S-allele region would be a powerful tool for elucidating
phylogenetic relationships among buckwheat landraces.
In this study, we evaluated the genome-wide nucleo-

tide diversity within worldwide landraces of cultivated
buckwheat using the published GBS data. This is the
first report of genome-wide nucleotide diversity within
F. esculentum. We discuss the utility of the S-allele re-
gion for phylogenetic analysis of the buckwheat species,
and demonstrate possible gene flows from wild to culti-
vated buckwheat deduced from the diversified S-allele
region.

Results
Overall SNP detection and nucleotide diversity
We obtained an average of 7.2 million reads per plant
(corresponding to 726.1 Mbp). After filtering the sites
detected by GBS for 46 buckwheat plants, we retained
7,154,454 sites, corresponding to 0.61% of the reference
genome, for further analysis (Table 1). From the
7,154,454 sites, we detected 255,517 SNP sites,
representing a SNP density of 0.036 (one SNP per 28
bp). We compared the number of mapping sites, the
SNP density, and the nucleotide diversity between short-
and long-styled plants and found no significant
differences (Table 1).

Population structure and phylogenetic analysis
We calculated genetic distances among common buck-
wheat landraces and constructed a phylogenetic tree by
the NJ method using 7,154,454 sites including 255,517
SNP sites. The NJ tree showed that 46 cultivars were
largely divided into two groups, Asian (32 cultivars) and
European (14 cultivars) (Fig. 1). The phylogenetic
relationships among cultivated buckwheat were well
associated with geographic distribution; samples from
one country were phylogenetically closely related in the
NJ tree (e.g., I8601 and I 8605 for India, N8323 and
N8605 for Nepal, and T1F and X1F for Japan). The PCA
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plot also showed that 46 cultivars were largely divided
into two groups composed of Asian and European
cultivars, respectively (Fig. 2).
To clarify the population structure of buckwheat, we

subjected 255,517 SNPs segregated in 46 GBS to
ADMIXTURE analysis. Cross-validation error was
lowest at K = 1 and gradually increased as K increased
(Additional file 1: Figure S1). At K = 2, the cross-valida-
tion error was also low, indicating that the optimal
number of ancestral populations was K = 1 or K = 2.
Although the lowest cross-validation error was actu-
ally observed at K = 1, the NJ tree and PCA implied
that there were two groups (one including only Asian
landraces and the other only European landraces), in-
dicating that K = 2 is suitable for grouping the 46
common buckwheat landraces. We refer to the two
groups hereafter as the Asian and European groups.
To compare nucleotide diversity between the Asian

and European groups, we identified SNPs and calculated
the genome-wide mean nucleotide diversity of each
group (Table 1). The SNP density was much lower in
the European group (0.019) than in the Asian group
(0.034). Nucleotide diversity was also lower in the Euro-
pean (0.0055) than in the Asian (0.065) group. However,
even though the NJ tree and PCA plot indicated that
there were two groups, the Fst value between Asian and
European cultivars was not very high (Fst = 0.068).

Diversity of S-linked scaffolds
We previously identified the S-allele region, consisting
of 332 scaffolds encompassing 5,393,196 bp, to which
short-style-specific sites were mapped [11]. To analyze
the nucleotide diversity of this region, we identified
SNPs on these 332 scaffolds in 23 short-styled plants.
From the 60,108 sites (0.11% of the total length of the
332 scaffolds), we detected 1123 SNPs. The SNP density
(0.019) and genetic diversity (0.0039) in the S-allele scaf-
folds were lower than those in all genomic scaffolds
(Table 1).

To uncover the phylogenetic relationship among the
S-allele region obtained from 23 short-styled plants, we
constructed an NJ tree based on the S-allele region using
60,108 sites, including 1123 SNP sites. The NJ tree based
on the S-allele region showed that common buckwheat
plants of the short-styled phenotype (S/s genotype) were
largely divided into three groups, which we named S-1,
S-2, and S-3 (Fig. 3). The phylogenetic relationship iden-
tified on the basis of the S-linked scaffolds was identical
to that implied by analysis of S-ELF and SSG2 [15] but
different from that of the NJ tree based on genome-wide
SNPs (Fig. 1). The S-1, S-2, and S-3 phylogenetic groups
were composed of fifteen, five, and three cultivars,
respectively. These groups were also detected by the
PCA (Additional file 2: Figure S2). The nucleotide diver-
sity of the S-allele region (0.0039) was lower than that of
all scaffolds (Table 1). The average nucleotide distance
and Fst value between the phylogenetic groups in the
S-linked scaffolds were high (Table 2). In particular, S-3
was clearly more distantly related to S-1 and S-2 than
they were to each other.

Discussion
Genome-wide and S-allele-region-specific nucleotide
diversity in common buckwheat
In this study, we obtained 255,517 genome-wide SNPs
using the GBS method, which is capable of producing
larger numbers of genome-wide SNPs than had been
obtained in previous studies of this species. Further-
more, the published genome sequence [11] enabled us
to estimate the nucleotide diversity, which revealed that
the nucleotide diversity of common buckwheat (0.0065)
was comparable to that of other outcrossing plants, such
as maize (Zea mays, 0.0064) [24] and sunflower
(Helianthus annuus; 0.0056) [25], and higher than that
of selfing crops such as rice (Oryza sativa, 0.0024) [26]
and soybean (Glycine max; 0.0019) [27]. This higher
nucleotide diversity is likely due to buckwheat’s out-
crossing mating system and/or to gene flow from wild
buckwheat, F. esculentum ssp. ancestrale.

Table 1 Comparisons of nucleotide diversity

Categorya Scaffolds used as referenceb Number of samples Number of sites
retained after mapping

Number of SNPs SNP density Mean genetic
diversity (pi)

All All scaffolds 46 7,154,454 255,517 0.036 0.0065

Asian All scaffolds 32 7,191,709 244,709 0.034 0.0065

European All scaffolds 14 7,314,616 136,369 0.019 0.0055

Short-styled plant All scaffolds 23 6,986,824 208,928 0.030 0.0065

Long-styled plant All scaffolds 23 7,104,722 207,568 0.029 0.0064

Short-styled plant S-allelic scaffolds 23 60,108 1123 0.019 0.0039
aAll, containing all samples; Asian, containing samples from Asian countries; European, containing samples from European countries
bAll scaffolds, all 387,594 scaffolds in Fes_r1.0; S-linked scaffolds, 332 of S-linked scaffolds obtained by Yasui et al. (2016) [11]

Mizuno and Yasui BMC Plant Biology          (2019) 19:125 Page 3 of 9



The genetic basis of the heteromorphic SI system is
similar to that of sex chromosomes in the plant and ani-
mal kingdoms. There have been numerous reports on
the nucleotide diversities of sex chromosomes [28–31].
In humans, for example, the ratios of the nucleotide
diversities of the X and Y chromosomes to those of the
autosomal chromosomes are 0.62 and 0.20, respectively
[32]. The lower nucleotide diversities observed in sex
chromosomes are an expected result of the lower
effective population size: the effective population sizes of
the human X and Y chromosomes correspond to 3/4
and 1/4 that of autosomal chromosomes, respectively. In
this study, we confirmed that the nucleotide diversity of
the S-allele region is similarly lower than that of the gen-
ome as a whole: the ratio of the nucleotide diversity of
the S-allele region to that of the whole genome is 0.62.
That this number is much higher than the expected
value (0.25) is probably due to the low density of func-
tional genes in the S-allele region [11] and/or to recent
multiple gene flows, as discussed in the following sec-
tion. Much higher genetic diversity of S-allelic region
than expected also indicates that S-allelic region is not
under purifying selection.

Gene flow inferred from S-allele divergence
The phylogenetic relationships deduced from the 332
S-allele scaffolds (Fig. 3) were not congruent with those
based on genome-wide SNPs (Fig. 1): three widely
diverged phylogenetic groups, S-1, S-2, and S-3, were
detected in the data shown in Fig. 3 (from the S-allele
region) but not in Fig. 1 (from the whole genome). It is
noteworthy that the three phylogenetic groups of S-allele
regions are well diverged. In particular, S-3 is strongly
divergent from the other two groups: the nucleotide
diversity between S-3 and the other two groups is
around 0.006 (Table 2). Using a rough molecular clock
rate of 0.01 synonymous nucleotide substitutions per
million years (e.g., 0.011 for Gossypium species and
0.016 for Arachis species) [33, 34], this would indicate
that group S-3 diverged from the other groups 0.3
million years ago. The earliest plausibly identified
buckwheat archeological pollen specimen, found in
northern China, has been dated to 5000 to 6000 BP [35].
Thus, it is unlikely that mutations detected in S-alleles
derive from the origin of buckwheat cultivation. Consid-
ering the possibility of cross-compatibility resulting in

Fig. 1 Neighbor-joining (NJ) tree of 46 cultivars of common
buckwheat based on 7.15 Mbp including 255,517 SNPs. Red and
blue represent short- and long-styled plants, respectively. Numbers
above branches show bootstrap values based on 100 replicates
(those less than 80% are not shown) and red asterisks indicate
bootstrap values of 95% or over. The scale bar corresponds to 0.001
substitutions per nucleotide site
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fertile hybrids [36] and the overlap in habitats [19]
between cultivated and wild buckwheat, we concluded
that the diverged S-allele sequences were introgressed
from wild buckwheat, F. esculentum ssp. ancestrale, and
that the introgressions between wild and cultivated
buckwheat are also attributable to high genome-wide
diversity.

S-allele region as a phylogenetic tool for elucidating the
origin and diffusion of cultivated buckwheat
ADMIXTURE and phylogenetic analyses and PCA clas-
sified 46 buckwheat cultivars into two groups, the Asian
and European groups, with a low Fst value (Fst = 0.068).
The European group exhibited lower nucleotide diversity
than the Asian group (Table 1). From archeological
studies of the pollen and macrofossil (i.e., charred seeds)
records, it has been suggested that buckwheat was intro-
duced into Europe during the period 4000–2800 BP,
though it did not become a popular crop until the Late
Medieval period [37]. Both the lower nucleotide
diversity in the European group and the weak
differentiation between the Asian and European
groups are likely due to genetic bottlenecks associated
with dispersion from Asia to Europe, and/or the
recent intensified cultivation and selection. The low
genetic variation and loss of alleles detected by
isozyme analysis also support this hypothesis [38].

Y chromosomes, which retain sequential records of
the accumulation of nucleotide diversity, have been
used to detect ancestral haplotypes and to trace
human migrations [39]. Although genome-wide SNPs
have illuminated the population structure and popula-
tion differentiation of cultivated buckwheat, the SNPs
in S-linked scaffolds may shed light on different
aspects of the diffusion history of the species. In this
study, we detected three major S-allele groups, S-1,
S-2, and S-3 (Fig. 3). The phylogenetic relationship
implied by S-linked scaffolds suggested the introgres-
sions from wild relatives as discussed above. This is
due to the suppression of recombination in S-allelic
region like sex chromosomes. Thus, phylogenetic
analysis using S-allelic region is expected to offer
better understanding of the origin and global diffusion
of cultivated buckwheat.
In this study, we did not find type S-1 S-allele

sequences in the populations from Nepal and Bhutan.
Based on our identification of the three diverged S-allele
groups, the possibility that cultivated buckwheat had
multiple origins should also be considered. Considering
that remains of buckwheat seeds appeared in
west-central Nepal from 3000 BP [40], we should con-
sider the possibility that buckwheat was independently
domesticated around the Himalayan region, including
Nepal, Bhutan, and southwestern China. To elucidate

Fig. 2 Principal-component analysis (PCA) of 46 cultivars of common buckwheat based on GBS data mapped on all genome scaffolds. Graph of
the first two axes (x-axis for PC1 and y-axis for PC2) from PCA. The proportion of variance explained by each component is given in parentheses
along each axis. Red and blue represent short- and long-styled plants, respectively
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the origin and global diffusion history of cultivated buck-
wheat, we would need to expand our sample set to in-
clude many more samples of cultivated buckwheat from
around the world, as well as samples of wild buckwheat,
F. esculentum ssp. ancestrale, from China.

Conclusion
Based on genome-wide SNPs obtained using GBS
technology, we successfully estimated the nucleotide
diversity (0.0065) of buckwheat, which is comparable to
that of other outcrossing plants, such as maize and
sunflower. Phylogenetic analyses based on genome-wide
SNPs also showed that cultivated buckwheat is
composed of two groups, Asian and European. The low
nucleotide diversity of the European group and the low
differentiation between the Asian and European groups
are consistent with genetic bottlenecks associated with
dispersion from Asia to Europe, and/or the recent inten-
sified cultivation and selection of buckwheat in Europe.
These results based on genome-wide SNPs are congru-
ent with those of previous studies based on isozyme

Fig. 3 Neighbor-joining (NJ) tree based on GBS sequences (60.1 Kbp) mapped on 332 S-allelic scaffolds. All 23 samples are short-styled plants
harboring an S allele (genotype, S/s). Numbers above branches show bootstrap values based on 100 replicates (those less than 80% were not
shown). The scale bar corresponds to 0.001 substitutions per nucleotide site

Table 2 Pairwise comparisons of the average genetic distances
and Fst values between pairs of three phylogenetic groups

Gropupsa S-1 S-2 S-3

S-1 0.00047 0.00656

S-2 0.281 0.00669

S-3 0.640 0.625

Above diagonal, average genetic distance; below diagonal, Fst
aS-1, S-2, and S-3 are phylogenetic groups detected by NJ analysis (Fig. 3) and
PCA (Additional file 2: Figure S2)
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variation. The nucleotide diversity (0.0039) estimated
using SNPs in the S-allele region was lower than that es-
timated using genome-wide SNPs, reflecting the smaller
population size of the S-allele region as compared to the
genome as a whole. The data also indicated the likeli-
hood of gene flow from wild to cultivated buckwheat
and the possibility of multiple origins for cultivated
buckwheat. In conclusion, phylogenetic analysis using
the S-allele region can offer a better understanding of
the origin of cultivation and the global diffusion history
of cultivated buckwheat.

Methods
Genotype-by-sequencing data and SNP detection
We used published GBS reads obtained using EcoRI and
MseI restriction enzymes (DRA accession number
DRA004489, ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/
fastq/DRA004/DRA004489) [11]. The GBS dataset
represented 23 short-styled and 23 long-styled
buckwheat landraces originating from a wide range of
locations within Eurasia (Additional file 3: Table S1).
Low-quality reads and adaptors were trimmed using
Trimmomatic-0.36 [41] with the options SLIDINGWIN-
DOW:5:25 and MINLEN:40. The adaptor sequences
used were CACGACGCTCTTCCGATCT and ACCG
CTCTTCCGATCTGTAA. The trimmed paired-end (PE)
reads were mapped against the buckwheat reference se-
quence (FES_r1.0) using BWA 0.7.15 (Li and Durbin
2009) [42] with the -L 10 and -B 10 options. Single-end
reads were filtered from BAM files using samtools 1.3.1.
[43]. Variants were called by the samtools mpileup
function and bcftools implemented in samtools 1.3.1.
Sites with depths of less than 4 and more than 40 were
converted to missing data using VCFtools 0.1.13 [44].
Then, sites with proportions of missing data greater than
0.2 were filtered using VCFtools 0.1.13.

Construction of phylogenetic tree and structure analysis
ADMIXTURE v1.22 [45] was used to investigate the
population structure of the 46 common buckwheat
landraces. For each value of K, ten ADMIXTURE
analysis runs were performed with different random
seeds. The best run was selected according to the
highest value of log likelihood. A neighbor-joining
(NJ) tree [46] was constructed using SEQBOOT with
100 replicates, followed by the DNAdist (with the
Kimura two-parameter method), Neighbor, and Con-
sense programs from the PHYLIP package 3.6 [47].
The NJ tree was rooted using midpoint rooting and visual-
ized with FigTree 1.4.2 [48]. Principal-component analysis
(PCA) based on covariance was performed using Tassel
5.2.37 [49].

The nucleotide diversity and F-statistics
Sites with a proportion of missing data greater than 0.2
were filtered using VCFtools 0.1.13. Then, the nucleotide
diversity within species and each classification/group was
calculated using VCFtools 0.1.13. Weir and Cockerham’s
weighted F-statistics (Fst) [50] was calculated using
VCFtools 0.1.13.

Additional files

Additional file 1: Figure S1. Population structure of 46 accessions of
buckwheat. A) Cross-validation errors of ancestral population assignment
for different numbers of clusters by ADMIXTURE (K = 1–10). Mean
cross-validation errors by 10 ADMIXTURE runs are shown with standard
deviations. B) Population structure of 46 common buckwheat landraces
inferred by ADMIXTURE (K = 2). Ancestry proportions for individuals were
estimated using 255,517 SNPs. Color codes (cyan and magenta) of bars
indicate typical genotypes of the inferred subpopulations. Red- and
blue-colored accessions are short- and long-styled plants, respectively.
(PNG 620 kb)

Additional file 2: Figure S2. Principal-component analysis (PCA) of 23
short-styled plants based on GBS data mapped on 332 S-allelic scaffolds.
Graph of the first two axes (x-axis for PC1 and y-axis for PC2) from PCA is
shown. The proportion of variance explained by each component is
given in parentheses along each axis. (PNG 457 kb)

Additional file 3: Table S1. List of buckwheat landrcces used in this
study. (PDF 51 kb)
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