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Transcriptome reprogramming during
severe dehydration contributes to
physiological and metabolic changes in the
resurrection plant Haberlea rhodopensis
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Abstract

Background: Water shortage is a major factor that harms agriculture and ecosystems worldwide. Plants display
various levels of tolerance to water deficit, but only resurrection plants can survive full desiccation of their vegetative
tissues. Haberlea rhodopensis, an endemic plant of the Balkans, is one of the few resurrection plants found in Europe.
We performed transcriptomic analyses of this species under slight, severe and full dehydration and recovery to
investigate the dynamics of gene expression and associate them with existing physiological and metabolomics data.

Results: De novo assembly yielded a total of 142,479 unigenes with an average sequence length of 1034 nt. Among
them, 18,110 unigenes were differentially expressed. Hierarchical clustering of all differentially expressed genes resulted
in seven clusters of dynamic expression patterns. The most significant expression changes, involving more than 15,000
genes, started at severe dehydration (~ 20% relative water content) and were partially maintained at full desiccation

(< 10% relative water content). More than a hundred pathways were enriched and functionally organized in a GO/
pathway network at the severe dehydration stage. Transcriptomic changes in key pathways were analyzed
and discussed in relation to metabolic processes, signal transduction, quality control of protein and DNA
repair in this plant during dehydration and rehydration.

Conclusion: Reprograming of the transcriptome occurs during severe dehydration, resulting in a profound
alteration of metabolism toward alternative energy supply, hormone signal transduction, and prevention of
DNA/protein damage under very low cellular water content, underlying the observed physiological and
metabolic responses and the resurrection behavior of H. rhodopensis.

Keywords: Desiccation tolerance, Haberlea rhodopensis, Hormone signaling pathway, Primary and secondary
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Background

Environmental stress, especially drought, place limita-
tions on plant distribution and crop production world-
wide. Intensive breeding efforts, based on crosses with
wild drought-tolerant relatives as potential sources of
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useful traits, are underway. At the same time, interest in
a small group called resurrection plants is increasing, as
these plants can withstand long periods of almost full
desiccation and recover their vegetative system activities
quickly and fully upon rehydration. This makes them
useful models to study desiccation tolerance and poten-
tial sources of genes, related to these important phe-
nomena [1-4]. Further efforts are needed to elucidate
the mechanisms of desiccation tolerance in resurrection
plants as a sustained dynamic process.

The Balkan endemic Haberlea rhodopensis, one of the
few species of resurrection plants, native to Europe, has
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been the subject of intensive genetic studies in recent
years [5-7]. Transcriptomic analysis of H. rhodopensis
gene expression under conditions of normal watering,
dehydration (50% relative water content; RWC), full des-
iccation (5% RWC) and rehydration has been performed
previously [5]. We have shown that the dynamics of des-
iccation tolerance can be characterized by numerous
changes in various processes at additional important time
points during drying: the stages of slight (~ 65-75%) and
severe (20-25% RWC) dehydration [8]. For example, at
the onset of drying (at 75% RWC), an approximately
25-fold increase in jasmonic acid (JA) [9] occurs, coincid-
ing with the start of the decrease in photosynthetic per-
formance [10]. On the other hand, oxygen evolution in
leaves of H. rhodopensis did not decrease until 20% RWC
[8]. Our studies revealed that the levels of numerous
compounds changed dramatically during desiccation, par-
ticularly before or around the severe dehydration stage
(25% RWC), including total phenols, sugars, total glutathi-
one, malondialdehyde, sucrose/fructose ratio, abscisic acid
(ABA), salicylic acid (SA) and starch levels [9, 11, 12]. Dra-
matic changes in photosynthetic performance and energy
supply, such as ATP and glycolytic intermediates, were
also observed at this stage of dehydration [9-12]. This
time point appears to be of crucial importance, as
non-resurrection plants related to H. rhodopensis tolerated
the loss of almost two-thirds of their water content,
whereas further drying to 20% RWC was irreversible [11].

In an attempt to dissect the dynamic transcriptional
regulation events preceding the dramatic physiological
and metabolic changes that occur during desiccation in
H. rhodopensis, we performed de novo transcriptome
sequencing at new time points during drying from the
fully hydrated to desiccated state: slight and severe dehy-
dration stages.

Results

Transcriptome sequencing and assembly

Transcriptomic analysis of gene expression in plants that
were regularly watered (fresh control, F), slightly dehy-
drated to 75% RWC (D75), severely dehydrated to 20%
RWC (D20), fully dehydrated to < 10% RWC (DT) and fully
rehydrated after DT (R) was performed using Ilumina
next-generation sequencing technology. De novo assembly
yielded a total of 142,479 unigenes, with an average se-
quence length of 1034 nt and an N50 value of 1664 nt
(Additional file 1: Table S1). Approximately 75% of all uni-
genes were novel to H. rhodopensis. The sequence length
distribution of the unigenes is indicated in Additional file 2:
Fig. Sla. The numbers of unigenes annotated using several
databases, NCBI non-redundant protein sequences, NCBI
nucleotide collection, Swiss-Prot, Kyoto Encyclopedia of
Genes and Genomes (KEGG), the Clusters of Orthologous
Group (COG) and Gene Ontology (GO), ranged from
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91,753 to 51,046. Among the matching sequences, 61%
showed the closest match to sequences of Sesamum indi-
cum, a species belonging to the family Pedaliaceae, order
Scrophulariales (Additional file 2: Fig. S1b) [13]. There were
46,922 transcripts with no sequence similarity to known
genes (orphan genes).

Analysis of differentially expressed genes (DEGs)
Differential gene expression analysis was performed to
monitor transcriptomic variations in the plant under five
dehydration treatments. From the 10 libraries, 41,279,554
to 55,613,670 clean sequence reads were obtained after
trimming (Additional file 3: Table S2), which were suffi-
cient for quantitative analysis of gene expression. Based
on the fragments per kilobase of transcript per million
mapped reads (FPKM) of the unigenes in each sample,
18,110 unigenes were identified as DEGs, of which
approximately 40% (6877) were novel.

Higher numbers of DEGs were observed in the com-
parisons of D20 with F (7,675 up and 8894 down), D75
(3.712 up and 4.120 down) or R (8,496 up and 6958
down) and in the comparisons of DT with F (4,527 up
and 5998 down) or R (5,517 up and 3477 down). The
lowest number of DEGs was found in the comparison of
F with R (514 up and 290 down) (Fig. 1a). Among these
DEGs, the highest levels of transcripts encoding LEA (late
embryogenesis abundant) proteins, early light-inducible
proteins, galactinol synthases, beta-amylases, sucrose
synthases, senescence-associated proteins and raffinose
synthases were seen at D20, whereas catalases were in-
duced after slight dehydration (Additional file 4: Table S3).

A Venn diagram of the DEGs illustrates their occur-
rence in each dehydration treatment (Fig. 1b). The lar-
gest number of unique genes was found in the D20
(7065), followed by DT (1210), R (129) and D75 (153)
treatments, whereas only 119 genes were present in all
dehydration treatments. More than 80% of novel DEGs
were either unique to D20 or shared by D20 and DT
(Additional file 2: Fig. S1c). Based on their FPKM values,
a random selection of 20 genes encoding enzymes, tran-
scription factors and regulators involved in metabolism
and stress responses were subjected to quantitative
real-time PCR (qPCR) analysis to validate the DEGs
identified by RNA-seq. The expression levels of these
genes were significantly correlated with those deter-
mined by qPCR (r=0.99, p < 0.01) (Additional file 5: Fig.
S2a, Additional file 6: Table S4).

Principal component analysis of transcript profiling of
dehydrated and rehydrated plants

Principal component analysis was performed to capture
the overall variance among samples. Samples in each
treatment generated a cluster pattern according to water
status (Fig. 2). The F, D75 and R samples were separated
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Fig. 1 Differentially expressed genes (DEGs) in Haberlea rhodopensis in response to dehydration and rehydration. a The number of genes differentially
expressed between two treatments according to a fold expression cutoff of 2 and an FDR < 0.001. b Venn diagram illustrating the relationships among
DEGs across the different treatments. F, Fresh control; D75, slightly dehydrated to 75% relative water content (RWC); D20, severely dehydrated to 20%

RWG; DT, fully dehydrated to < 10% RWG; R, fully rehydrated after DT

from the D20 and DT samples in principle component 1
(62.7%), whereas D75 was separated from F and R, and
D20 from DT, in principle component 2 (11.7%).

Clustering of DEGs by expression profiles and their

correlations with physiological changes during dehydration
The hierarchical clustering of all DEGs in the five treat-
ments showed significant differences in gene expression
profiles. Therefore, we defined seven clusters of DEGs,
along with a representative curve describing each tran-
script accumulation pattern (Fig. 3a, b). Transcripts
peaking at the DT, D20 and D75 stages were represented
as Clusters 1, 2 and 7, respectively, whereas transcripts
repressed during dehydration (D75, D20 and DT) were
found in Clusters 3, 4, 5 and 6. Interestingly, most
dehydration-repressed transcripts reached their lowest
levels at the D20 stage, regardless of whether they

returned to control levels after rehydration (Cluster 5),
or were transiently up-regulated at certain stages, such
as D75 (Cluster 4), DT (Cluster 3) and R (Cluster 6).

The GO term enrichment of each cluster indicates that
both metabolic processes (catabolism and biosynthesis) and
developmental growth were repressed upon slight dehydra-
tion (Cluster 3), whereas responses to stimuli and redox pro-
cesses/homeostasis were actively maintained until the water
content decreased to 20% (Clusters 2, 4 and 5) (Fig. 3c). On
the other hand, the transcripts activated at D75 (Cluster 7,
translation and gene expression related) differed markedly
from those activated at D20 and DT (Clusters 2 and 1, cata-
bolic process, response to stimulus, redox process/homeo-
stasis, localization, and regulation of seed germination).

To understand the significance of these gene expres-
sion clusters and to test the robustness of our cluster
analysis, the first principle component from each stage
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Haberlea rhodopensis plants. Principal component (PC) 1 accounted for 62.7% of the variation, whereas PC2 accounted for 11.7% of the variation
in the dataset. Plant samples are represented as different colored circles with sample abbreviations and photos. The clustering of dehydrated
samples formed a resurrection cycle, indicated by the arrows. Sample abbreviations are the same as in Fig. 1
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was subjected to correlation analysis with four previ-
ously published physiological parameters [14]. We found
that the decreases in net CO, assimilation, stomatal con-
ductance, transpiration and Fv/Fm during dehydration
showed negative correlations with Clusters 1 and 2 and
positive correlations with Clusters 5 and 6 (Fig. 3d).

GO and KEGG enrichment of DEGs in dehydrated plants

We performed KEGG analysis using the unigenes from
each stage and observed the most significant enrichments
in plant hormone signal transduction, spliceosome, starch
and sucrose metabolism, and ubiquitin-mediated proteoly-
sis pathways (Fig. 4a). Further GO and KEGG enrichment
analyses were performed using the up- or down-regulated
transcripts from each stage (Additional file 7: Table S5,
Additional file 5: Fig. S2b). The GO terms electron trans-
porter, chaperone binding, and iron-sulfur cluster binding
were enriched among the transcripts induced by the D75,
D20 and DT treatments, respectively, whereas develop-
mental processes were enriched among the repressed
transcripts during all dehydration stages (Additional file 7:
Table S5). Metabolic pathways were also enriched among
the transcripts that were repressed at all dehydration
stages (Additional file 5: Fig. S2b). Interestingly, photosyn-
thesis was enriched among not only the D20- and
DT-repressed genes but also the D75-induced genes; plant
hormone signal transduction was enriched among not
only the transcripts that were decreased in all dehydrated
samples but also in D20-induced transcripts. In addition,
ubiquitin-mediated proteolysis, regulation of autophagy

and protein processing in the endoplasmic reticulum (ER)
were enriched among the transcripts induced by both D20
and DT. Notably, a large number of D20-specific DEGs
associated with these pathways was not found in moder-
ately dehydrated plants [5] (Additional file 2: Fig. S1d).
This result prompted us to speculate that D20 (severe de-
hydration) is a crucial stage in transcriptional regulation
of desiccation tolerance in H. rhodopensis.

Finally, we used these changes to construct a function-
ally organized GO/pathway term network based on the
connectivity among GO terms (Fig. 4b, Additional file 8:
Table S6). Numerous changes in this network were ana-
lyzed further, including primary and secondary metabol-
ism, photosynthesis, hormone signal transduction,
protein quality control and DNA repair.

DEGs related to energy and primary and secondary
metabolism

The expression patterns of photosynthesis-related genes
generally were in agreement with the inhibition of
photosynthesis observed during D20 and DT, including
genes encoding the subunits of photosystem I (PSI) and
photosystem II (PSII), light-harvesting complexes II and
I, cytochrome b6/f complex and electron transport.
Approximately a quarter of these transcripts, including
NADPH-quinone oxidoreductase subunits and ATP syn-
thase, were up-regulated only during the early stage of
dehydration (D75). However, a few transcripts encoding
ferredoxin 3 (FDX3) and subunits of the PSI and PSII re-
action centers (psaA and psbC) maintained elevated
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expression levels throughout the dehydration process
(Additional file 9: Fig. S3).

The expression of genes related to metabolism was ana-
lyzed and closely compared with our previous metabolo-
mics data [10-12]. A map was constructed of the
D20-enriched KEGG pathways related to primary and sec-
ondary metabolism and the corresponding edges (signifi-
cant co-expression relationship between two genes)
(Additional file 10: Fig. S4). We found that the expression
of phospholipase D (PLD), glycerol-3-phosphate dehydro-
genase [NAD(+)], and manganese-dependent ADP-ribose/
CDP-alcohol diphosphatase in the glycerophospholipid
metabolic pathway was increased during desiccation. Two
key enzymes involved in fatty acid degradation,
2-methylacyl-CoA dehydrogenase (MBCD) and acyl-CoA
oxidase 2 (ACOX2), and enzymes involved in lipid
degradation were also up-regulated. Branched-chain
amino acid aminotransferase 3 (BCAL3) and hydroxy-
methylglutaryl-CoA lyase, involved in the valine, leucine
and isoleucine degradation pathways, citrate synthase
(CYSZ) involved in the citric acid (TCA) cycle, and
enzymes involved in glycolysis/gluconeogenesis, such as
triosephosphate isomerase (TPIC), phosphoglycerate kin-
ase (PGKH) and hexokinase-1 (HXK1), were up-regulated,
with the exception of the non-key enzyme pyrophospha-
te-fructose 6-phosphate 1-phosphotransferase subunit
beta. Enzymes involved in sucrose synthesis, such as acid
beta-fructofuranosidase and sucrose-phosphate synthase
(SPSA1), were increased during dehydration, whereas

sucrose synthase (SUS2) was elevated only in the D20 and
DT treatments (Fig. 5a).

With respect to secondary metabolism, flavonoid
3’-monooxygenase (F3’H) and SRG1, which are involved
in the accumulation of flavonoids, and flavanone 7-O-glu-
coside 2”-O-beta-L-rhamnosyltransferase (I7GT1), from
the phenylpropanoid metabolism pathway, were
up-regulated during dehydration. Two enzymes from the
glutathione cycle, glutathione reductase (GSHRC) and
phospholipid  hydroperoxide glutathione peroxidase
(GPX4), were also increased during desiccation (Fig. 5b).

Positive or negative correlations were found between
the expression levels of most genes and the previously
measured accumulation of their corresponding metabo-
lites, depending on the reaction type (catabolic or ana-
bolic) (Fig. 5¢). For example, the levels of L-valine and
leucine were negatively correlated with the expression of
BCAL3, which plays a role in the catabolism of these
amino acids, whereas SUS2 expression was correlated
positively with sucrose content but negatively with
UDP-glucose (Fig. 5c¢).

DEGs involved in plant hormone signaling pathways

Transcripts encoding PYR/PYL/RCAR-type ABA recep-
tors (PYL1 and PYL4), which are key factors (ABF2,
ABF3, DPBF3/AREB3, GBF4 and AIB) in the ABA sig-
naling pathway, and NPR1, a key factor in the SA signal-
ing pathway, were highly induced during the D20 and
DT stages (Fig. 6). Brassinosteroid (BR) receptors (BRL1
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Fig. 5 Expression heatmap of representative genes in the primary and secondary metabolism networks. Several KEGG pathways related to primary

metabolism, including glycerophospholipid metabolism, starch and sucrose metabolism, valine, leucine and isoleucine degradation, fatty acid degradation,
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The numbers indicate Pearson correlation coefficients, calculated using Cytoscape

and BRL3) and BZR1 (BEH4), key factors in the BR sig-
naling pathway, a JA receptor (COI1), an ethylene recep-
tor (EIN4) and key regulators (CTR1, EDR1, EIN3 and
EIL1/EIN3-like) in the ethylene signaling pathway, a gib-
berellic acid (GA) receptor (GID1B), an auxin receptor
(TIR1), IAA-acyl acid-amido synthetases (GH3.3 and
GH3.6), and negative regulators (IAA27, IAA9 and
IAA13) in the auxin signaling pathway were all induced
during dehydration. In contrast, positive regulators of
the cytokinin signaling pathway AHP1 and AHP4 were
up-regulated only slightly during the early stage of
dehydration.

DEGs related to protein quality control and DNA repair

Protein processing in the ER and ubiquitin-mediated
proteolysis are both involved in protein-quality control.
Among the related DEGs, most small heat shock pro-
teins and HSP/HSC70s were most strongly up-regulated
in the D20 treatment, whereas stromal HSP70c in

chloroplasts was reduced in D20 and DT after transi-
ently increasing in D75 (Fig. 7a). ER lumen protein-re-
taining receptor 2 (ERD2) and ER oxidoreductin-1
(ERO1) showed prominent up-regulation in the D20 and
DT stages. The E3 ubiquitin-protein ligases, including
the C terminus of HSC70-interacting protein, Rab inter-
actor 2, RING membrane-anchor 1 homolog 1, and
RING membrane-anchor 2 and 3, showed overall
up-regulation from D75 onward, reaching the highest
levels in D20 or DT.

Base excision repair (BER), nucleotide excision repair
(NER) and mismatch repair (MMR) are the three main
pathways involved in DNA repair. The majority of tran-
scripts encoding proteins that participate in NER, in-
cluding DNA damage binding proteins 1 and 2 (DDB1/
DDB2), decrease in DNA methylation (DDM1), replica-
tion protein A 1 and 2 (RPA1/RPA2), and DNA repair
helicase (XPB1) showed prominent patterns of
up-regulation in D20 and DT (Fig. 7b). In contrast, most
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transcripts involved in BER and MMR were
down-regulated during dehydration (Fig. 7b).

Discussion

Most plants are not of the resurrecting type and there-
fore can tolerate water loss down to approximately 30%
RWC only for relatively short periods [11, 15]. Below
this water content, they are unable to recover even if
water becomes available again; in other words, this level
is the “point of no return” for most plants. Our previous
physiological and metabolic studies described numerous
changes that occurred in H. rhodopensis during severe
dehydration [10, 12]. One of the aims of our present
study was to understand whether and when (in terms of
before or around this stage of dehydration) alterations
occur at the transcriptome level in association with re-
spective physiological changes.

It was previously shown that signaling and transcrip-
tional changes induced by dehydration in H. rhodopensis
regulate growth and photosynthesis (protein kinases and
early light-inducible proteins), sugar metabolism

(sucrose and raffinose synthase) and activation of diverse
protectants (catalases, LEA and HSPs) [5]. Our de novo
analysis not only supported these results but also identi-
fied novel genes that extend our understanding of the
roles that cyclic electron flow (CEF), carbon turnover,
phenylpropanoids, stress hormone signal transduction,
protein quality control and DNA repair play in desicca-
tion tolerance. The additional dehydration time points
used here allowed us to outline the dynamic transcrip-
tomic regulation during the dehydration and rehydration
processes. The largest numbers of both up- and
down-regulated DEGs were observed at this stage
(Fig. 1). Most dehydration-repressed transcripts
reached their lowest level at D20, regardless of
whether these genes were transiently up-regulated
during certain stages of dehydration or upon recovery
(Fig. 3). A significant portion of the D20 up-regulated
DEGs were annotated in the same biological processes
and KEGG pathways as those up-regulated in DT, but
did not always match those up-regulated in D75, as a
large proportion of the DEGs showed opposing up-
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and down-regulation when the expression patterns of
D75 and D20 were compared (Fig. 3). These data
clearly indicate that desiccation tolerance mechanisms
undergo reprogramming at the transcriptome level at
the D20 stage. This finding extends the present un-
derstanding of desiccation tolerance mechanisms in
H. rhodopensis.

Energy and primary and secondary metabolic processes
Over-reduction of the electron transport chain and car-
bon starvation are among the main negative impacts of
drought stress that result in reduced carbon fixation.
Approximately 40% of the novel unigenes reported here
are related to metabolic pathways and photosynthesis
(Additional file 2: Fig. S1d). This large proportion
allowed us to investigate the correlations of our tran-
scriptomic data with physiological and metabolomic data
(Fig. 3d; 5¢). In this analysis, we identified changes in
the photosynthetic apparatus and the mobilization of
free and lipid-derived fatty acids and branched amino
acids to ensure the availability of energy and alternative
carbon sources to allow accumulation of osmoprotec-
tants and antioxidants during desiccation. Many of these
changes are similar to those that have been observed in
plant seeds or during carbon starvation in
non-resurrection plants [10, 16—-22].

Resurrection plants can reduce linear electron trans-
port flux through reorganization of the photosynthetic
apparatus, thus preventing oxidative stress [10, 23]. A

dehydration-triggered decrease in PSII performance was
accompanied by reduced expression of associated genes,
which belonged mostly to clusters 4, 5 and 6 (Fig. 3d),
including chlorophyll a/b-binding protein and the
light-harvesting complex Lhcbl, as reported previously
[5]. In addition, the decrease in transcription of the
PSI-K subunit of PSI (Additional file 9: Fig. S3) is dir-
ectly responsible for the altered distribution of excitation
energy and uncoupling between the photosystems [24],
possibly explaining the observed decrease in electron
flow between PSI and PSII [10, 25]. On the other hand,
our present transcriptomic evidences indicating main-
tenance of CEF during dehydration corroborated the re-
sults of our previous study [10]. The up-regulation of
ferredoxin and NADPH-quinone oxidoreductase sub-
units not only suggests the presence of the chloroplastic
NAD(P)H dehydrogenase complex in H. rhodopensis but
also highlights its role in desiccation tolerance as a com-
ponent of CEF [26, 27].

The process of lipid turnover is very important in
both tolerant and sensitive plants under drought
stress. The up-regulated expression of PLD during
dehydration (Fig. 5a) is likely to correspond with in-
creased glycerophosphorylethanolamine (GPE) and
glycerophosphorylcholine (GPC) and decreased phos-
phatidylethanolamine levels, reported in our previous
study [10]. PLD activity induction by dehydration has
been reported in the resurrection plant Craterostigma
plantagineum [28], as well as in the drought-tolerant



Liu et al. BMC Plant Biology (2018) 18:351

Arabidopsis ecotype Columbia [29]. A drastic decrease
in lipid levels, especially membrane lipids such as
phosphatidylethanolamine, has been observed in
Ramonda serbica, a close relative of H. rhodopensis
[25] and in the African resurrection plant Sporobolus
stapfianus [26]. Thus, the reported correlation be-
tween PLD and related metabolites [10] (Fig. 5c),
combined with the increased levels of malondialde-
hyde [5, 11, 30], strongly confirm the occurrence of
lipid degradation in H. rhodopensis under stress. In
comparison with the massive degradation of mem-
branes in desiccation-sensitive species [31], these pro-
cesses are quite limited in resurrection plants. Here,
the turnover of damaged lipids may have a protective
role, ensuring the accumulation of osmoprotectants
such as GPC [32], signaling molecules and carbon
precursors needed for biosynthetic processes during
drought stress [10, 19, 33]. The up-regulation of the
main enzymes responsible for fatty-acid degradation,
MBCD and ACOX2 (Fig. 5a), supports the decreased free
fatty acid content found during desiccation (Fig. 5¢) [12].

Degradation of branched-chain amino acids provides
an alternative carbon source in plants under unfavor-
able conditions [17, 21]. The up-regulation of BCAL3
and HMGL, which are involved in the degradation of
valine, leucine and isoleucine (Fig. 5a), may explain
the decreasing levels of these amino acids during de-
hydration (Fig. 5¢) [10, 12].

Increased expression of CYSZ, TPIC, PGKH, HXKl,
SUS2 and SPSA1I (Fig. 5a), which are related to the citric
acid cycle, glycolysis/gluconeogenesis and sucrose bio-
synthesis, is in agreement with previous reports of in-
creased metabolite levels during these biological
processes and massive accumulation of sucrose during
dehydration (Fig. 5¢) [5, 10, 12].

We also found significantly elevated expression of genes
involved in the synthesis of phenylpropanoids and flavo-
noids (Fig. 5b). I7GT1 encodes a UDP-glycosyltransferase, a
type of enzyme that is related to the accumulation of
p-coumaryl alcohol 4-O-glucoside, coniferin, syringin, and
coniferyl and sinapyl alcohol 4-O-glucoside via glucosyla-
tion of soluble intermediates in Arabidopsis [34]. The
up-regulation of F3’H and SRG1 during dehydration (Fig.
5b) is correlated directly with the accumulation of flavo-
noids, including quercetin, aromadendrin, taxifolin, ephe-
drine, leucocyanidin, cyanidin, cis-3,4-leucopelargonidin
and pelargonidin [35, 36]. These phenylpropanoids and fla-
vonoids are common plant secondary metabolites that
function both as structural and signaling molecules [36].

Glutathione is involved in plant desiccation tolerance
as an antioxidant [11, 37, 38]. DEGs related to glutathi-
one metabolism have been reported previously in H. rho-
dopensis [5] and another resurrection plant species from
the same family Gesneriaceae, Boea hygrometrica [3].
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Over-expression of two transcripts in this study (Fig.
5b), GPX4 and GSHRC, accorded with these data and
strongly confirmed the importance of glutathione as a
major factor in desiccation tolerance.

Plant hormone signal transduction

The plant hormone signaling network plays an integral
role in the perception of and response to unfavorable
environments. Previously, transient induction of JA and
ABA has been reported, reaching their highest levels at
approximately 55 and 25% RWC, respectively, in the
dehydrated leaves of H. rhodopensis, whereas SA accu-
mulates to its highest level at 25% RWC and is main-
tained during full dehydration [9]. The increased
expression of biosynthesis- and signaling-related genes
for these stress hormones contributes to plant drought
tolerance by inducing biosynthesis of defense proteins
and protective secondary metabolites. In this study, we
found that the JA receptor COI1 was induced during de-
hydration (Fig. 6), but that the transcriptional activator
of the JA signaling pathway, JAR1, was significantly re-
pressed at the D20 and DT stages, indicating conversion
of the JA signaling pathway under continuous stress, in
accordance with the reported pattern of JA dynamics
[9]. In contrast, at the transcriptional level, ABA and SA
signaling transduction is activated at D20 and DT
through the induction of key transcription factors such
as ABFs, GBFs and AIB factors, and NPRI, thus con-
firming the roles of ABA and SA as stress signaling mol-
ecules and that of SA in the antioxidant response of the
plant to dehydration [12].

Dynamic changes of ethylene in desiccation tolerance
have not been reported; however, 1-aminocyclopropa-
ne-1-carboxylic acid oxidase transcripts have been
shown to accumulate during dehydration [39]. In this
study, the increased transcription of ethylene receptors
(ETR1, ETR2 and EIN4) and the key transcription factor
EIN3/EIL1 during the early stage of dehydration sug-
gests a possible role of ethylene in the early response to
dehydration, which is followed by repression of signal
transduction in H. rhodopensis, as indicated by
up-regulation of the key negative regulator CTR1 at the
D20 and DT stages. Ethylene negatively regulates cell
proliferation at the root apical meristem [40]. Thus, the
transient increase of ethylene biosynthesis- and
signaling-related genes in H. rhodopensis may contribute
to the rapid inhibition of cell expansion during
dehydration.

Crosstalk among SA, JA and ethylene-dependent sig-
naling pathways regulates plant responses to abiotic and
biotic stresses, which are frequently associated with
hypersensitive response (HR)-like cell death [41-43].
The final response depends on the extent of crosstalk
among these molecules. Inhibition of the ethylene and
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JA signaling pathways under severe and full dehydration
and the crosstalk of these pathways with SA signal trans-
duction likely contribute to prevention of HR-associated
cell death, which is required for desiccation tolerance in
resurrection plants.

Auxins, cytokinins, GAs and BRs have been recog-
nized as crucial signaling molecules that control plant
growth and development. The positive regulators of the
cytokinin signaling pathway AHP1 and AHP4 were only
slightly induced in the early stage of dehydration,
whereas negative regulators of auxin pathways were
induced throughout the dehydration process (Fig. 6), in-
dicating inhibition of both signal transduction processes.
This finding is in agreement with the observation of sus-
pended growth of plants during dehydration. Notably,
receptor genes for auxin, GA and BRs, including TIRI,
GIDI1B, BRLI and BRL3, were up-regulated throughout
the dehydration and rehydration processes, in parallel
with TAA-acyl acid amido conjugators (group II GH3s)
[44] and the BZR1 homolog BEH2, indicating a possible
mechanism for the rapid recovery of the resurrection
plant upon rehydration.

Protein-quality control and DNA repair

The ability to maintain protein and DNA integrity is in-
dispensable to cellular survival under constant exposure
to adverse stresses that may result in mutagenesis or cell
death [45]. Despite this importance, data on protein
quality control and DNA repair are very limited or lack-
ing, although recent molecular studies show their poten-
tial involvement in desiccation tolerance in the budding
yeast Saccharomyces cerevisiae, Arabidopsis seeds and
the resurrection plant B. hygrometrica [46—48]. The
mechanisms controlling these processes, such as the un-
folded protein response, aid in protein folding or in deg-
radation of misfolded secretory proteins by producing
protein-folding and other factors [49, 50]. Activation of
the unfolded protein response in H. rhodopensis was
reflected by up-regulation of two key regulators during
D20 and DT (Fig. 7a): ERD2, a transmembrane ER
lumen protein-retaining receptor that controls traffic in
the Golgi body and retrograde transport to reclaim ER
proteins [51], and ERO1, a protein associated with pro-
tein disulfide isomerase oxidoreductases, which play a
key role in ER redox regulation via protein stabilization
by forming disulfide bonds between structures [52].

The ubiquitin—proteasome system is the major pathway
for proteasomal degradation of damaged and misfolded
proteins. Activation of this system in D20 and DT, indi-
cated by up-regulation of the majority of genes encoding
E3 ubiquitin ligase (Fig. 7a), hypothetically results in
proteomic redistribution; however, the reasons for this re-
distribution are unclear and remain to be explored in the
future. A regulatory role of protein ubiquitination has
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been revealed, based on the accumulation of important
metabolites during acquisition of rapid desiccation toler-
ance in B. hygrometrica [53]. E3 ubiquitin ligase may
cooperatively interact with HSP/C70 for quality control
[54, 55]. This interaction may occur intensively in H. rho-
dopensis during the D20 and DT stages.

Damaged DNA can be repaired via the processes of
BER, MMR, and NER. In this study, we observed pre-
dominate activation of NER pathway genes, such as
DDB1/DDB2, DDM1, RPA1/RPA2, XPB1 and PCNAs
[56], indicating the importance of proofreading DNA
repair to maintain genome integrity during severe dehy-
dration. Studies of the DNA-damage response in seeds
have suggested that particular proteins are required for
certain repair mechanisms during the early stage of des-
iccation [47, 57]. Considering the similarity of desicca-
tion tolerance in vegetative tissues of resurrection plants
and seeds of non-recalcitrant species [58], a dynamic
mechanism for maintaining genome integrity is therefore
reasonably predicted in H. rhodopensis under desicca-
tion. NER has been found to play an important role in
reversing UV-induced DNA damage in plants [59].
Building upon known protective responses such as LEA
and HSPs [5], this is the first report to associate NER
with desiccation tolerance in resurrection plants. Further
studies are needed to clarify the detailed mechanism of
the DNA-repair process in H. rhodopensis under desic-
cation conditions.

Conclusions

The underlying difference between resurrection and
non-resurrection plants under extreme drought re-
mains somewhat unclear. We believe that our tran-
scriptomic data contribute to the elucidation of new
desiccation tolerance mechanisms in the Balkan en-
demic plant H. rhodopensis, as we have identified a
large number of novel dehydration-responsive genes
(Fig. 8). During the early stages of stress, the increased
transcript levels of stress hormone signaling pathways
initiate crosstalk among these signaling molecules,
which is followed by fine tuning to avoid an increase in
hypersensitive reaction-induced cell death as dehydra-
tion becomes severe. Consequently, further protective
mechanisms related to energy, primary metabolism and
secondary metabolism, protein quality control and
DNA repair were transcriptionally mobilized during
this stage. Activation of sucrose synthesis, lipid and
fatty-acid turnover, HSP levels, LEA, NER, and the fla-
vonoid, phenylpropanoid and glutathione pathways are
among the main transcriptomic changes observed dur-
ing desiccation. Notably, CEF and the mobilization of
reserve carbon sources are maintained throughout the
late stages of desiccation, in contrast to the linear
decreases in electron transport and carbon uptake.
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Together, our results show that during severe dehydra-
tion, a reprograming of the transcriptome occurs that
defines the desiccation tolerance and resurrection behav-
ior of H. rhodopensis.

Materials and methods
Plant materials and stress treatments
In vitro-propagated plants of H. rhodopensis [60] were
transferred to a standard soil-sand—gravel mixture in
pots (6 cm diameter) and grown for approximately 1 year
in a controlled environment at 22-24°C, under a 16-h
photoperiod, 60% relative humidity, and a photon flux
density of 36 pmol m™?s™ ',

Dehydration was induced by withholding water from
potted plants. Plants required at least 8 days to become
fully desiccated. After 10 days in the fully dry state, the

plants were re-watered. Rehydration was initiated by
watering the plants, and full recovery took 1week. A
non-destructive method of monitoring water content
based on in vivo fast fluorescence was applied to collect
plant leaf samples, according to the established relation-
ship between leaf water content and photosynthetic per-
formance during stress and recovery [10]. The Handy
PEA (Hansatech Instrument Ltd., King’s Lynn, Norfolk,
UK) device was used for measurement of the prompt
chlorophyll a fluorescence of plants in the light-adapted
state. Based on the SOM (self-organizing map) devel-
oped previously [10], we were able to collect samples at
five time points corresponding to the following RWC
stages: F (90% RWC), D75 (75% RWC), D20 (20%
RWC), DT (6% RWC) and R (90% RWC). Mature, fully
expanded leaves from the middle of rosettes of similar
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size and appearance were used in all measurements. At
least four independent plants were used for each sam-
pling point.

RNA extraction, cDNA library construction, and lllumina
high-throughput sequencing

Plant leaves (0.4 g) were ground under liquid nitrogen to a
fine powder using a cooled mortar and pestle. Samples were
placed in 2-mL Eppendorf tubes, and total RNA was iso-
lated following the protocol for the GeneMATRIX Univer-
sal RNA kit (EURx Ltd., Gdansk, Poland).

Extracted RNA was used to construct cDNA libraries
for sequencing analysis. Ten cDNA libraries were pre-
pared using the Truseq™ RNA sample preparation kit
from Illumina (San Diego, CA, USA). Libraries were
size-selected for cDNA target fragments of 200-300 bp
on 2% low-range ultra-agarose gels followed by PCR
amplification using Phusion DNA polymerase (NEB, Ips-
wich, MA, USA) for 15 cycles. After quantification using
the TBS380 fluorometer, 150-bp paired-end RNA-seq li-
braries were constructed using the Illumina HiSeq 4000
platform (Illumina).

Transcriptome de novo assembly, sequence annotation,
classification and alignment

The raw data were first processed using Seqprep (https://
github.com/jstjohn/SeqPrep) and Sickle (https://github.-
com/najoshi/sickle) and the obtained high quality clean
reads were subjected to de novo assembly using Trinity
(https://github.com/trinityrnaseq/trinityrnaseq) [61]. The
unique assembled transcripts were then used for functional
annotation using BLASTX and BLAST2GO (http://
www.blast2go.com/b2ghome) [62]. Metabolic pathway ana-
lysis was performed using KEGG (http://www.genome.jp/
kegg) [63]. Sequence alignment was performed using BLAT
[64] with contig sequences from both this de novo assem-
bly and published data [5] (doi: https://doi.org/10.1007/
s00018-012-1155-6, 18_2012_1155_ MOESM1_ESM.xlsx).
Unigenes were considered to differ when the sequence
homology was < 90% in identity and < 80% in coverage.

Differential expression analysis and functional enrichment
To identify DEGs between two different samples, the ex-
pression level of each transcript was calculated according
to the FPKM method. RSEM (http://deweylab.biostat.wis-
c.edu/rsem/) [65] was used to quantify gene and isoform
abundances. The R statistical software package Empirical
analysis of Digital Gene Expression in R (http://www.bio-
conductor.org/packages/2.4/bioc/html/edgeR html)  [66]
was utilized for differential gene expression analysis.
Principle component analysis of DEGs was performed
using SIMCA 13.0 (Umetrics, Satorius Stedim Biotech,
Umed, Sweden). In addition, functional enrichment ana-
lysis including GO and KEGG terms in comparison with
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the whole-transcriptome background was performed
using a Bonferroni-corrected p-value < 0.05 threshold. GO
functional enrichment and KEGG pathway enrichment
were carried out using Goatools (https://github.com/tan-
ghaibao/Goatools) and KOBAS (http://kobas.cbi.pku.e-
du.cn/download.php) [67]. For visualization of the
functionally grouped network of KEGG terms, the ClueGO
plugin [68] was used with Cytoscape [69]. To map all iden-
tified genes with altered expression in D20 and to visualize
the pathway relationships among these genes, we used a
general mapping method in which mapped genes represent
a low percentage of all associated genes per pathway, and
Bonferroni correction was omitted. Subsequently, the
KEGG file for each pathway was downloaded, and all genes
in the pathway were extracted from the ClueGO table.
Then, network analysis was performed using Cytoscape
software. The Pearson correlations between genes and me-
tabolites were calculated using Cytoscape. The expression
of each gene extracted from the ClueGO table for each
pathway is expressed as the average log, ratio for each
treatment compared with the control.

qPCR

All purified RNA samples described above were ad-
justed to the same concentration (100ng/pL) using
RNase-free ddH,O and then reverse-transcribed into
c¢DNA using M-MLV reverse transcriptase (Promega,
Madison, WI, USA), following the manufacturer’s in-
structions. Quantification of the transcripts was per-
formed using SYBR® Green Realtime PCR Master Mix
(TOYOBO, Osaka, Japan). Each reaction (10 pL) con-
tained 0.4 puL of the cDNA template, 0.8 uL of the pri-
mer mixture (10puM each, mixed to equivalent
volume), 5.0pL 2x PCR Master Mix and 3.8puL
ddH,O. Reactions were performed using a two-step
method: 95°C for 10s, then 40 cycles of 95°C for 10
s, 55°C for 30s, 72°C for 30s, and 95°C for 15s,
followed by a final melt cycle from 55°C to 95°C.
Gene-specific primers are shown in Additional file 6:
Table S4. qPCR was performed for three technical
replicates of each RNA sample (as well as two inde-
pendent biological replicates). The normalized relative
expression levels of the target genes were calculated
by the 2AACt (ACt = Ctrarget — Ctigs, where Ct is the
cycle threshold) using 18S rRNA as the internal
standard.

Clustering analyses

The clustering of log-transformed expression data from
each treatment was performed using Gene Cluster 3.0,
with normalization of genes, the centered correlation
similarity metric and complete linkage method. Clus-
tered data were viewed, and the corresponding heatmaps
were generated using JAVA TREEVIEW 1.6.4. Genes of
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interest were selected according to their relevance in
particular biological processes or pathways, and then
their expression data were pooled, log, transformed and
normalized to the untreated hydrated controls.
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