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Abstract

Background: Nitrogen (N) is a macronutrient that is essential for optimal plant growth and seed yield. Allotetraploid
rapeseed (A,A,C,Cp,, 2n =4x = 38) has a higher requirement for N fertilizers whereas exhibiting a lower N use efficiency
(NUE) than cereal crops. N limitation adaptation (NLA) is pivotal for enhancing crop NUE and reducing N fertilizer use
in yield production. Therefore, revealing the genetic and molecular mechanisms underlying NLA is urgent for the
genetic improvement of NUE in rapeseed and other crop species with complex genomes.

Results: In this study, we integrated physiologic, genomic and transcriptomic analyses to comprehensively characterize
the adaptive strategies of oilseed rape to N limitation stresses. Under N limitations, we detected accumulated anthocyanin,
reduced nitrate (NOs~) and total N concentrations, and enhanced glutamine synthetase activity in the N-starved rapeseed
plants. High-throughput transcriptomics revealed that the pathways associated with N metabolism and carbon fixation
were highly over-represented. The expression of the genes that were involved in efficient N uptake, translocation,
remobilization and assimilation was significantly altered. Genome-wide identification and molecular characterization of
the microR827-NLAT-NRT1.7 regulatory circuit indicated the crucial role of the ubiquitin-mediated post-translational
pathway in the regulation of rapeseed NLA. Transcriptional analysis of the module genes revealed their significant
functional divergence in response to N limitations between allotetraploid rapeseed and the model Arabidopsis.
Association analysis in a rapeseed panel comprising 102 genotypes revealed that BnaC5.NLAT expression was
closely correlated with the rapeseed low-N tolerance.

Conclusions: We identified the physiologic and genome-wide transcriptional responses of oilseed rape to N
limitation stresses, and characterized the global members of the BnamiR827-BnaNLA1s-BnaNRT]1.7s regulatory
circuit. The transcriptomics-assisted gene co-expression network analysis accelerates the rapid identification of
central members within large gene families of plant species with complex genomes. These findings would enhance
our comprehensive understanding of the physiologic responses, genomic adaptation and transcriptomic alterations of
oilseed rape to N limitations and provide central gene resources for the genetic improvement of crop NLA and NUE.
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Background

Nitrogen (N) is a macronutrient that is essential for
plant biomass and seed yield [1]. To achieve optimal
growth and development, plants have to constantly ac-
quire abundant N nutrients from soils. In agriculture,
immense quantities of N fertilizers are applied world-
wide annually to maintain crop productivity. This prac-
tice requires excessive amounts of energy and poses a
remarkable threat to the environment. N use efficiency
(NUE) is defined as the total biomass or grain yield pro-
duced per unit of applied fertilizer N [2], and improving
NUE is critical for the favorable development of sustain-
able agriculture and ecosystem. In recent years, en-
hancement of plant N limitation adaptation (NLA) has
shown to be an effective strategy to maintain or increase
crop vyields with reduced application of N fertilizers [2].

ANLAL is the first identified Really Interesting New Gene
(RING)-type E3 ubiquitin ligase with the SYGI-Pho81-
XPR1 (SPX) motif, and it functions as a positive regulator of
the adaptability of Arabidopsis thaliana to N limitations [3].
AtNRT1.7/AtNPF2.13 is expressed mainly in the phloem of
leaf minor veins and mediates the remobilization of excess
NO;™ from the older leaves to younger ones [4]. AtNLA1
promotes the ubiquitin-mediated protein degradation of
ANRT1.7, which accelerates the source-to-sink remobiliza-
tion of N nutrients [5]. AINLA1 expression is repressed by
N limitation mainly at the post-transcriptional level via the
microRNA827 (miR827)-dependent regulation [5]. Thus,
the miR827-NLAI-NRT1.7 circuit plays a key role in the
adaptability of plants to N limitations.

Oilseed rape (Brassica napus L.), a high-value staple
crop species, is widely grown and harvested for the
production of vegetable oil, livestock protein meal and
biodiesel [6]. The allotetraploid B. napus (A,A,C,C,,
~ 1,345 Mb, 2n = 4« = 38) originates from spontaneous
interspecific hybridization of the diploid progenitors
Brassica rapa (A.A, ~485 Mb, 2n=2x=20) [7] and
Brassica oleracea (C,C,, ~630 Mb, 21 = 2x = 18) [8-10].
Compared with those in the model plant A. thaliana
(~125 Mb, 2n=2x=10) (Arabidopsis Genome Initia-
tive 2000) of Brassicaceae, the allopolyploidy events in B.
napus generates many duplicated segments and homeolo-
gous regions, which further contribute to the formation of
multi-copy gene families within the genome [9].

Unlike grain crops, B. napus has a relatively higher N nu-
trient requirement for optimal seed yield [11, 12]. Indeed,
despite its strong NO3~ uptake capacity, oilseed rape shows
the lowest NUE that has been known in crops [13]. This is
because older leaves easily drop and detach from the plants
before that N has been sufficiently remobilized to the sink
organs [14, 15]. Therefore, strengthening the adaptability of
oilseed rape to N limitations and avoiding early senescence of
leaves, is essential for NUE enhancement. However, the cen-
tral gene members that regulate NLA remain elusive in
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allotetraploid rapeseed because of its genome complexity.
Thus, in this study, we were aimed to (i) identify the physio-
logic and transcriptomic responses of rapeseed plants to
short-term and long-term N limitations; (ii) conduct
genomic and transcriptional characterization of the
core gene members of the miR827-NLAI-NRT1.7 regu-
latory circuit, and (iii) propose the molecular strategies
involving N limitation adaptation in allotetraploid rape-
seed. Our genome-wide identification and molecular
characterization of the BnamiR827-BnaNLA 1-BnaNRT1.7
circuit members indicated evolutionary conservation and
functional divergence of the NLA regulatory mechanism
between allotetraploid rapeseed and the model Arabidop-
sis. The transcriptomics-assisted gene co-expression net-
work analysis of the NLA module would provide central
gene resources for the genetic improvement of crop NLA
and NUE.

Results

Physiologic responses of oilseed rape to N limitation
When NO3~ supply is insufficient, plants usually develop
a set of adaptive responses to limited N growth condi-
tions [2]. The physiologic responses of rapeseed to N limi-
tation were determined by hydroponically growing the
plants under high (9.0 mM) and low (0.30 mM) NO3;~
conditions. After 10-d of plant growth, long-term N limi-
tation severely inhibited the shoot and root growth of B.
napus, which was indicated by smaller leaves (Fig. 1a).
Moreover, the root volume (0.55 + 0.09 cm®) of the rape-
seed plants under N limitation was also significantly re-
duced than that (0.23 +0.04 cm® under N sufficiency.
Subsequently, the plant responses to short-term (3 h) and
long-term (72 h) N limitation (0.30 mM) stresses were in-
vestigated in detail. Long-term limited N significantly re-
duced chlorophyll biosynthesis (Fig. 1b) and resulted in
the over-accumulation of anthocyanin (Fig. 1c). Under se-
vere N limitation, the ratio of root NO3;~ concentration to
shoot NO3~ concentration was significantly smaller than
1.0 (Fig. 1d-f), which indicated that the limited N nutrient
resources were dominantly allocated to the shoots, which
was less affected by N starvation than the roots, to facili-
tate the photosynthesis. The activity analyses of the
N-metabolism associated enzymes revealed that the NR
activity that was markedly reduced in the shoots did not
significantly change in the roots (Fig. 1g, h), whereas the ac-
tivity of glutamine synthetase was clearly elevated under N
limitation (Fig. 1i, j). After exposure to low NO3~ conditions
for 3 d, the plant biomass did not change significantly. The
N concentrations of whole plants were markedly decreased
with the duration of N limitation (Fig. 1k), whereas N deple-
tion enhanced the NUE of rapeseed plants (Fig. 11). Thus,
compared with sufficient NO3;™ supply, long-term, but not
short-term, N limitation induced significant physiologic
changes in the rapeseed plants.
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Fig. 1 Physiologic responses of oilseed rape to nitrogen (N) limitation stresses. a Growth performance of the rapeseed plants (scale bar=7 cm)
that were hydroponically cultivated under high (9.0 mM) and low (0.30 mM) nitrate (NOs~) conditions for 10 d; (b) leaf SPAD values; (c) leaf
anthocyanin concentrations; (d-e) NO5~ concentrations in the shoots (d) and roots (e); (f) ratio of shoot NOs™ concentrations to root NO3 ™
concentrations; (g-h) activity of NO5;™ reductase (NR) in the shoots (g) and roots (h); (i-j) activity of glutamine synthetase in the shoots (i) and
roots (j); (k) total N concentrations of the whole plants; (I) values of N use efficiency (NUE), NUE = total dry weight/total N content. For (b-l), the
rapeseed plants that were grown under 9.0 mM NOs~ for 10 d were then transferred to 0.30 mM NOs5~, and the shoots and roots were
individually sampled at 0 h, 3 h and 72 h. Values denote means (n=5), and error bars indicate standard error (SE) values. Significant difference
was determined by one-way analysis of variance (ANOVA), which was followed by Tukey's honestly significant difference (HSD) multiple
comparison tests using the Statistical Productions and Service Solutions 17.0 (SPSS, Chicago, IL, USA). *: p < 0.05; **: p < 0.01; ***: p < 0.001

Genome-wide transcriptional responses of oilseed rape to
N limitations

After discard of adapter sequences and low-quality reads,
on average, approximately 5.0 x 10” clean reads were ob-
tained for each sample, and the total length of clean reads
reached about 1.5 x 10 nt with Q.0 > 96% and Qs > 92%
(Additional file 1: Table S2). Most of the Pearson correl-
ation coefficients were more than 0.90 between each pair
of biological replicates (Fig. 2a), which indicated that the
mRNA sequencing data were of good quality.

Subsequently, we detected the global gene differential
expression profiling of B. napus under short-term and
long-term N limitations compared with the sufficient N
supply. In the shoots, a total of 3,279 and 4,346 genes
were identified to be differentially expressed at 3 h and
72 h, respectively; in the roots, more DEGs were charac-
terized, particularly at 72 h (Fig. 2b). An intersection
analysis through a Venn diagram indicated that 119
DEGs were simultaneously detected in both the shoots
and roots at 3 h and 72 h (Fig. 2b).
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Fig. 2 Genome-wide identification and characterization of the differentially expressed genes (DEGs) that were responsive to nitrogen (N) limitations. a
Pearson correlation coefficients of the RNA-seq data between each pair of biological replicates. S and R indicate shoots and roots; SO/R0, S3/R3 and
S72/R72 indicate shoots/roots at 0 h, 3 h and 72 h, respectively. b-c Venn diagram showing intersection analysis (b) and gene ontology (GO) term
annotations of the DEGs. In the word cloud, the font sizes indicate the GO term numbers. The bigger the fonts are, the more the corresponding GO
terms are. d-g KEGG enrichment analysis of the DEGs in the shoots (d, €) and roots (f, g) at 3 h and 72 h. The solid circle sizes represent the pathway
enriched degree. The bigger the circles are, the more the corresponding KEGG items are. Regarding the RNA-seq experiment, the rapeseed plants that
were grown under 9.0 mM NO;™ for 10 d were then transferred to 0.30 mM NOs™, and the shoots and roots were individually sampled at 0 h, 3 h and
72 h. False discovery rate (FDR) < 0.05 and log, (fold-change) 2 1 are used as the thresholds to identify DEGs

The GO enrichment analysis enabled us to characterize
major biological functions of the DEGs under short-term
and long-term N limitations. In this study, the GO terms
were grouped into the three major categories: molecular
function (MF), cellular component (CC), biological process

(BP). Regardless of the shoots or the roots under both
short-term and long-term N limitations, the most highly
enriched GO term for CC was the intracellular part,
whereas the catalase, protease and hydrolase were the three
most over-represented enzymes in the MF category
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(Fig. 2¢). In the BP annotations, the protein metabol-
ism and proteolysis were the most two enriched items
(Fig. 2c). To further identify the biological pathways
that were active in B. napus during exposure to short-term
and long-term N limitations, we characterized the pathways
in which the DEGs were involved using the KEGG
database. In the shoots at both 3 h and 72 h, the path-
ways for photosynthesis and flavonoid metabolism were
highly enriched (Fig. 2d, e). In the roots, a large propor-
tion of the DEGs were over-represented in the path-
ways involving the metabolism of phenylpropanoid,
glutamine and carbon fixation, particularly at 72 h (Fig.
2f, g). Taken together, the integrated analysis of GO and
KEGG indicated that carbon fixation (e. g. photosynthesis)
and N metabolism (e. g. proteolysis) were strongly respon-
sive to short-term or long-term N limitations.

The role of anthocyanin in the adaptability of oilseed
rape to N limitations

Anthocyanins, important secondary metabolites in plants,
protect senescing leaves from photo-damages; moreover,
they also promote the efficient remobilization of nutrients
(especially N) within the plants [14]. In this study, we found
that the genes that are involved in the biosynthesis of
chlorophyll pigments were significantly down-regulated
under N limitation (Fig. 3a), suggesting the serious degrad-
ation of chlorophyll. Anthocyanins are produced mainly
through the phenylpropanoid-dependent pathway, as pre-
sented in Fig. 3b. This biosynthesis begins with phenylalan-
ine that then were converted into cinnamic acid catalyzed
by phenylalanine ammonia lyase (PAL), and disintegrates
into several branches at coumaroyl CoA. In the flavonoid
route, where chalcone synthase (CHS) catalyzes the
flavonoid formation derived from coumaroyl CoA, and
then contributes to the production of flavonol, cyani-
din, and anthocyanin (Fig. 3b).

Under severe N limitation, the anthocyanin concentra-
tions increased markedly in the rapeseed leaves (Fig. 1c).
Further, we investigated the transcriptional fingerprints
of the genes that are involved in anthocyanin biosyn-
thesis under N limitation. The results showed that 95%
of the DEGs were significantly up-regulated under lim-
ited N supply (Fig. 3c). The MYB transcription factors,
particularly the MYB75 (Production of Anthocyanin
Pigment 1, PAP1) and MYB90 (PAP2) that mediates the
anthocyanin biosynthesis, are shown to play positive
roles in the plant responses to N limitations [15-17].
Among the genome-wide DEGs of BnaMYBs, we found
that a major proportion (80%) of them were induced by
N limitation (Fig. 3d). Both the RNA-seq and qRT-PCR
results showed that the transcript level of BnaA7.PAP2
was remarkably higher under N limitation than under
sufficient N supply (Fig. 3e-f). It indicated the dominant
roles of MYBs in the anthocyanin biosynthesis-mediated
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adaptation of rapeseed to N limitation stresses. After ex-
posure to long-term N limitation, the rapeseed plants
accumulated abundant anthocyanin in the leaves and
stems (Fig. 3g, h). Indeed, the stem anthocyanin was ob-
served shortly after N limitation, which can be poten-
tially used as an indicator for diagnosis of crop N
nutrient status and identification of the rapeseed geno-
types with differential adaptabilities to N limitations.

Transcriptional responses of the genes associated with N
transport and metabolism to N limitations

Among the numerous DEGs, we first paid much more
attention to the genes that are implicated in efficient N
uptake, transport and N assimilation; these genes are
crucial for the adaptive responses of plants to N limita-
tions [18]. Our transcriptomics results showed that
BnaNRT1.1 s/BnaNPF6.3 s were strongly induced in the
roots of rapeseed plants exposed to 72-h N limitation
(Fig. 4a), and they might contribute to efficient N influx
into the root cells. Different from AtNRT1.4/AtNPF6.2,
whose transcript level is not affected by NO3;™ supply
levels [19], the mRNA abundances of BnaNRTI1.4 s/
BnaNPF6.2 s were markedly elevated in the shoots and
roots by severely limited N (Fig. 4b) and they might be
favorable for efficient N storage in petioles. Similar to
AtNRT1.5/AtNPF7.3, the four BuaNRT1.5 s/BnaNPF7.3 s
were also expressed preferentially in the roots and they
were obviously up-regulated under both short-term and
long-term N limitations (Fig. 4c). In contrast, the four
BnaNRT1.8/BnaNPF7.2 genes were strongly repressed in
the roots by N limitations (Fig. 4d). The transcript abun-
dances of the NRTI member facilitating NO;3;~ loading
into the root phloem, BnaNRT1.9 s/BnaNPF2.9 s, also
increased under limited N supply (Fig. 4e). Combining
the expression profiling of BnaNRT1.5 s, BnaNRT1.8 s
and BnaNRT1.9 s, we proposed that more N was prefer-
entially allocated to the shoots, which coincided with the
result shown in Fig. 1f. Three of the BnaNRT1.11 s/
BnaNPF1.2 s, potentially involved in xylem-to-phloem
transfer for redistributing NO3~ into developing leaves
[20], were greatly induced in the shoots, whereas
BnaAl10.NRT1.11 also showed higher expression levels
in the roots under N deficiency (Fig. 4f).

In terms of the high-affinity NO3™ transporters, we fo-
cused on the main regulator BnaNRT2.1 s and their
partners BnaNAR2.1 s/BnaNRT3.1 s. The general ex-
pression profiling of both BnaNRT2.1 s and BnaNAR2.1 s
showed that their expression levels were increased in the
roots by insufficient N supply (Fig. 4g, h). Additionally,
NRT2.4 and NRT2.5 are also implicated in high-affinity
N uptake [21, 22]. Both of the two BnaNRT2.4 family
homologs were significantly up-regulated in the roots
whereas BnaNRT2.5 s showed very smaller FPKM values
although they were induced by N deficiency (Fig. 4i).
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In addition to the expression alterations of genes im-
plicated in efficient N uptake and allocation, the tran-
scriptional changes of the N-metabolism genes were also
observed (Fig. 4j-1). With the decrease in external N sup-
ply, the NR genes BnaNIAIs and BnaNIA2s were down-
regulated in the shoots and roots (Fig. 4j), which is con-
sistent with the reduced enzyme activity (Fig. 1g, h). In
contrast, the expression of both BnaGSIs/BnaGLN1s and
BnaGS2s/BnaGLN2s was induced in both the shoots and
roots (Fig. 4k-1). The integrated analysis of expression pro-
filing and enzyme activity of GS (Fig. 1i, j) indicated that
the enhanced assimilation of inorganic N into amino acids
might be helpful for the adaptability of rapeseed plants to
N limitations.

Global identification and molecular characterization of
BnaNLAs

The miR827-NLAI-NRT1.7 regulatory circuit functions
as a pivotal pathway involving the adaptive responses of
plants to N limitations [5]. Therefore, we focused on the
identification and characterization of the roles of the
miR827-NLA1-NRT1.7 regulatory pathway in the adap-
tive strategies of oilseed rape to N limitation stresses.

To compare the evolutionary diversity of the NLA
genes among various plant species, we retrieved NLAs in
22 plant species, including 19 dicots, and three mono-
cots (Additional file 1: Figure S1). In general, the copy
number of the NLA genes was not closely correlated
with the genome sizes. We found that, relative to that in
the other plant species, the allotetraploid B. napus had
the largest NLA gene family, including four BnaNLAls
and four BnaNLA2s (Additional file 1: Figure S1). More-
over, the number of the NLA genes in B. napus was
equal to the NLA gene sum in B. rapa and B. olereacea
(Additional file 1: Figure S1), which implied that all the
NLAs were maintained during the allopolyploidy process.
The genomic organization analysis showed that both
NLAI and NLA2 subfamily genes in B. napus might have
largely expanded mainly through segmental duplication
(Additional file 1: Figure S2). Phylogeny analysis con-
firmed that the BnaNLA proteins can be grouped into
two subfamilies, namely, BnaNLAls and BnaNLA2s
(Additional file 1: Figure S3A), both of which experi-
enced strong purifying/negative (Ka/Ks < 1.0) pressure
selection (Additional file 1: Table S3) in order to pre-
serve gene function. The DIVEGE analysis showed that
the type II coefficient 6y + SE was >0 (Additional file 1:
Figure S3B), which indicated that obvious functional
divergence had occurred between the BnaNLA1l and
BnaNLA2 subgroup proteins. The segregation of Arabi-
dopsis and Brassica plants might have occurred 12-20
million years ago (Mya) [23-25]. The results showed
that BnaNLAs might have diverged from the correspond-
ing homologs in Arabidopsis approximately 11.3-18.0
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Mya, which implied that plant speciation was accompan-
ied by the divergence of the BnaNLA family genes.

Previous studies have shown that NLA1 plays a key role
in the regulation of plant adaptive responses to N limita-
tions [5]. The NLA1s of dicots and monocots, all of which
were identified to have microRNA827 (miR827) binding
sites, were phylogenetically categorized into two clusters,
and it implied that the NLA1 proteins divergence occurred
after organism speciation (Additional file 1: Figure S3C).
The four BnaNLA1Is that encode approximately 300 amino
acids were physically mapped onto four chromosomes (A,
sub-genome: A9 and A,10; C, sub-genome: C,5 and C,8)
of B. napus, all of which were located in the A chromo-
somal block of the least fractionated genome (Additional
file 1: Table S4). The computed molecular weights of
the NLA proteins were close to 38.0 kDa except for
BnaA4.NLA2, and their pls were approximately 8.5
(Additional file 1: Table S4). The majority of the NRT2
protein instability indices (IIs) were >40.0, and the NLA
family members that were hydrophilic had the GRAVY
values that ranged from -0.421 (BnaAl0.NLA1l) to -
0.233 (BnaA4.NLA?2) (Additional file 1: Table S4).

Similar to the E3 ubiquitin ligase AtNLA1, both BnaN-
LAls and BnaNLA2s contained an N-terminal SPX
domain and a C-terminal RING domain in addition to
other conserved motifs (Additional file 1: Figure S3D, E),
and subcellular localization predicted that they were
localized on the plasma membrane. To determine the
roles of the BnaNLA family genes in the regulation of
rapeseed plants to N limitations, we investigated their
expression pattern and transcriptional responses to
different N supply levels. In terms of the BnaNLAI sub-
family, the qRT-PCR assay results showed that all the
four members were expressed predominantly in the
roots rather than in the shoots (Fig. 5a). In A. thaliana,
AINLA1 is not regulated by N supply changes at the
transcriptional level [5]. Interestingly, we found that all
the BnaNLA1s were transcriptionally down-regulated by
limited N supply (Fig. 5b) and were up-regulated by N
resupply (Fig. 5¢), which potentially implied that their
different regulatory pathways differed from that in the
model Arabidopsis. Based on the expression profiling of
the BnaNLAI family genes, we constructed a gene
co-expression network, and identified BnaC5.NLAI as
the central member (Fig. 5d), and it was assumed to play a
core role in the adaptive responses of rapeseed to N limita-
tion stresses. Considering the existing transcriptional re-
sponses of BnaNLAIs to N limitations, we investigated the
CREs in the gene promoters that were involved in the tran-
scriptional regulation of BnaNLAls. We found that the
binding sites of the DNA with one finger (Dof), GATA-
box, W-box (TGAC) and MYB TFs were highly enriched
in the promoters (Fig. 5e), most of which have proved to be
involved in the molecular response of plants to N status
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[26-28]. Among these, the binding sites of the Dof proteins
were the highest over-represented (Fig. 5e), which implied
that the Dof TFs might play key roles in the transcriptional
regulation of the BnaNLAI family genes.

In Arabidopsis, the role of AtNLA2 has been elusive. In
B. napus, although four NLA2 members were annotated
in the genome, however, we only identified the expression
of BnaA4.NLA2 and BnaC4.NLA2 through qRT-PCR and
RNA-seq assays. Similar to BnaNLA1ls, BnaNLA2s were
also expressed mainly in the roots of rapeseed plants
(Additional file 1: Figure S4A). However, the patterns of
their transcriptional responses to different N supply were

opposite to those of BnaNLAIs. Under limited N supply,
the expression of BnaNLA2s was up-regulated (Additional
file 1: Figure S4B) whereas their transcript levels were re-
pressed by N resupply (Additional file 1: Figure S4C).

Molecular characterization of BnamiR827

The NLAI gene has been reported to be a target of
miR827 in A. thaliana, and miR827-mediated NLA repres-
sion is shown to play a key role in the adaption of
plants to N limitations [5]. Previous studies have
identified that the miR827 family has only one
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member in allotetraploid B. napus through BLAST
analysis and high-throughput degradome sequencing
[29, 30].

Multiple sequence alignment showed that miR827 is
highly conserved in both monocot and dicot species only
with two nucleotide variations in the 3'-end of dicot
miR827s (Fig. 6a). To identify the target preference of
miR827 in the genome (A,A,C,C,) of allotetraploid
rapeseed, we submitted the BnamiR827 sequence to the
psRNATarget online program, a plant small-RNA target
analysis server [31]. In rice, no target site of miR827 was
found along the sequence of the OsNLA transcript [32],
whereas four BnaNLAI members were identified to be
the targets of BnamiR827 (Fig. 6b). The mRNA cleavage
by BnamiR827 was predicted to occur in three BnaNLA1
genes (BnaA9.NLAI, BnaAl10.NLAI and BnaC8.NLAI)
except BnaC5.NLAI, which was potentially repressed at

the translational level by BnamiR827 (Fig. 6b). Further,
we determined that BnamiR827 potentially could poten-
tially bind to the 5'-end untranslated regions of BnaNLAs
(Fig. 6¢). To further understand the transcriptional re-
sponses of BnamiR827 to short-term and long-term N limi-
tations, we tested its expression levels through qRT-PCR
assays. The results showed that, irrespective of in the
shoots or the roots, the expression of BnamiR827 was
up-regulated by N limitations (Fig. 6¢), which was op-
posite to the expression pattern of BnaNLA1Is (Fig. 5b).

Genome-scale identification and molecular
characterization of BnaNRT1.7 s

In the rapeseed genome, we identified six NRT1.7 homo-
logs, encoding approximately 600 hydrophobic amino acids
(Additional file 1: Table S5), which are distributed on four
chromosomes (A, sub-genome: A2 and A7; C, sub-
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genome: C6 and C7) (Additional file 1: Figure S5). Phyl-
ogeny analysis revealed that the NRT1.7 genes in B. napus
were derived from their corresponding homologs in the
diploid progenitors B. rapa and B. oleracea (Additional
file 1: Figure S6A). Analysis of nucleotide substitution
rates of BnaNRT1.7 s showed that they had experienced
strong negative selection, and diverged from the corre-
sponding Arabidopsis homologs approximately 14.3-15.7
Mya (Additional file 1: Figure S6B) when plant speciation
was accompanied by the divergence of the BnaNRTI1.7
family genes. The conserved motif analysis suggested high
similarities among the BnaNRT1.7 family members
(Additional file 1: Figure S6C-D), and all of them were
predicted to be localized on the plasma membrane with
12 transmembrane regions (Additional file 1: Table S5).

To determine the roles of the BnaNRTI1.7 family
genes in the regulation of rapeseed plants to N limita-
tions, we investigated their expression pattern and tran-
scriptional responses to different N supply levels. In A.
thaliana, NRT1.7 is expressed mainly in the phloem of
the leaf minor vein [4]. However, the qRT-PCR assay
results showed that four of the family members were
expressed predominantly in the shoots, except BnaA7.
NRT1.7b and BnaC6.NRT1.7b that were clustered in the
same phylogenetic clade (Additional file 1: Figure S6A)
were expressed preferentially in the roots (Fig. 7a). Fur-
ther, BnaCn.NRT1.7 and BnaA7.NRT1.7b/BnaC6.NRT1.7b
that were up-regulated by long-term N limitation, were

repressed by N resupply in the shoots and roots, re-
spectively (Fig. 7b, c). Based on the expression profiling
of the BnaNRT1.7 family genes, we constructed a gene
co-expression network. Further, we identified that
BnaCn.NRT1.7 and BnaC6.NRT1.7b were the central
members (Fig. 7d), which were proposed to play core
roles in the phloem N remobilization of both the shoots
and roots under limited N stresses, respectively.

Natural variations in the BnamiR827-BnaNLA1-BnaNRT1.7
expression among rapeseed genotypes

To further understand the roles of the BnamiR827-B-
naNLAI-BnaNRT1.7 regulatory circuit in the adapta-
tion of rapeseed to N limitations, we conducted a
comparative transcriptional analysis of the pathway. In
a rapeseed panel comprising 102 accessions under lim-
ited N supply, we found that the SPAD values of the
mature leaves were normally distributed and had a co-
efficient of variation of 32.6% (Fig. 8a), which indicated
that wide variations in N limitation adaptation occurred
among the rapeseed genotypes. Compared with the
low-N tolerant rapeseed genotypes, the low-N sensitive
rapeseed genotypes showed obvious early senescence of
the mature leaves that was induced by N limitations
(Fig. 8b). Further, among the 102 rapeseed genotypes, five
accessions with extreme low-N tolerance and five with
extreme low-N sensitivity were selected, respectively, and
they were used to determine the regulation of the
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Fig. 7 Molecular characterization of the expression pattern and transcriptional responses of BnaNRT1.7 s to different N supply levels. a The gRT-PCR assay
results showing the expression pattern of BnalNRT1.7 s. b, ¢ Transcriptional responses of BnaNRT1.7 s to N limitations (b) and N resupply (c). The heat maps
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BnamiR827-BnaNLA1-BnaNRT1.7 regulatory module in
the differential responses to N limitations between the
rapeseed genotypes. In both the shoots and roots, higher
expression of BnaC5NLA1 and lower transcript levels of
BnamiR827 and BnaCn.NRT1.7/BnaC6.NRT1.7b were
identified in the low-N tolerant genotypes than in the
low-N tolerant genotypes (Fig. 8c, d). It indicated that ex-
cessive expression of BnaNRT1.7 s induced remarkable re-
mobilization of N from source to sink organs, which
decreased the adaptability of rapeseed plants to N limita-
tion stresses.

Discussion

Physiologic and transcriptional characterization of oilseed
rape to N limitations

Unlike cereals, B. napus has a relatively higher nutri-
ent requirement for optimal plant growth and seed

yield [11], although it is hypersensitive to N limitation
conditions. Strengthening the adaptation of rapeseed
to N limitation is important for current agriculture pro-
duction, in which excessive N fertilizers are routinely ap-
plied to increase seed yield worldwide [12]. Because 50—
70% of the applied N cannot be absorbed by crops, exces-
sive use of N fertilizers inevitably increases the cost of
crop production as well as leads to environmental pol-
lution [33]. One effective way to overcome these
shortcomings is to genetically improve the adaptability
of crops to N limitation, which requires the elucidation of
the physiologic and molecular mechanism underlying
NLA [2].

The physiologic and biochemical changes involved in
the adaptation of rapeseed plants to N limitations include
the reduction of growth and photosynthesis (Fig. 1a, b),
the accumulation of abundant photodamage-protecting
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anthocyanins (Fig. 1c), elevation of N translocation from
roots to shoots (Fig. 1d-f) and N assimilation enzyme
activity (Fig. 1i, j). Moreover, we found that the rape-
seed NUE was significantly elevated under N limita-
tions (Fig. 1l), which indicated that improving the
adaptability of crop species to limited N might be an ef-
fective strategy for NUE enhancement in agriculture
production. Consistent with the physiologic data, the
high-throughput transcriptomics also revealed that N
limitations not only significantly altered the expression
of the genes involved in the biosynthesis and endocyto-
sis of nitrogenous macromolecules, but also led to the
changes in the expression of genes involving photosyn-
thesis, the tricarboxylic acid cycle and the pentose
phosphate pathway (Fig. 2). Therefore, we assumed that
the C/N balance is pivotal for maintaining the optimal
growth of plants and enhancing the adaptability of plants
to N limitations.

Previous studies have revealed that the Arabidopsis
null mutant atnlal that fails to produce anthocyanins
shows low-N-induced early senescence [3, 14, 34]. Under
low N stresses, much lower survival rates combined with
defects in anthocyanin accumulation are found in A.
thaliana mutants (myb75 and dfr) than in the wild type
[35]. In this study, we also determined that numerous
anthocyanin biosynthesis-related genes and MYB transcrip-
tion factor genes were remarkably up-regulated under N
depletion (Fig. 3). All of these findings indicated that the
anthocyanin-dependent organic C metabolism may be cru-
cial for the adaptability of plants to N limitations. Function-
ing as an E3 ubiquitin ligase, NLA1 degrades its target
protein through the 26S proteome pathway [5]. Therefore,
we assumed that the target protein that is degraded by
NLA1 should be up-regulated in the atnlal null mutant,
leading to the repression of anthocyanin biosynthesis. Ac-
cording to the criterion, we found that the expression of
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MYB2 (At2g47190), a transcriptional repressor of antho-
cyanin pigmentation [36], was increased by approximately
25-fold in atnlal [14], and it might be involved in the
NLA1-mediated disruption of anthocyanin biosynthesis.

Molecular characterization of the BnamiR827-
BnaNLA1-BnaNRT1.7 circuit

Ancient polyploidy events have been identified in the ge-
nomes of rapeseed progenitors, and duplicated regions of
the Arabidopsis genome occur 10 to 14 times within the al-
lotetraploid rapeseed genome (A,A,C,C,) [37]. The dupli-
cated genes provide novel resources for the formation of
new genes, which, in turn, contribute to gene loss,
neo-functionalization and sub-functionalization [38]. Gene
family members are both selected and preserved during the
evolutionary process because they express variable levels of
proteins in different spatiotemporal patterns [39].

In this study, we first conducted an integrated analysis
of the BnamiR827-BnaNLAI1-BnaNRT1.7 regulatory cir-
cuit in the polyploidy crop species. Compared with that
in the model Arabidopsis and rice, multi-copy homologs
of both NLAs and NRTI1.7 were identified in the rapeseed
genome (Additional file 1: Table S4, S5). For the BnaNLA
proteins, the conserved motifs of SPX and RING were
maintained (Additional file 1: Figure S3), and purifying se-
lection occurrence of BnaNLAs (Additional file 1: Table S3)
also highlighted their maintenance during the alloploidy
process. However, significant divergence was observed in
the function of BnaNLAs and BnaNRT1.7 s differing from
that in the model plants.

In Arabidopsis, NLA1 acting as an E3 ubiquitin ligase
mediates the degradation of NRT1.7, and contributes to the
efficient remobilisation of N from source to sink leaves;
moreover, the expression of AtNLAI is not regulated by N
supply at the transcriptional level [5]. However, in this
study, both the qRT-PCR and RNA-seq results showed that
BnaNLA1Is were expressed dominantly in the roots rather
than in the leaves (Fig. 5a, b); furthermore, the transcript
levels of BnaNLAIs were repressed by N limitations
(Fig. 5b). Based on these findings, we proposed that
NLA1Is might be mainly implicated in the root N remo-
bilization in B. napus. Novel transcriptional mechanisms,
regulated by the enriched Dof and WRKY transcription
factors in the gene promoters (Fig. 5e), underlying NLA1I
regulation potentially existed. In addition, BnamiR827 was
up-regulated by N limitations (Fig. 6d) and its target sites
were observed in the BnaNLA1 sequences (Fig. 6b, c),
which was potentially involved in the post-transcriptional
and translational repression of BnaNLAIs. AtNRT1.7 is
expressed preferentially in the phloem of the leaf minor
veins and mediates the remobilization of excess NO;~ from
older leaves to younger ones [4]. Nonetheless, among the
six BnaNRT1.7 homologs, four were expressed dominantly
in the shoots whereas the other two were expressed mainly
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in the roots (Fig. 7); they might be also involved in the root
phloem N remobilization. Moreover, we also predicted
several lysine amino acid residues as potential targets
that were identified by the E3 ubiquitin ligase NLAI.
Our findings suggested that, under N limitations, the in-
volvement of BnamiR827-BnaNLA1-BnaNRT1.7 regulatory
circuit might be involved in leaf N remobilization as well as
in the efficient re-translocation of root phloem N of rape-
seed plants. Overall, during the allopolyploidy process, the
BnamiR827-BnaNLA1-BnaNRT1.7 not only maintained
their intrinsic roles in NLA, but also developed a novel
function in regulating efficient N metabolism.

Proposed model of the molecular strategies involving N
limitation adaptation in allotetraploid rapeseed

Under limited N stresses, plants usually develop a series of
multifaceted adaptive responses, including physiologic, bio-
chemical, transcriptional and proteomic alterations [40].
Based on the physiologic, genomic and transcriptional find-
ings, we proposed a model to elucidate the molecular strat-
egies that were used by rapeseed plants to enhance the
NLA of plants (Fig. 9). Under N limitations, both the
dual-affinity BnaNRTI1.1 s and high-affinity BnaNRT2.1 s
were up-regulated to increase root N uptake. Further, the
increased N xylem loading co-regulated by BnaNRT1.5 s
and BnaNRT1.8 s contributes to efficient N translocation
to the shoots, fulfilling the N requirement for photosyn-
thesis. In the shoots and roots, the induction of BnamiR827
repressed the expression of BnaNLAIs, and relieved the
ubiquitin-mediated degradation of BnaNRT1.7 s, which is
favorable for the efficient remobilization of N resources.
Eventually, the enhanced activity of GS facilitated N assimi-
lation to provide amino acids required for plant growth.
Taken together, when under N deficiency stresses, the
plants would develop a set of systematic responses involv-
ing efficient N uptake, translocation, remobilization and as-
similation to enhance their adaptability to N limitations.

Conclusions

In this study, we first made an integrated analysis of
physiologic, genomic and transcriptional insights into the
adaptive strategies of rapeseed plants to N limitations, and
found numerous functional genes, in allotetraploid rape-
seed, that diverged from those in the model Arabidopsis.
The transcriptomics-assisted gene co-expression networks
involving the genes that regulate N homeostasis provide
central gene resources for the genetic improvement of
crop NLA and NUE.

Methods

Quantification of chlorophyll, anthocyanin and N
concentrations

The B. napus seedlings were hydroponically grown ac-
cording to a randomized complete block design using
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the Hoagland solution, which was constantly aerated [45]. The NO;3;™ concentrations in the roots and leaves of
throughout the experiments and refreshed every 5 d  rapeseed plants were determined spectrophotometrically at
[41]. The culture regimes of light and temperature were 410 nm according to Patterson et al [46] Total N concen-
set as follows: 300-320 pmol m™ > s~ % 24 °C daytime/ trations of rapeseed were assayed with the method reported
22 °C night; 16 h photoperiod). by Wang et al [47] In this study, NUE = total biomass/total
For the NO3 -depletion treatments, the rapeseed seed- N accumulation according to Li et al. [48].
lings of the cultivar “Xiang-you 15” (“XY15”) that were To identify natural variations in the adaptabilities of
hydroponically grown under high NO3™ (9.0 mM) for 10  rapeseed genotypes to N limitation, we subjected a panel
d were then transferred to low NO3™ (0.30 mM). At 0 h, that comprises 102 accessions to hydroponic culture.
3 h and 72 h, the shoots and roots of the “XY15” seedlings  The rapeseed plants that were grown under sufficient
were individually sampled. The SPAD values of older leaves (9.0 mM) NOj3™ for 10 d were then transferred to limited
were measured using a SPAD-502 Chlorophyll Meter N (0.3 mM NOj") supply for 5 d, which was used for
(Konica Minolta, Tokyo, Japan). The anthocyanin concen-  the assessment of low-N tolerance based on the SPAD
tration in the leaves of rapeseed seedlings was assayed ac-  values.
cording to the method described by Mancinelli et al [42] N In this study, all the seeds of rapeseed plants were ob-
metabolism in plants is tightly linked to the activity of tained from the research group led by Prof. Chun-yun
several key enzymes, such as nitrate reductase (NR, EC  Guan (Hunan Agricultural University, Hunan Province,
1.7.99.4) and glutamine synthetase (GS, EC 6.3.1.2) [43].  China).
For NR activity determination, the fresh roots and leaves
were ground to fine powder (~ 100 mg), and then were Transcriptional characterization of rapeseed responses to
extracted and determined spectrophotometrically as de- N limitations
scribed by Ehlting et al. [44]. The glutamine synthetase ac-  Regarding the NO3z -depletion treatments, the seedlings
tivity was assayed with the method reported by Wang et al.  of the rapeseed cultivar, “XY15”, that were hydroponically
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grown under high NO3;~ (9.0 mM) for 10 d were then
transferred to low NO3™ (0.30 mM). After exposure to low
NO;~ for 0 h, 3 h and 72 h, the shoots and roots of the
“XY15” seedlings were individually sampled, and a total of
18 tissue samples were collected for mRNA sequencing
(RNA-seq). Regarding the NO3™ resupply treatments, the
“XY15” seedlings that were hydroponically grown under
high NO3™ (9.0 mM) for 9 d were transferred to
NOj; -free solution for 3 d. The seedlings were sam-
pled after supplied with 9.0 mM NOj;™ for 6 h, and
12 samples were collected for RNA-seq analysis.

The leaves and roots of rapeseed seedlings above-men-
tioned were individually harvested, and three independent
biological replicates for each tissue. Total RNA, which was
isolated using the pre-chilled RNAiso plus (Takara Bio Inc.,
Kusatsu, Shiga, Japan), were subjected to the assessment of
RNA integrity number (RIN). A total of 30 RNA samples
(~ 2.0 pg) with the RIN values > 8.0 were used to construct
strand-specific ¢cDNA libraries, which were used for the
high-throughput transcriptomic sequencing on a lane of an
[lumina Hiseq 4000 platform (read length = 150 bp, paired
end). The gene expression were normalized using the Frag-
ments Per Kilobase of exon model per Million mapped
reads (FPKM) values, and the criteria for false discovery
rate <0.05 and absolute values of log,(fold-change) >1
were used to characterize gene differential expression
[49]. Analyses of gene ontology (GO) and metabolic
route enrichment for the differentially expressed genes
(DEGs) were performed using PANTHER (http://
www.pantherdb.org/) [50] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (http://www.kegg,jp/) [51], re-
spectively. Heat maps that show gene expression profiling
were delineated by Multiexperiment Viewer (Mev, http://
www.mybiosoftware.com/mev-4-6-2-multiple-experiment--
viewer.html) [52]. We established gene co-expression net-
works  using CYTOSCAPE v. 321  (http://
www.cytoscape.org/) [53], which were used to characterize
the core genes involving the response of oilseed rape to N
limitation. For each gene pair, the Pearson coefficient thresh-
old was set based on the defaults (http://plantgrn.noble.org/
DeGNServer/Analysis.jsp).

Retrieval of genomic, coding and amino acid sequences
of target genes

The Ath-MIR827 (At3g59884), AtNLAI (At1g02860),
AtNLA2 (At2g38920) and AtNRT1.7/AtNPF2.13 (Atlg
69870) gene sequences were used as the seed sequences,
and BLASTn and BLASTp analyses were conducted to
search the homolog sequences in B. rapa, B. oleracea, B.
napus and other plant species. The databases used in this
study included TAIR (https://www.arabidopsis.org/) for
A. thaliana, the Brassica Database v. 1.1 (http://brassi
cadb.org/brad/) [9, 54], EnsemblPlants (http://plants.en
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sembl.org/Brassica_oleracea/Info/Index), NCBI (www.ncbi.
nlm.nih.gov) and Phytozome v. 10 (http://phytozome.jgi.
doe.gov/pz/portal.html) [55]. InterProScan5 (http://www.ebi.
ac.uk/interpro/search/sequence-search) [56] and the con-
served domain database (http://www.ncbi.nlm.nih.gov/Struc
ture/bwrpsb/bwrpsb.cgi) [57] were used to determine the
absence/presence of the SPX (Pfam PF03105) and RING
motifs (PLN00028).

Multiple sequence alignment and phylogeny analysis
Full-length sequences of proteins were aligned using Clustal
W within Molecular Evolutionary Genetics Analysis
(MEGA) v. 7.0.26 (http://www.megasoftware.net/) [58].
After these alignments, the phylogenetic trees were
constructed with the neighbor-joining method [59].
Complete deletion was used for the analysis of sequence
gaps and missing data, and the Poisson correction model
was used to compute the phylogeny distance. We con-
ducted a bootstrap analysis with 1,000 replicates to exam-
ine the statistical reliability of the phylogeny relationships
and nodes with a bootstrap threshold value of 50%. The
structural divergence among the proteins in A. thaliana
and Brassica crops was determined by subjecting the
full-length sequences of amino acids to the Multiple Em
Motif Elicitation (MEME) online program v. 4.12.0
(http://meme-suite.org/tools/meme) [60] to characterize
the conserved motifs/domains with the default
parameters.

Physio-chemical characterization of the NLA and NRT1.7
proteins

ExPASy ProtoParam (http://www.expasy.org/tools/prot
param.html) was used to identify the amino acid number
and composition, molecular weight (MW, KD), theoret-
ical isoelectric point (pI), grand average of hydropathy
(GRAVY), and instability index of the NLA proteins. An
instability index >40 indicates that the protein is unstable.
WoLF PSORT (http://www.genscript.com/wolf-psort.html)
[61] was used to predict the subcellular localisation of the
NLA and NRT1.7 proteins. We subjected the amino acid
sequences to TMpred (https://embnet.vital-it.ch/software/
TMPRED_form.html) [62] for the characterization of
membrane-spanning regions and orientations.

Elucidation of protein ubiquitin sites and microRNA
target sites

The target sites of the NLA family genes recognised by
microRNAs were predicted using psRNATarget v. 2017
(http://plantgrn.noble.org/psRNATarget/analysis?function=2)
[31]. The mature sequence of BnamiR827 and its 200-bp
flanking genomic sequences extending from each side were
folded by using RNAFOLD v.2.2.9 [63]. The ubiquitin sites
of the BnaNRT1.7 proteins were predicted by UbPred:
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predictor of protein ubiquitination sites (http://www.
ubpred.org/) [64].

Analysis of evolutionary selection pressure and functional
divergence

The rates of synonymous (Ks) and non-synonymous (Ka)
nucleotide substitution, and Ka/Ks were calculated to
identify positive or negative (purifying) selection during
the gene evolution process. Pairwise alignment of the gene
coding sequences was performed using Clustal W (http://
www.clustal.org/clustal2/) [65], and then the readout was
subjected to KaKs_Calculator (https://sourceforge.net/
projects/kakscalculator2/) [66] to calculate the Ka, Ks, and
Ka/Ks with the yn00 method [67]. Generally, Ka/Ks > 1.0
denotes the occurrence of positive selection, while
Ka/Ks < 1.0 indicates purifying selection, and Ka/Ks =
1 indicates neutral selection [68]. The formula T = Ks/
22 (\=1.5x10"2 for Brassicaceae) [69] was used to
judge the time of gene divergence.

Gene functional divergence between the NLAI and
NLA2 clusters was estimated using DIVERGE v. 3.0
(http://xungulab.com/software/diverge3/diverge3.html)
[70]. The level of type-II functional divergence is referred
to as the Oy coefficient. If 8y =0, it indicates no type-II
functional divergence; however, 0;; =1 shows a very sig-
nificant divergence.

Identification of putative cis-acting regulatory elements
(CREs) in the gene promoters

For each gene, a 2.0-kb genomic sequence upstream from the
start codon (ATG) was downloaded from the B. napus
Genome Browser (http://www.genoscope.cns.fr/brassicana-
pus/) [9]. These sequences were subjected to plantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)
[71] to identify putative CREs, which were illustrated using
the word cloud generator WordArt (https://wordart.com/).

Quantitative reverse-transcription PCR (qRT-PCR) assays
After treatment of RNA samples with RNase-free DNase
I, the total RNA was used as the templates for cDNA
synthesis with the PrimeScript™ RT reagent Kit with
gDNA Eraser (Perfect Real Time) (TaKaRa, Shiga, Japan).
The stem-loop reverse transcription PCR was used in the
qRT-PCR experiments for miR827 according to Chen et al.
[72], and the BnaU6 small nuclear RNA (snRNA) was used
as an internal control for each reaction [73]. The following
primers were used for reverse transcription of BnamiR827:
GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACT
GGATACGACTATTTG, and the Bnall6 snRNA was re-
verse transcribed using random primers.

The qRT-PCR assays for the detection of relative gene
expression were performed using SYBR® Premix Ex Taq™
II (Tli RNaseH Plus) (TaKaRa, Shiga, Japan) under an
Applied Biosystems StepOne™ Plus Real-time PCR System
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(Thermo Fisher Scientific, Waltham, MA, USA). The ther-
mal cycles were as follows: 95 °C for 3 min, followed by
40 cycles of 95 °C for 10 s, and 60 °C for 30 s. The melt
curve analysis was conducted as follows to ensure the pri-
mer gene-specificity: 95 °C for 15 s, 60 °C for 1 min, and
60-95 °C for 15 s (+ 0.3 °C per cycle). Expression data of
the BnaNLA and BnaNRT1.7 family genes were normal-
ized using the public reference genes BnaEFI-a [74] and
BnaGDI1 [75], and the relative gene expression was calcu-
lated with the 2722, method [76]. The gene-specific
primers of BnamiR827, BnaNLAs and BnaNRT1.7 s for
qRT-PCR assays are listed in Additional file 1: Table S1.

Statistical analysis

For statistical tests, the significant difference was deter-
mined by one-way analysis of variance (ANOVA), which
was followed by Tukey’s honestly significant difference
multiple comparison tests using the Statistical Produc-
tions and Service Solutions 17.0 (SPSS, Chicago, IL, USA).

Additional file

Additional file 1: Table S1. Gene-specific Primers used for qRT-PCR
assays in this study. Table S2. Overview of the high-throughput RNA-seq
data of the short-term and long-term nitrogen limitation experiments.
Table S3. Evolutionary selection pressure analysis of the BnaNLA family
genes. Table S4. Molecular characterization of the BnaNLA family proteins
in Brassica napus. Table S5. Molecular characterization of the BnaNRT1.7/
BnaNPF2.13 family proteins in Brassica napus. Figure S1. Copy number of
the NLAT and NLA2 family genes in diverse plants species. Figure S2.
Hypothetical evolutionary processes and expansion events of the NLA
family genes in A. thaliana and Brassica crops. Figure S3. Analysis of
phylogenetic relationships and functional divergence of the NLA proteins.
Figure S4. Molecular characterization of the expression pattern of BnaNLA2s
under different N supply. Figure S5. Hypothetical evolutionary processes
and expansion events of the NRTT.7 family genes in A. thaliana and Brassica
crops. Figure S6. Analysis of phylogenetic relationships and conserved
motifs of the NRT1.7 proteins. (DOCX 855 kb)
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