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Abstract

Background: Fruits of persimmon plants are traditional healthy food in China, Korea and Japan. However, due
to the shortage of morphological and DNA markers, the development of persimmon industry has been heavily
inhibited.

Results: Chloroplast genomes of Diospyros cathayensis, D. virginiana, D. rhombifolia and D. deyangensis were newly
sequenced. Comparative analyses of ten chloroplast genomes including six previously published chloroplast
genomes of Diospyros provided new insights into the genome sequence diversity and genomic resources of
the genus. Eight hyper-variable regions, trnH-psbA, rps16-trnQ, rpoB-trnC, rps4-trnT-trnL, ndhF, ndhF-rpl32-trnL, ycf1a,
and ycf1b, were discovered and can be used as chloroplast DNA markers at/above species levels. The complete
chloroplast genome sequences provided the best resolution at inter-specific level in comparison with different
chloroplast DNA sequence datasets.

Conclusion: Diospyros oleifera, D. deyangensis, D. virginiana, D. glaucifolia, D. lotus and D. jinzaoshi are important wild
species closely related to the cultivated persimmon D. kaki. The hyper-variable regions can be used as DNA markers
for global genetic diversity detection of Diospyros. Deeper study on these taxa would be helpful for elucidating the
origin of D. kaki.
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Background
Diospyros is the largest genus in the family Ebenaceae,
including more than 400 species all over the world, with
a wide distribution and cultivation from tropical to tem-
perate zones. Their fruits have been traditional healthy
food source in China, Korea and Japan. Ebony trees are
valued for their hard, heavy and dark timber. In addition,
the bark, leaves, wood, fruits and seeds of several species
are the main sources of medicines. Diospyros kaki is an
important economic tree crop and widely cultivated spe-
cies of the genus [1, 2].

In China, cultivation of persimmon plants (Diospyros
kaki) for edible fruits and Chinese medicine is commonly
one of the best choices for regional development of char-
acteristic fruit tree industry, with different regions having
different cultivars. At present, there are about 1000
persimmon cultivars in China. Most of the extant persim-
mon cultivars are elite plants from natural seedlings
or bud mutation. Among these cultivars, a majority is
of the pollination- constant and astringent (PCA)
type, pollination-constant and non-astringent (PCNA)
type of premature persimmon and disease-resistant
cultivars are rarer and are highly desirable. In general,
closely related wild species possess elite genetic back-
ground for qualitative improvement and high-yield
breeding of the persimmon crops [1, 2].
Breeding of woody Diospyros plants is time-consuming,

commonly around ten years being necessary for evaluating
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the performance of a hybrid plant. Due to the difficulty of
identifying the Diospyros germplasm resource diversities,
directive breeding through artificial hybridization is se-
verely inhibited. Therefore, accumulation of genetic infor-
mation for revealing the genetic diversity of Diospyros
plants is in urgent need.
The germplasm resources of Diospyros plants have

been documented in aspects of the use and phenotypic
characteristics, such as fruit morphology, fruit color,
fruit quality and floral characteristics. Diospyros plants
have four ploidy levels (2n = 2× = 30; 2n = 4× = 60; 2n =
6× = 90; 2n = 9× = 135) according to their chromosome
number [1–7]. However, due to the shortage and limited
sensitivity of phenotypic and DNA markers, study on gen-
etic differentiation detection techniques for the huge
amount of Diospyros plants worldwide is still a global
challenge [8–12].
In Diospyros, molecular resources have been devel-

oped in recent years for species identification. Some
chloroplast genome markers (such as rbcL, matK,
trnH-psbA) and nuclear DNA markers (e.g., internal
transcribed spacer of ribosomal DNA, ITS) were used
to discriminate plants in Diospyros. However, these
markers are low in variability, or have limited reso-
lution and cannot reach the goals [3, 13–18]. Develop-
ment of more effective DNA barcodes is also important
for Diospyros plants.
The angiosperm chloroplast genomes are uniparen-

tally inherited with relatively stable structure [16, 17].
Accordingly, it is considered to be an informative and
valuable resource for plant phylogenetic analyses at
family/genus/species levels [16, 19–24]. In the past
decades, the chloroplast genomes have been proven to
be more powerful in revealing phylogeny of plants and
resolving previously ambiguous taxonomic and phylo-
genetic issues [16–28].
In this study, we report newly sequenced complete

chloroplast genomes of D. cathayensis, D. deyangensis,
D. rhombifolia and D. virginiana. The aims of our study
are: (1) to evaluate the variation in Diospyros; and (2) to
develop new and efficient cpDNA markers for species
identification in Diospyros.

Methods
Sampling and DNA extraction
The fresh leaves of the Diospyros taxa were collected in
spring 2016 from the Beijing Botanical Garden of Chinese
Academy of Sciences and the National Field Genbank for
Persimmons of College of Horticulture, Northwest A&F
University, Yangling, Shaanxi, China and were dried im-
mediately using silica gels for DNA extraction. Total gen-
omic DNAs were extracted following the procedure of
Plant Genomic DNA Kit (DP305) from Tiangen Biotech
(Beijing) Co., Ltd., China.

Chloroplast genome sequencing, assembling and
annotation
DNA was sheared to fragments of 400–600 bp with an
ultrasonic disruptor. An Illumina paired-end library was
constructed with the NEBNext® Ultra™ DNA Library
Prep Kit according to the manufacturer’s protocol.
Paired-end sequencing (2 × 150 bp) was conducted on
an Illumina HiSeq 4000 platform. The high-throughput
sequencing data were qualitatively assessed and assem-
bled using SPAdes 3.10.1 [29]. Using the chloroplast
genome sequence of Diospyros kaki (GenBank accession
No. KT223565) as a reference sequence, we selected
chloroplast genome contigs using the BLAST method.
The contigs of the chloroplast genomes were assembled
using Sequencher (v5.4) with default parameters. Am-
biguous nucleotides or gaps and the four junction re-
gions between the IRs and SSC/LSC in the chloroplast
genome sequences were further confirmed by PCR ampli-
fication and Sanger sequencing with specific primers or
the universal primers [20]. After that, all reads were
mapped to the spliced chloroplast genome sequence using
Geneious 8.1 [30] to avoid assembly errors. Chloroplast
genome annotation was performed using the Dual
Organellar Genome Annotator (DOGMA) [31]. The
chloroplast genome map was drawn using Genome
Vx software [32].

Analysis of tandem repeats and single sequence repeats
in chloroplast genomes
MISA (MIcroSAtellite; http://pgrc.ipk-gatersleben.de/misa)
was used to detect simple sequence repeats (SSR) within
the chloroplast genomes. Thresholds for a minimum
number of repeat units were established as follows: > 10
for mono-nucleotide, > 5 for di-nucleotide, > 4 for
tri-nucleotide, and > 3 for tetra-nucleotide, penta-nucleotide,
or hexa-nucleotide SSR. Repeating sequences were
scanned over the complete chloroplast DNA sequences,
taxon by taxon, using the REPuter program.

Sequence divergence analysis in chloroplast genomes
Four newly sequenced chloroplast genomes and six chloro-
plast genomes from GenBank were aligned using MAFFT
[33] and manually adjusted using Se-Al 2.0 [34]. Variable
and parsimony-informative base sites and genetic distance
across the complete chloroplast genomes were calculated
using MEGA 6.0 software [35]. Sliding window analysis was
conducted to generate nucleotide diversity (Pi) of the
chloroplast genomes using DnaSP (DNA Sequences Poly-
morphism version 5.10.01) software [36]. The step size was
set to 200 bp, with a 600 bp window length.

Chloroplast DNA barcoding analysis
Distance and tree based methods were used to evaluate
discriminatory power of detected hyper variable regions

Li et al. BMC Plant Biology  (2018) 18:210 Page 2 of 11

http://pgrc.ipk-gatersleben.de/misa


and core DNA barcodes rbcL and matK. The function
nearNeighbour of SPIDER was used for Distance method
barcoding analyses [37]. Neighbor-Joining (NJ) trees were
constructed by each hyper-variable marker and the differ-
ent marker combinations using MEGA 6.0 based on a
K2P distance model [35]. Relative support for the clades
of the NJ tree was assessed via 1000 bootstrap replicates.

Phylogenetic analysis based on chloroplast genome
sequence data
Phylogenetic trees were constructed by Maximum
Parsimony (MP), Maximum Likelihood (ML) and Bayesian
Inference (BI) using the entire chloroplast genome.
MP analyses were performed using PAUP v4b10 [38]

described in Dong et al. [24]. The ML analyses were
conducted using RAxML 8.0 [39]. For ML analyses, the
best-fit model, General Time Reversible, with gamma
distribution (GTR +G) was used as suggested with 1000
bootstrap replicates. BI method was conducted with
MrBayes v3.2 [40]. The Markov Chain Monte Carlo
(MCMC) analysis was run for 2 × 5,000,000 generations
with trees sampled every 1000 generations, with the first
25% discarded as burn-in. The remaining trees were
used to build a 50% majority-rule consensus tree. The
stationarity was regarded to be reached when the aver-
age standard deviation of split frequencies remained
below 0.01.

Results
Chloroplast genome characterization
Previous experiments indicated that chloroplast genome
sequences are identical among individual plants of the
same species. Therefore, we sequenced four taxa of
Diospyros (D. cathayensis, D. virginiana, D. rhombifolia
and D. deyangensis) using an Illumina Hiseq 4000 system,
20,675,288 to 33,584,779 paired-end raw reads were
obtained (average read length was 150 bp). After mapping
the paired-end reads of each Diospyros taxon, 357,721 to
1,338,624 reads were extracted, yielding 340 × to 1271 ×
coverage (Table 1). The inverted repeat (IR) junction re-
gions in assembled sequences were confirmed by using
PCR-based sequencing. High quality chloroplast genome
sequences were thus obtained and were used for down-
stream analyses. The four Diospyros chloroplast genome
sequences were deposited in GenBank (accession num-
bers, MF288575- MF288578).

The ten complete chloroplast genomes of Diospyros
investigated in this study ranged from 157,300 base
pairs (D. jinzaoshi) to 157,934 base pairs (D. deyangen-
sis) in length. All the chloroplast genomes possessed
the typical quadripartite structure of angiosperms, con-
sisting of a pair of the inverted repeat region (IRs:
25,910–26,119 bp) separated by a large single-copy re-
gion (LSC: 86,948–87,246 bp) and a small single-copy
region (SSC: 18,076–18,485 bp) (Fig. 1; Table 2). Each
of the complete chloroplast genomes possesses 113
unique genes arranged in the same order, including 79
protein-coding, 30 tRNA, and 4 rRNA genes. The GC
content of each chloroplast genome is identically 37.4%
(Table 2). The genomic structure including gene num-
ber and gene order was highly conserved within Dios-
pyros (Fig. 1; Table 2).

Comparative analysis of chloroplast genomes
The number of simple sequence repeats (SSRs) ranged
from 48 (D. cathayensis or D. rhombifolia) to 82 (D.
jinzaoshi) among the ten Diospyros taxa. The homo-
polymer repeat number with the highest variability,
ranged from 29 (D. cathayensis) to 70 (D. jinzaoshi),
while the number of di-nucleotide, tri-nucleotide or
penta-nucleotide repeats had no significant difference
among the ten Diospyros taxa (Fig. 2). The homopoly-
mer repeats represented the major source of genetic
diversity in Diospyros. In total, 505 SSRs were detected
in LSC region, 141 in SSC region and 26 in IR region
(Fig. 2).
Four repeat types were detected in the chloroplast ge-

nomes using REPuter software. Forward repeat number
ranged from 17 (D. kaki) to 22 (D. deyangensis), which
were found to have no significant difference among the
ten chloroplast genomes. Tandem repeat number
ranged from 20 (D. jinzaoshi) to 29 (D. virginiana).
Palindromic repeat number ranged from 18 (D. discolor
or D. virginiana) to 33 (D. kaki). The highest value of
palindromic repeat number which occurred in D. kaki
is significantly different from that of other taxa. The
highest tandem repeat number was observed in D.
virginiana (Fig. 3).
The lowest value (31) of nucleotide substitution

number was observed between D. glaucifolia and D.
lotus, while the highest value (1493) of nucleotide substi-
tution number occurred between D. cathayensis and D.

Table 1 Summary of the sequencing data for four Diospyros taxa

No. Taxon Raw data no. Mapped read no. Mapped to reference genome (%) Chloroplast genome coverage (×)

1 D. cathayensis 25,027,276 533,606 2.13% 508

2 D. deyangensis 33,584,779 1,338,624 3.99% 1271

3 D. rhombifolia 20,675,288 915,369 4.43% 873

4 D. virginiana 30,770,623 357,721 1.16% 340
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virginiana, showing a wider range of variability accord-
ing to the sequence alignment of the ten chloroplast ge-
nomes (Table 3).
The sequence distance between Diospyros taxa ranged

from 0.0002 to 0.0092. The smallest sequence distance
occurred between D. lotus and D. glaucifolia, and the
largest sequence distance occurred between D. virgini-
ana and D. cathayensis (Table 3). LSC region was the
most rapidly evolving region in the chloroplast genomes,

while the IR region was the most slowly evolving region.
The evolutionary rate of SSC region is moderate.

Phylogenetic analysis
Phylogenetic analyses indicated that all the ten taxa were
clearly discriminated and seven clades were recognized
among them (Fig. 4). The cultivars of Diospyros
belonged to one clade of D. kaki. The DNA sequence
data supported the isolated positions of D. deyangensis

Fig. 1 Gene map of Diospyros chloroplast genomes. The genes inside and outside of the circle are transcribed in clockwise and counterclockwise
directions, respectively. Genes belonging to different functional groups are shown in different colors. The thick lines indicate the extent of the
inverted repeats (IRa and IRb) that separate the genomes into small single-copy (SSC) and large single-copy (LSC) regions
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and D. jinzaoshi which were regarded previously as culti-
vars and have been suggested to rank to species level ac-
cording to morphological and DNA characteristics by
other recent researches [2–6]. The clade of D. oleifera and
D. deyangensis, and the clade of D. jinzaoshi included the
closest wild relatives of the cultivated persimmon plants

of D. kaki (Fig. 4). Relatively speaking, the clade of D.
lotus and D. glaucifolia, and the clade of D. virginiana
have close genetic relationships with D. kaki. D. lotus
and D. virginiana produce edible fruits, while D. glauci-
folia is mainly used for timber production. D. cathayen-
sis and D. rhombifolia that are genetically close with

Table 2 Complete chloroplast genome features of ten Diospyros taxa

Sample GenBank
accession No.

Genome
size (bp)

LSC length
(bp)

SSC length
(bp)

IR length
(bp)

Gene
content

Protein
coding genes

tRNA
genes

rRNA
genes

GC content
(%)

D. discolor KX426216 157,745 87,246 18,323 26,088 113 79 30 4 37.4

D. cathayensis MF288576 157,689 87,176 18,349 26,082 113 79 30 4 37.4

D. deyangensis MF288575 157,934 87,237 18,485 26,106 113 79 30 4 37.4

D. glaucifolia KM504956 157,610 86,965 18,407 26,119 113 79 30 4 37.4

D. jinzaoshi KM522848 157,300 87,010 18,076 26,107 113 79 30 4 37.4

D. kaki KT223565 157,784 87,059 18,505 26,110 113 79 30 4 37.4

D. lotus KM522849 157,597 86,948 18,411 26,119 113 79 30 4 37.4

D. oleifera KM522850 157,760 87,034 18,532 26,097 113 79 30 4 37.4

D. rhombifolia MF288578 157,368 87,223 18,325 25,910 113 79 30 4 37.4

D. virginiana MF288577 157,761 87,089 18,444 26,114 113 79 30 4 37.4

a c

b

Fig. 2 Comparison of simple sequence repeats among ten chloroplast genomes. a. Numbers of SSRs detected in ten Diospyros chloroplast
genomes; b. Frequencies of identified SSRs in LSC, IR and SSC regions; c. Numbers of SSR types detected in ten Diospyros chloroplast genomes
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each other formed one clade. This is identical with their
classification based on morphological characteristics. D.
discolor is genetically the most distant taxon from the
cultivated plants of D. kaki among the taxa investigated
in this study.

Chloroplast DNA marker development
According to the chloroplast genome sequence alignment
of the ten Diospyros taxa, eight hyper-variable regions,
trnH-psbA, rps16-trnQ, rpoB-trnC, rps4-trnT-trnL, ndhF,
ndhF-rpl32-trnL, ycf1a, and ycf1b were discovered (Fig. 5).
These eight sequences could be used as DNA markers for
classification and revealing the genetic divergence of the
Diospyros taxa, with a high discrimination success ranging

from 60 to 100% (Table 4), of which, the sequences of the
three most rapidly evolving regions (i.e., rps4-trnT-trnL,
ndhF-rpl32-trnL, and ycf1a) were able to discriminate all
the taxa investigated in this study.
In those most rapidly evolving regions, 72, 122 and 123

variable base sites were detected, respectively, of which,
39, 54 and 60 informative base sites, made up 2.52–2.80%
in each of the sequences. Comparatively, the commonly
recommended DNA fragments (rbcL and matK) achieved
only 40% and 80% of discrimination success respectively
(Table 4, Additional file 1: Figure S1).
Similar results were obtained when different methods

were used for phylogenetic tree reconstruction
(Additional file 1: Figure S1). The combined sequence

Fig. 3 Numbers of repeats in comparison among ten chloroplast genomes

Table 3 Numbers of nucleotide substitutions and sequence distance among the complete chloroplast genomes of ten Diospyros
taxa

Taxon D. kaki D. oleifera D. deyangensis D. jinzaoshi D. glaucifolia D. lotus D. virginiana D. cathayensis D. rhombifolia D. discolor

D. kaki 0.0022 0.0022 0.0032 0.0046 0.0046 0.0068 0.0082 0.0081 0.0078

D. oleifera 346 0.0003 0.0029 0.0043 0.0043 0.0065 0.0079 0.0078 0.0074

D. deyangensis 348 42 0.0029 0.0043 0.0043 0.0065 0.0079 0.0077 0.0074

D. jinzaoshi 500 449 447 0.0043 0.0043 0.0066 0.0080 0.0079 0.0074

D. glaucifolia 723 673 676 673 0.0002 0.0074 0.0089 0.0088 0.0083

D. lotus 725 674 677 676 31 0.0074 0.0088 0.0088 0.0083

D. virginiana 1060 1017 1018 1029 1160 1161 0.0092 0.0091 0.0088

D. cathayensis 1280 1229 1228 1245 1381 1378 1493 0.0011 0.0070

D. rhombifolia 1263 1210 1207 1223 1366 1363 1419 168 0.0069

D. discolor 1211 1154 1151 1158 1295 1297 1366 1087 1081

Notes: The lower triangle shows the number of nucleotide substitutions. The upper triangle indicates the number of sequence distance in complete
chloroplast genomes
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data from the eight hyper-variable cpDNA regions pro-
vided a well-resolved phylogenetic topology of the ten
Diospyros taxa, similar to the topology obtained using
complete chloroplast genome sequences, but with much
lower experimental cost (Fig. 6). All the nodes in the
phylogenetic tree received high bootstrap value (100%).

Discussion
Chloroplast genome variation and evolution
In this study, we sequenced four chloroplast genomes of
Diospyros using Illumina Hiseq-4000 platforms and
compared these genomes with the other six published
chloroplast genomes downloaded from GenBank. The

chloroplast genomes of Diospyros displayed the typical
quadripartite structure of flowering plants, were conser-
vative in gene order and gene content, in comparison
with the most lineages of angiosperms. The chloroplast
genomes ranged from 157,300 to 157,934 bp in length.
IR expansion and contraction and the occurrence of lar-
ger indels (insertion/deletion) are considered to be the
primary mechanisms affecting length variation of angio-
sperm chloroplast genomes. Only minor variations were
detected at the SC/IR boundaries of the ten Diospyros
chloroplast genomes. Occurrence of indels was the main
factor effecting the variation of the length in Diospyros
chloroplast genomes. Similar to previously published

Fig. 4 Phylogenetic relationships of ten Diospyros taxa inferred from Maximum Parsimony (MP), Bayesian Inference (BI), and Maximum Likelihood
(ML) analyses of the complete chloroplast genomes. ML topology shown with ML bootstrap support value/Bayesian posterior probability/MP
bootstrap support value given at each node. Nodes with 100 ML bootstrap support value/1.0 Bayesian posterior probability/100 MP bootstrap
support value are not marked

Fig. 5 Sliding window analysis of the whole chloroplast genomes of nine Diospyros taxa (window length: 600 bp, step size: 200 bp). X-axis:
position of the midpoint of a window; Y-axis: nucleotide diversity of each window

Li et al. BMC Plant Biology  (2018) 18:210 Page 7 of 11



chloroplast genomes of the angiosperms, the Diospyros
chloroplast genomes contained more AT content than
GC content.
Simple sequence repeats (SSRs) are genetically variable

molecular markers and are used widely in population gen-
etics [41, 42], polymorphism investigations, and phylogen-
etic analyses [43]. Using MISA, the SSRs in the ten
Diospyros chloroplast genomes were identified. The num-
ber of SSRs ranged from 48 to 82 in Diospyros, similar to
those in Lagerstroemia [28]. SSRs with AT richness have
been reported in other plants [44, 45]. Homopolymers are
the most common SSRs in chloroplast genomes. Since the
structure and organization of chloroplast genomes are
conservative, SSR primers are transferable across species,
genera, and even families. Information involving SSRs in
this study will provide useful sources for estimating the
genetic diversity and studying phylogenetic relationships
among species and genera.

Potential cpDNA barcodes
Diospyros is the largest genus in its family, including more
than 400 species all over the world. For effective
exploration, conservation, and domestication, accurately
identified wild species would provide a clear genetic back-
ground of this genus. However, the taxonomic inventory
of Diospyros still has a long way to go, because of the vast
amount of species with extensive global distribution and
the plasticity of the morphological characteristics. DNA
barcoding has been largely used as a new biological tool to
facilitate accurate species identification [46]. The two
chloroplast DNA regions, rbcL and matK, are recom-
mended as core universal DNA barcodes in plants. There-
fore, genomic comparative researches of more complete
chloroplast genome sequences have become necessary for
developing variable DNA barcodes. These mutation “hot-
spot” regions could provide adequate genetic information
for species identification, and can be used to develop novel

Table 4 Variability of nine hyper-variable markers and universal chloroplast DNA barcodes (rbcL and matK) in Diospyros

Marker Length
(bp)

Variable base sites Informative base sites Mean
distance

Discrimination success (%)
based on Distance methodNumber Percentage (%) Number Percentage (%)

trnH-psbA 1011 52 5.14 28 2.77 0.0178 80.0

rps16-trnQ 2184 122 5.59 65 2.98 0.0183 60.0

rpoB-trnC 885 46 5.20 22 2.49 0.0165 80.0

rps4-trnT-trnL 1469 72 4.90 39 2.65 0.0157 100.0

ndhF 1063 59 5.55 39 3.67 0.0166 80.0

ndhF-rpl32-trnL 2143 122 5.69 54 2.52 0.0182 100.0

ycf1a 2141 123 5.74 60 2.80 0.0181 100.0

ycf1b 1505 88 5.85 41 2.72 0.0177 80.0

Combined 12,401 684 5.52 348 2.81 0.0176 100.0

rbcL 1428 26 1.82 15 1.05 0.0057 40.0

matK 1512 46 3.04 24 1.59 0.0096 80.0

Fig. 6 Phylogenetic relationships of ten Diospyros taxa inferred from Maximum Parsimony (MP), Bayesian Inference (BI), and Maximum Likelihood
(ML) analyses using the chloroplast DNA sequences from eight hyper-variable regions
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DNA barcodes [19]. The eight potential mutational hot-
spots (trnH-psbA, rps16-trnQ, rpoB-trnC, rps4-trnT-trnL,
ndhF, ndhF-rpl32-trnL, ycf1a, and ycf1b) identified in this
study could be suitable barcodes for plant classification in
Diospyros. In previous study, ycf1 gene showed high diver-
gence in chloroplast genome and was recommended as
core DNA barcode for plants [22]. Ycf1 gene has been
more and more widely applied in plant phylogeny and
DNA barcoding studies [47–51]. TrnH-psbA, ndhF and
rps16-trnQ were popular candidates for phylogenetic stud-
ies [52, 53]. Rps4-trnT-trnL and ndhF-rpl32-trnL were
newly identified in this study.
Recently, using the chloroplast genome as a super-bar-

code for plant species identification was discussed [49].
The analyses on chloroplast genome sequence divergence
and phylogeny showed that the chloroplast genome may
indeed be useful as a super-barcode for species identifica-
tion of Diospyros (Table 3 and Fig. 4). Further research is
necessary to investigate whether these hyper-variable
regions or complete chloroplast genome sequences
could be used as reliable and effective DNA barcodes
for species of Diospyros. The results obtained in this
study have significant value for future studies on global
genetic diversity assessment, phylogeny, and population
genetics of Diospyros.

Perspectives of persimmon research in future
It is important and fundamental to develop efficient iden-
tification methods and elucidate the genetic relationship
of Diospyros taxa for planning breeding strategies, inten-
sive management and conservation of Diospyros germ-
plasm resources. The origin of D. kaki and its relationship
to other Diospyros species have been also hot issues
attracting scientists. Ng [54] suggested that D. oleifera was
a parent of D. kaki based on morphological, geographical
and cytological evidences. Yonemori et al. [55] suggested
that D. virginiana and D. kaki had close relationship, as
revealed by restriction fragment length polymorphism of
chloroplast DNA. However, Choi et al. [9] considered the
relationship between D. virginiana and D. kaki to be pos-
sibly phylogentically more remote than others.
The DNA evidences obtained in this study clearly sup-

port the previous taxonomic proposals that D. deyangen-
sis and D. jinzaoshi should be raised to species rank
based on morphological, molecular characteristics and
chromosome numbers [4, 9–12]. In the cpDNA–based
tree, the D. kaki lineage and the lineage including the di-
oecious D. deyangensis and the monoecious D. oleifera
shared a common furcation. Interestingly, the chromo-
some number of D. kaki (2n = 6× = 90) is equal to the
sum of the chromosome numbers of D. deyangensis
(2n = 4× = 60) and D. oleifera (2n = 2× = 30). This strongly
implied that cultivated D. kaki might be resulted from
a superposition event of genetic materials between D.

deyangensis and D. oleifera through certain genetic mech-
anism during the evolutionary history of Diospyros plants.
D. oleifera is naturally distributed south of the Changjiang
River in China, has strong adaptability and resistance to
wet condition, and has been used as rootstocks of D. kaki
in southern China. Its fruits can also be used for extrac-
tion of persimmon paint. D. deyangensis, naturally distrib-
uted in Sichuan Province, China, produces red flowers
and has fine hairs on the surface of the leaves, shoots,
fruits, and some parts of the flowers [7].
Diospyros rhombifolia and D. cathayensis are genetically

remote from D. kaki, being identical with the classification
based on phenotypic characteristics. D. rhombifolia could
not be used as rootstocks or inter-stocks because of its
dwarfing effect [2]. D. glaucifolia and D. lotus were clus-
tered together based on cpDNA sequences. They are very
similar in phenotypic characteristics [2, 5, 6, 55]. D. lotus
has made great contributions as rootstocks in persimmon
production areas of northern China because of its highest
cold resistance in the genus. The small fruits of D. lotus
have been used as food and Chinese medicine with a long
history. In southern China, the dioecious species D. glau-
cifolia is used to produce wood and could also be used as
rootstocks. The species boundary between D. lotus and D.
glaucifolia should be further studied by sampling more in-
dividual plants in future [2, 5, 6, 56].
Elucidation of the questions mentioned above would

definitely improve our understanding on phylogeny, rela-
tionship, and the origin of the cultivated persimmons in
Diospyros, and further accelerating directive breeding of
Diospyros plants.

Conclusion
Chloroplast DNA sequences can be used for classifica-
tion of Diospyros plants at inter-specific level. The
results obtained in this study implied that D. oleifera, D.
deyangensis, D. virginiana, D. glaucifolia, D. lotus and D.
jinzaoshi are important wild species closely related to
the cultivated persimmon D. kaki and deeper studies on
these taxa would be helpful for understanding the origin
of D. kaki. Our results have significant value for global
genetic diversity assessment, phylogeny, and population
genetics in Diospyros in future.

Additional file

Additional file 1: Figure S1. NJ trees of Diospyros taxa based on each
of the ten chloroplast barcodes, showing the resolutions of each different
locus for revealing the phylogeny. The figures above the lines are the
bootstrap support values for the clades. (PDF 506 kb)
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