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Abstract

Background: Black point is a serious threat to wheat production and can be managed by host resistance. Marker-assisted
selection (MAS) has the potential to accelerate genetic improvement of black point resistance in wheat breeding. We
performed a genome-wide association study (GWAS) using the high-density wheat 90 K and 660 K single nucleotide
polymorphism (SNP) assays to better understand the genetic basis of black point resistance and identify associated
molecular markers.

Results: Black point reactions were evaluated in 166 elite wheat cultivars in five environments. Twenty-five unique loci
were identified on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2),
respectively, explaining phenotypic variation ranging from 7.9 to 18.0%. The highest number of loci was detected in
the A genome (11), followed by the B (10) and D (4) genomes. Among these, 13 were identified in two or more
environments. Seven loci coincided with known genes or quantitative trait locus (QTL), whereas the other 18 were
potentially novel loci. Linear regression showed a clear dependence of black point scores on the number of favorable
alleles, suggesting that QTL pyramiding will be an effective approach to increase resistance. In silico analysis of
sequences of resistance-associated SNPs identified 6 genes possibly involved in oxidase, signal transduction and stress
resistance as candidate genes involved in black point reaction.

Conclusion: SNP markers significantly associated with black point resistance and accessions with a larger number of
resistance alleles can be used to further enhance black point resistance in breeding. This study provides new insights
into the genetic architecture of black point reaction.
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Background
Black point, characterized by dark discoloration at the
embryo end of kernels, occurs in most wheat growing
regions of the world including China, USA, Australia,
Canada and Serbia [1, 2]. It can downgrade end-use
quality of the grain due to seed discoloration [3]. Many
marketing authorities have regulations on the incidence
of black point, such as ≤4% in the USA, ≤ 5% in
Australia, and ≤10% in Canada [4], indicating that grain
with black point symptoms is more difficult to market

with consequent economic losses to producers. In addition,
black point can decrease the germination percentage and
cause impaired seedling development [4]. It can also lead to
the presence of toxic secondary metabolites, such as Alter-
naria mycotoxin and Alternariol monomethyl ether [5–7]
that may cause oesophageal cancer [8].
Many studies indicate that black point is enhanced by

abiotic stresses, as symptoms more likely occur after
exposure to high humidity and extreme temperatures
during grain filling [9, 10]. However, the causes of black
point remain unclear and contradictory. Fungi are
considered as the causal agents of black point [1]; these
include Alternaria alternata [5, 11], Bipolaris sorokiniana
[12] and Fusarium proliferatum [6]. However, direct
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association between the presence of fungi and black point
development has been discounted by some workers
[13–15], who pointed out that it may be caused by
enzymatic browning following stress. Oxidases, such
as peroxidases (POD) [15, 16], polyphenol oxidase
(PPO) [17, 18] and lipoxygenase (LOX) [19], that
catalyze oxidation of phenolic compounds to brown
or black pigments (melanins and quinines) [18, 20],
may be triggered by high humidity during the later
stages of grain filling. Susceptible varieties have higher
POD [15, 21] and phenylalanine ammonia-lyase (PAL)
(an enzyme involved in phenolic acid biosynthesis)
[21] activities.
Although several cultural, biological and chemical

control strategies have been used to control black point,
breeding resistant cultivars remains the most effective,
economic and environmentally sustainable approach to
control this disease [4, 22, 23]. Previous studies on the
known genetic basis of black point resistance involved
classical linkage-mapping methods using bi-parental
populations [22–24], in which only two allelic effects
can be evaluated for any single locus. Recent advances in
genomics, particularly development of the wheat 90 K
[25], 660 K (JZ Jia, pers. comm.) and 820 K SNP arrays
[26] have made it feasible to genotype large germplasm
collections with high-density SNP markers. As a result,
the GWAS based on linkage disequilibrium (LD) has
been widely adopted to investigate existing allelic
diversity for important and complex agronomic traits.
Compared with classical linkage-mapping, GWAS
permits a more representative gene pool and a higher
mapping resolution, because all historical meiotic events
that have occurred in the ancestors of a diverse
germplasm panel can be used [27]. Moreover, GWAS
bypasses the expense and time of developing mapping
populations, and enables the mapping of many traits in
one set of genotypes, making the method more efficient
and less expensive than linkage mapping [28]. Thus,
GWAS has become a powerful alternative approach for
linkage mapping [29]. GWAS has been applied to investi-
gate a range of traits, including disease resistance [30, 31],
end-use quality [32], and yield components [33–35].
The Yellow and Huai River Valleys Facultative Wheat

Region is one of the most important agricultural regions
of wheat production in China with an area of 15.3
million hectares. Black point has become one of the
important diseases in this region due to increased water
management and fertilizer use. Breeding for black point
resistance could be greatly improved by the identifica-
tion and use of closely associated molecular markers.
Although GWAS has become a powerful approach to
dissect the genetic architecture for many traits, it has
not been used to analyze traits related to black point. In
the present study, we used a diverse panel of 166 elite

wheat cultivars in GWAS to (1) dissect the genetic
architecture of black point resistance, (2) identify SNPs
significantly associated with black point resistance, and
(3) search for candidate black point resistance genes for
further study.

Results
Marker coverage and genetic diversity
A total of 18,920 SNPs from the 90 K and 283,652 from
the 660 K SNP array based on the consensus genetic
maps and physical map (IWGSC, http://www.wheatgen-
ome.org/) were chosen for GWAS of black point reac-
tion in 166 wheat cultivars (Additional file 1: Table S1).
After removing the SNPs with minor allele frequency
(MAF) < 5% (28,935 SNPs) and missing data >20%
(13,715 SNPs), 259,922 SNPs were employed for subse-
quent analysis (Additional file 2: Table S2). These
markers spanned a physical distance of 14,063.9 Mb,
with an average density of 0.054 Mb per marker. Total
of 89,519 (34.4%), 146,270 (56.3%) and 24,133 (9.3%)
markers were from the A, B and D genomes, respect-
ively, with corresponding map lengths of 4934.5, 5179.0
and 3950.4 Mb. The marker density for the D genome
(0.202 Mb per marker) was lower than that for the A
(0.099 Mb per marker) and B (0.042 Mb per marker) ge-
nomes. The average genetic diversity and polymorphism
information content (PIC) for the whole genome were
0.356 (0.009–0.500) and 0.285 (0.009–0.380), respectively.
Both the genetic diversity and PIC of the A (0.365 and
0.291) and B (0.363 and 0.289) genomes were higher than
the D (0.340 and 0.265) genome. The number of markers,
map length, genetic diversity and PIC for each chromosome
are shown in Additional file 2: Table S2.

Population structure and linkage disequilibrium
In the plot of K against ΔK, a break in the slope was
observed at K = 3 followed by flattening of the curve,
indicating that this panel consists of three subgroups,
which was consistent with the results of principal compo-
nents analysis (PCA) and neighbor-joining (NJ) tree ana-
lysis (Fig. 1). Subgroup I, the largest group with 62
accessions, was dominated by Shandong and foreign
cultivars; Subgroup II consisted of 54 accessions, mainly
comprising varieties from Henan, Anhui and Shaanxi
provinces; Subgroup III had 50 accessions, most of which
were from Henan province (Additional file 1: Table S1).
In total, 12,324 markers from the 90 K and 660 K SNP

arrays were used to evaluate LD decay for the whole
genome as well as the A, B and D genomes separately.
Around 14.3% of all pairs of loci were in significant LD
(P < 0.001) with average r2 of 0.174 on a genome-wide
level by the 90 K and 660 K SNP assays. The B genome
contained the highest percentage of significant markers
(44.2%), followed by the A (33.6%) and D (22.2%)
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genomes. The scatter plots of r2 against physical distance
(Mb) indicated a clear LD decay with increasing physical
distance (Additional file 3: Figure S1). According to [28],
the critical value for significance of r2 was evaluated at
0.079, 0.083, 0.095 and 0.082 for the A, B, D and whole
genomes, respectively. The point at which the LOESS
curve intercepts the critical r2 was determined as the
average LD decay of the panel [28]. Based on this criter-
ion, LD decay distance was about 8 Mb for the whole
genome. The highest LD decay was observed in the D
genome (11 Mb), followed by the A (6 Mb) and B
(4 Mb) genomes (Additional file 3: Figure S1).

Phenotypic variations for black point reaction in the field
Continuous variation was observed across five environ-
ments (Additional file 4: Figure S2; Additional file 5:
Table S3). The resulting best linear unbiased predictors
(BLUPs) for black point scores across all environments
ranged from 1.6 to 80.6% with an average of 23.3%
(Additional file 4: Figure S2; Additional file 6: Figure S3),
presenting a wide range of reactions for black point and
indicating that this diversity panel was ideal for conduct-
ing GWAS. Analysis of variance (ANOVA) for black
point scores revealed significant differences (P ≤ 0.001)
among genotypes (G), environments, and genotype × en-
vironment (G × E) interactions (Table 1). The broad
sense heritability (h2) estimate for black point scores
across all five environments was 0.62, indicating that
much of the phenotypic variation was derived from

genetic factors and therefore suitable for further associ-
ation mapping.

Marker-trait association (MTA) analysis
The MTAs analyzed by the mixed linear model (MLM)
in Tassel v5.0 [36] and the FarmCPU [37] were shown in
Additional file 7: Table S4 and Additional file 8: Table
S5, respectively. Twenty-five loci (221 MTAs) identified
by both the Tassel v5.0 and FarmCPU were considered
to be more reliable (Table 2, Additional file 9: Table S6);
these were distributed on chromosomes 2A, 2B, 3A, 3B
(2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B
and 7D (2), respectively (Table 2, Additional file 9: Table
S6), explaining phenotypic variation ranging from 7.9 to
18.0%. Among these loci, 13 on chromosomes 2A, 2B,
3A, 3B (2), 3D, 4B, 5A (2), 5B, 7A, 7B and 7D were
detected in two or more environments (Table 2,
Additional file 9: Table S6). The maximum number of

Fig. 1 Population structure analysis of 166 wheat accessions. a Estimated ΔK over five repeats of structure analysis; b three subgroups inferred by
structure analysis; c neighbor-joining (NJ) tree; d principal components analysis (PCA) plots

Table 1 Analysis of variance of black point scores in 166
wheat accessions

Source of variation df Mean square F value

Replicates (nested in environments) 9 3896 7.4***

Environments 4 499,230 480.6***

Genotypes 165 5326 35.3***

Genotypes × Environments 660 798 4.9***

Error 1650 153

***significant at P < 0.0001
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loci were found in the A genome (11), followed by the B
genome (10), whereas only four loci were identified in
the D genome (Table 2; Additional file 9: Table S6).
Kinship-adjusted Manhattan plot summarizing the

analysis of black point scores by Tassel v5.0 and FarmCPU
are shown in Fig. 2 and Fig. 3, respectively. The quantile-
quantile (Q-Q) plot representing expected and observed
probabilities of getting associations of SNPs by Tassel v5.0
and FarmCPU are presented in Additional file 10: Figure
S4 and Additional file 11: Figure S5, respectively. The LD
patterns along 2A, 2B, 3A, 3B, 4B, 5A, 5B, 6A, 6B, 6D, 7A,
7B and 7D can be visualized as heatmaps in
Additional file 12: Figure S6.

Relationship between black point reaction and the
number of resistance alleles
To further understand the combined effects of alleles on
reaction to black point, we examined the number of
favorable alleles in each accession. The numbers of
favorable alleles in single accessions ranged from 5 to
21, compared to 4 to 20 unfavorable alleles (Additional file 1:
Table S1). The relationships between black point BLUP
values and numbers of favorable and unfavorable alleles
estimated by linear regression showed a dependence of
black point BLUP values on the number of favorable alleles
with r2 = 0.85 (Fig. 4a), and number of unfavorable alleles
with r2 = 0.85 (Fig. 4b). Thus, accessions with more

Table 2 Loci for black point resistance in 166 wheat accessions identified by both the Tassel v5.0 and FarmCPU

Markera Chrb Physical intervalc (bp) Environment d SNPe P-valuef R2g (%) QTL/geneh

IWB22408 2A 709,831,643-709,831,743 E1, E2, E3, E4, E6 T/C 1.2–9.8 E−04 7.9–14.7 QBp.caas-2AL [23]; QPPO.caas-2AL [55]

PPO-A1 2A 712,188,721–712,187,200 E1, E2, E3, E4, E6 – 2.4–5.5 E−04 9.9–11.6 PPO-A1 [56]

AX_108,951,749 2B 714,389,068–714,388,998 E2, E3, E4, E6 T/C 2.0–7.3 E−04 8.8–11.5 QBp.caas-2BL [23]

AX_111,053,669 3A 9,605,904–9,605,974 E2, E3, E4, E6 A/G 2.4–8.6 E−04 8.3–10.4

AX_108826477 3B 58,767,930–58,768,000 E1, E3 A/C 1.5–9.7 E−04 7.9–11.0

AX_108,797,097 3B 695,967,481–695,967,411 E1, E2, E3, E6 A/G 1.2–9.6 E−04 8.0–11.9 QBp.caas-3BL [23]

AX_110941533 3D 4,066,092–4,066,162 E2, E3, E4, E6 A/C 4.1–9.4 E−04 8.2–9.7

AX_108983386 4B 6,961,084–6,961,154 E5 C/G 1.7–9.4 E−05 8.0–10.5

AX_111488843 4B 504,944,902–504,944,832 E1, E2, E3, E6 A/T 7.0 E−06-2.6 E−04 9.9–15.5

IWB8709 5A 32,887,598–32,887,698 E3 A/G 1.9–5.3 E−04 8–8.9 QBp.caas-5AS [23]; QPod.caas-5AS [57]

AX_109316564 5A 535,780,381–535,780,311 E1, E3, E6 T/G 4.8–9.9 E−04 8.1–11.4

IWA2223 5A 592,276,555–592,276,708 E1, E2, E3, E4, E6 A/G 3.4 E−06-9.4 E−04 8.0–18.0

IWA5214 5B 302,177,272–302,177,428 E2 A/C 8.60 E−04 8.1

AX_110617778 5B 531,539,253–531,539,323 E2, E3 A/T 1.4–9.5 E−04 8.0–11.5

AX_110056162 5B 556,183,885–556,183,955 E5 T/C 4.2–7.3 E−04 8.3–11.0

AX_108,821,301 6A 94,2114,60–94,211,390 E4 C/G 1.4–8.0 E−04 9.1–11.2 QBp.caas-6A [23]

AX_110578177 6B 676,210,414–676,210,344 E1 A/T 4.2–5.1 E−04 8.6–8.9

AX_109359792 6D 217,194,463–217,194,533 E4 A/G 6.30 E−04 8.5

AX_111086566 7A 88,862,791–88,862,721 E1, E6 T/C 2.2–8.8 E−04 8.6–11.6

AX_108743156 7A 136,398,412–136,398,482 E4, E5, E6 A/G 5.0–9.8 E−04 7.9–9.2

AX_109,311,326 7A 609,508,901–609,508,971 E2 T/C 8.50 E−04 8.2 QBp.caas-7AL.2 [23]

AX_111042346 7A 670,876,731–670,876,661 E5, E6 C/G 2.6–4.9 E−04 9.0–12.8

AX_109491960 7A 70,8211,110–708,211,040 E4 A/C 1.7–9.1 E−04 8.4–11.2

AX_108870509 7B 729,224,017–729,224,087 E1, E2, E3, E6 A/G 3.0 E−05-8.6 E−04 8.0–13.0

AX_109370330 7D 129,917,622–129,917,692 E1, E3 A/C 5.2–9.5 E−04 8.7–9.6

AX_109033824 7D 615,826,844–615,826,914 E5 A/C 8.30 E−04 8.2
aRepresentative markers at the resistance loci
bChr: Chromosome
cThe physical positions of SNP markers based on wheat genome sequences from the International Wheat Genome Sequencing Consortium
(IWGSC, http://www.wheatgenome.org/)
dE1: Anyang 2013; E2: Anyang 2014; E3: Anyang 2015; E4: Suixi 2013; E5: Suixi 2014; E6: Best linear unbiased prediction (BLUP) calculated from all five
environments. The data from the results of Tassel v5.0
eFavorable allele (SNP) is underlined
fThe P-values were calculated by the Tassel v5.0
gPercentage of phenotypic variance explained by the MTA from the results of Tassel v5.0
hThe previously reported QTL or genes within the same chromosomal regions

Liu et al. BMC Plant Biology  (2017) 17:220 Page 4 of 12

http://www.wheatgenome.org


favorable alleles and less unfavorable alleles were more
resistant to black point.

Discussion
The diversity panel, including released cultivars,
advanced lines and landraces from different ecological
regions, thus had a high genetic diversity with a wide
range of reaction to black point. Our data showed that
86.1% (143) of the 166 accessions were susceptible to
black point (black point score > 10%), indicating that
black point is a considerable threat to wheat production
throughout the world. However, most of the previous
studies for black point were mainly conducted on patho-
gen identification, biological characteristics, disease cycle
and control [7, 13, 38]. Thus, it is necessary to select
cultivars highly resistant to black point and to identify
markers significantly associated with resistance to facili-
tate breeding for resistance by MAS.

Genetic diversity, population structure and linkage
disequilibrium
The mean genetic diversity and PIC of 0.356 and 0.285,
respectively, indicated higher polymorphism than in pre-
vious reports [39, 40]. Our diversity panel thus has high

genetic diversity and approximately reflected the genetic
diversity in winter wheat from the Yellow and Huai
River Valleys Facultative Wheat Region. More than 56%
of SNPs had PIC of 0.20–0.40, which is deemed as a
suitable range for GWAS [41]. Furthermore, the A and
B genomes had higher genetic diversity and PIC than
the D genome, consistent with previous reports [30, 40]
(Additional file 2: Table S2). All results indicated that
our diversity panel has high genetic diversity and was
suitable for GWAS.
The diversity panel could be divided into three

subgroups (Fig. 1), and the characterization of the
subgroups was largely consistent with geographic origins
and pedigrees. For example, Zhongmai 871, Zhongmai
875 and Zhongmai 895, which were derived from
Zhoumai 16, clustered with Zhoumai 16 in group 3
(Additional file 1: Table S1). Numerous studies have
shown that the lack of appropriate correction for popu-
lation structure can lead to spurious MTAs [42–45].
Consequently, to eliminate spurious MTAs resulting
from population structure, subpopulation data (Q
matrix) were considered as fixed-effect factors, whereas
the kinship matrix was considered as a random-effect
factor, and a MLM implemented in Tassel v5.0 and

Fig. 2 Manhattan plots for black point resistance in 166 wheat accessions by the mixed linear model (MLM) in Tassel v5.0. a Anyang 2013; b Anyang 2014; c
Anyang 2015; d Suixi 2013; e Suixi 2014; f Best linear unbiased prediction (BLUP) values for black point scores calculated from all five environments. The -log10
(P) values from a genome-wide scan are plotted against positions on each of the 21 chromosomes. Horizontal lines indicate genome-wide
significance thresholds
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FarmCPU were adopted for association analysis in the
current study [36].
The LD decay affects the precision of GWAS and this is

influenced by many factors like population structure, allele
frequency, recombination rate and selection [44, 46, 47].
Previous studies reported that LD decay in common wheat
ranged between 1.5–15 cM using SSR [28, 46, 48], DArT
[33] or SNP [30, 47] markers. In this panel, the LD decay
was about 8 Mb for the whole genome (Additional file 3:
Figure S1), consistent with previous reports. The LD decay
of the D genome (11 Mb) was higher than the A (6 Mb)
and B (4 Mb) genomes (Additional file 3: Figure S1), also
consistent with previous studies [47–49], suggesting that
fewer markers are needed for GWAS in the D genome than
the A and B genomes. The marker densities for the A, B
and D genomes were 0.099, 0.042 and 0.202 Mb/marker,
and thus highly reliable for detecting MTAs with respect to
LD decay in the diversity panel according to Breseghello
and Sorrells [28]. The reason for the high LD of the D gen-
ome is mainly due to limited infusion of Aegilops tauschii
in the evolutionary history of common wheat [38, 49]. The
average r2 (0.174) values observed between linked loci pairs
were higher than in previous studies [46, 50]. Reif et al. [51]
reported that LD (r2) is expected to be higher in released
cultivars than landraces. Moreover, Würschum et al. [52]
indicated that QTL with small effect can be detected at

higher LD (r2), whereas only QTL with large effects can be
detected at lower LD (r2). Our results thus suggested a high
mapping resolution and strong QTL detection power for
black point resistance.

Comparison of the 90 K and 660 K SNP arrays
One of the key factors for GWAS is high marker density
in whole genomes because sparse coverage reduces the
power of marker identification [53]. Although the 90 K
SNP array has emerged as a promising choice for high-
density, low cost genotyping [34, 54], the presence of
large gaps, particularly low coverage for the D genome,
reduces the power of marker identification and
decreases the precision of QTL mapping. To resolve the
problem, the GWAS for black point resistance was per-
formed using 259,922 markers from the 90 K and 660 K
SNP arrays, providing a greater coverage of the genome.
Only 8 loci were identified by the SNPs from 90 K array,
whereas 23 were detected by the 660 K SNP, indicating
that the 660 K SNP array with its much higher marker
density had a significant advantage in GWAS.

Marker-trait associations
Some black point resistance QTL were previously identi-
fied by bi-parental linkage mapping [22, 23], allowing for
a comparison between loci identified in the present study

Fig. 3 Manhattan plots for black point resistance in 166 wheat accessions by the FarmCPU. a Anyang 2013; b Anyang 2014; c Anyang 2015; d Suixi 2013;
e Suixi 2014; f Best linear unbiased prediction (BLUP) values for black point scores calculated from all five environments. The -log10 (P) values from a
genome-wide scan are plotted against positions on each of the 21 chromosomes. Horizontal lines indicate genome-wide significance thresholds
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and known QTL. Liu et al. [23] found seven stable black
point resistance QTL on chromosomes 2AL, 2BL, 3BL,
5AS, 6A and 7AL (2) in a Linmai 2/Zhong 892 RIL popula-
tion, which overlapped with loci identified in our study on
chromosomes 2AL (IWB22408, 709.8 Mb), 2B (AX-
108951749, 714.3 Mb), 3BL (AX-108797097, 695.9 Mb),
5AS (IWB8709, 32.8 Mb), 6A (AX-108821301, 94.2 Mb),
and 7A (AX-109311326, 609.5 Mb) (Tables 2, Add-
itional file 9: Table S6), indicating that GWAS and linkage
mapping are complementary in identifying genes.
Lehmensiek et al. [22] detected eight black point resistance
QTL explaining 4 to 18% of the phenotypic variation on
chromosomes 1D, 2A, 2B, 2D, 3D, 4A, 5A and 7A in
Sunco/Tasman and Cascades/AUS1408 doubled haploid
(DH) populations by SSR markers. We also identified 11
unique loci in 2A, 2B, 3D, 5A (3) and 7A (5). The loci on
chromosomes 2AL (IWB22408, bin C-2AL1–0.85) and 2BL
(AX-108951749, bin 2BL6–0.89-1.00) coincided with the
QTL detected by Lehmensiek et al. [22] in chromosomes
2A (Xgwm312, bin C-2AL1–0.85) and 2B (Xgwm319, bin
2BL6–0.89-1.00) (Table 2, Additional file 9: Table S6). How-
ever, not all of the QTL detected in linkage analysis were
found in GWAS, such as QBp.caas-3AL and QBp.caas-7BS
[23]. The reasons for this could be that (a) some QTL may
have segregated at low frequency, or not at all in our

association panel, and (b) results from the different marker
platforms are difficult to align in the absence of complete
genome sequences of diverse wheat cultivars.
Oxidases, such as PPO [15] and POD [17], could have

enhanced the development of black point. The PPO gene
(Ppo-A1) mapped to the long arm of chromosome 2AL in
the interval IWB59334-IWB5777 (706.2–715.3 Mb) [55],
overlapped with the loci on chromosome 2AL (IWB22408,
709.8 Mb) in our study. In addition, the Ppo-A1-specific
marker PPO18 [56] was also significantly associated with
black point resistance (Table 2). Furthermore, the SNP
marker IWA5214 (302.2 Mb) on chromosome 5BL was
significantly associated with both black point resistance and
PPO activity (Zhai et al. unpublished data). Wei et al. [57]
identified a QTL for POD activity on chromosome 5AS
(15.9–36.9 Mb) using a RIL population derived from
Doumai/Shi 4185, corresponding to the major loci detected
on chromosome 5AS (IWB8705, 32.8 Mb) in this study
(Additional file 9: Table S6). Shi et al. (unpublished data)
identified a locus for POD activity on chromosome 2AL
(IWB59334, 715.3 Mb) by GWAS, which overlapped with
the locus on chromosome 2AL (IWB22408, 709.8 Mb).
Thus, the GWAS results confirmed previous reports impli-
cating phenol metabolism enzymes like PPO and POD in
development of black point [15, 17, 18].
As the genetics of black point reaction are still poorly

understood, the remaining 18 loci identified on chromo-
somes 3A, 3B, 3D, 4B (2), 5A (2), 5B (2), 6B, 6D, 7A (4),
7B and 7D (2) represent potentially new resistance QTL
(Table 2); these may contribute to better understand of
the architecture of black point reaction and provide more
opportunities for resistance breeding. The above results
demonstrated that GWAS was a powerful and reliable tool
for identification of black point resistance genes.

Candidate genes for black point resistance
To identify candidate genes for black point resistance,
the flanking sequences of SNP markers significantly
associated with black point reaction were imported to
Blast2Go software, and used as queries to BLAST against
the National Center for Biotechnology Information
(NCBI) and European Nucleotide Archive (ENA)
databases; six candidate genes were identified (Table 3).
Bioinformatics analysis indicated that SNP marker AX-
111518195 on chromosome 2AL corresponded to
peroxisomal biogenesis factor 2, an important gene for
biosynthesis of peroxidase, which can accelerate oxida-
tion of phenolic compounds to quinones and is crucial
for phenolic metabolism and melanin synthesis [18, 58].
In addition, the gene-specific marker PPO18 for Ppo-A1
[56] overlapping with the SNP loci on chromosome 2AL
was also significantly associated with black point reac-
tion. Fuerst et al. [18] reported that PPO catalyzes oxida-
tion of phenolic compounds to melanins and quinines

Fig. 4 Linear regression between the number of favorable
alleles (a) and unfavorable alleles (b) and the BLUP values for
black point scores
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that may contribute to black point development. Thus,
Ppo-A1 is a candidate gene for this locus. Marker AX-
95684401 on chromosome 5A corresponded to a
gibberellin (GA) biosynthetic process protein. GA plays an
important role in modulating disease reaction throughout
plant development and affects black point development by
influencing seed germination [59]. Marker IWA5463 on
chromosome 2AL corresponds to an F-box repeat protein,
which may affect black point development by regulating
signal transduction of gibberellin [59, 60]. F-box proteins
have also been implicated in response to various pathogens
through targeting substrates in the degradation machinery
[61]. Two SNP markers (AX-108951749 on 2B and
IWA2223 on 5AL) encode serine/threonine-protein kinases,
which trigger multiple physiological and biochemical reac-
tions in response to abiotic and biotic stresses by mediating
perception and transduction of external environmental
signals [62, 63]. We also identified a candidate gene encod-
ing a disease resistance RPP8-like protein (AX-111053669
on chromosome 3A), which had been proposed to play an
essential role in regulation of responses to a variety of
external stimuli, including stress [64]. Bioinformatics ana-
lysis of trait-associated SNPs was proven to be an effective
tool to find candidate genes for complex agronomic traits
[34]. However, black point is a consequence of complicated
biological processes and the mechanism of black point
formation remains unclear; more detailed experimental
analyses are needed to confirm the roles of candidate genes
in black point resistance.

Application of MTAs for black point resistance in wheat
breeding
It is difficult to select highly resistant lines at the early stages
of a breeding program in the field due to the fact that black
point symptoms can be assessed only on mature seed after
harvest and are highly affected by environment. A significant
additive effect was identified from the linear regression
between black point resistance and the number of favorable
alleles, indicating that pyramiding of favorable alleles will
enhance resistance. Markers significantly associated with
complex traits identified by GWAS or QTL mapping can be
converted into kompetitive allele-specific PCR (KASP)

markers for SNP validation, MAS and QTL fine mapping
[65, 66]. Semi-thermal asymmetric reverse PCR (STARP)
also provides a new scalable, flexible and cost-effective
approach for using SNP markers in MAS [67]. QTL with
consistent effects across multiple environments should be
useful for MAS [68]. Thirteen of the 25 loci identified in this
study were detected in two or more environments and
should be suitable for MAS. Some accessions with higher
black point resistance and relatively high number of resist-
ance alleles and excellent agronomic traits, such as
Kitanokaori, Norin 67, Yumai 21, Yannong 19, Zhoumai
19, and Zhongmai 871 (Additional file 13: Table S7),
should be good parental lines for breeding. Our follow-up
studies will focus on validating the effects of these QTL
and developing friendly, tightly linked markers that can be
used in resistance breeding.

Conclusions
In the present study, a GWAS for black point resistance
in a diversity panel was conducted with the 90 K and
660 K SNP arrays. Twenty-five resistance loci explained
7.9–18.0% of the phenotypic variations, demonstrating
that GWAS can be used as a powerful and reliable tool
for dissecting genes in wheat. The markers significantly
associated with black point resistance and the accessions
with a higher number of resistance alleles can be used as
valuable markers and excellent parent material for resist-
ance breeding. This study improves our understanding
of the genetic architecture of black point resistance in
common wheat.

Methods
Plant materials and field trials
The association panel used in the present study con-
tained 166 diverse cultivars, comprising 144 accessions
from the Yellow and Huai River Valley Facultative
Wheat Region of China, and 22 accessions from five
other countries, including Italy (9), Argentina (7), Japan
(4), Australia (1) and Turkey (1) (Additional file 1: Table
S1). All accessions were grown at Anyang (35°12′N, 113°
37′E) in Henan province during the 2012–2013 and
2013–2014 cropping seasons, and Suixi (33°17′N, 116°

Table 3 Candidate genes for SNPs significantly associated with black point resistance

Chromosome Marker Candidate gene Sequence similarity (%) Sequence coverage (%) Quality parameters

2AL IWA5463 F-box repeat 98 98 4 E−36

2AL PPO-18 Polyphenol oxidase (PPO-A1) – – –

2AL AX-111518195 Peroxisomal biogenesis factor 2 97 97 4 E−12

2B AX-108951749 Serine/threonine-protein kinase 97 96 6 E−06

3A AX-111053669 Disease resistance RPP8-like protein 97 96 1 E−08

5AL IWA2223 Serine/threonine-protein kinase 100 99 8 E−39

5A AX-95684401 Gibberellin biosynthetic process 97 100 4 E−07
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23′E) in Anhui province during 2012–2013, 2013–2014
and 2014–2015. Field trials were conducted in random-
ized complete blocks with three replicates at all locations.
Each plot contained three 2 m rows spaced 20 cm apart.
Agronomic management followed local practices. All
wheat accessions are deposited in the National Genebank
of China, Chinese Academy of Agricultural Sciences, and
available after approval.

Phenotypic evaluation and statistical analysis
After harvest and threshing three samples of 200 grains
were selected from each of the three replicates of each
accession, and the percentages of kernels with black
point symptoms were determined and averaged. BLUPs
across five environments were used as the phenotypic
values for association mapping to eliminate environmen-
tal effects. BLUP estimation was calculated using the
MIXED procedure (PROCMIXED) in SAS v9.3 (SAS
Institute, http://www.sas.com).
ANOVA was performed using SAS v9.3 (SAS Institute,

http://www.sas.com). Variance components were used to
calculate broad sense heritability (h2) of black point
scores as h2 = σg

2/ (σg
2 + σge

2 /r + σε
2/re), where σg

2, σge
2 and σε

2

represent the genotype, genotype × environment inter-
action and residual error variances, respectively, and e
and r were the numbers of environments and replicates
per environment, respectively.

Genotyping and quality control
Total genomic DNA for SNP arrays was extracted from
five bulked young leaves from each accession using a
modified CTAB procedure [69]. The 166 accessions were
genotyped using both the Illumina wheat 90 K SNP
(containing 81,587 SNPs) and Affymetrix 660 K SNP
(containing 630,517 SNPs) arrays by Capital Bio
Corporation, Beijing, China (http://www.capitalbiotech.com/
). Accuracy of SNP clustering was validated visually. MAF,
genetic diversity and PIC were computed by PowerMarker
v3.25 [70] (http://statgen.ncsu.edu/powermarker/). To avoid
spurious MTAs, SNP markers with MAF < 0.05 and missing
data >20% were excluded from further analyses. The
physical positions of SNP markers from the wheat 90 K and
660 K SNP arrays were obtained from the International
Wheat Genome Sequencing Consortium website (IWGSC,
http://www.wheatgenome.org/), and markers from two
SNP arrays were integrated into a common physical map
for GWAS.

Population structure
Population structure was analyzed using 2000 polymorphic
SNP markers from the 90 K and 660 K SNP arrays with
Structure v2.3.4 [41] (http://pritchardlab.stanford.edu/struc-
ture.html), which implements a model-based Bayesian clus-
ter analysis. Five independent runs for each K value from 2

to 12 were performed based on an admixture model. Each
run was carried out with 100,000 recorded Markov-Chain
iterations and 10,000 burn-in periods. An adhoc quantity
statistic ΔK based on the rate of change in log probability of
data between successive K values [71] was used to predict
the real number of subpopulations. PCA and NJ trees were
also used to validate population stratification with the
software Tassel v5.0 [44] and PowerMarker v3.25 [70]
(http://www.maizegenetics.net).

Linkage disequilibrium
LD among markers was calculated using the full matrix
and sliding window options in Tassel v5.0 with 12,324
evenly distributed SNP markers. The positions of these
markers were based on the physical map mentioned
above. Pairwise LD was measured using squared allele-
frequency correlations r2, and significance of pair-wise
LD (P-values) was measured by Tassel v5.0 with 1000
permutations. The r2 values were plotted against phys-
ical distance and a LOESS curve was fitted to the plot to
show the association between LD decay and physical
map distance. The critical value of r2 beyond which the
LD was likely to be caused by genetic linkage was deter-
mined by taking the 95th percentile in the distribution
of r2 of the selected loci [28]. The intersection of the
fitted curve of r2 values with this threshold was
considered as the estimate of LD range.

Genome-wide association analysis
Associations between genotypic and phenotypic data
were analyzed using the kinship matrix in a MLM by
Tassel v5.0 to control background variation and elimin-
ate the spurious MTAs. In MLM analysis, the kinship
matrix (K matrix) was considered a random-effect factor,
whereas the subpopulation data (Q matrix) was consid-
ered a fixed-effect factor [43]. The K matrix was calcu-
lated by the software Tassel v5.0 and the Q matrix was
inferred by the program Structure v2.3.4. The P value
determining whether a SNP marker was associated with
the trait and the R2 indicating the variation explained by
the marker was recorded. The GWAS was also analyzed
using the FarmCPU software [37] by R Language
(https://www.r-project.org/). Bonferroni-Holm correction
[72] for multiple testing (α = 0.05) was too conserved and
no significant MTAs were detected with this criterion.
Therefore, markers with an adjusted -log10 (P-value) ≥ 3.0
were regarded as significant markers for black point reac-
tion [73–75], as shown in Manhattan plots using the
ggplot2 code in R Language. Important P value distribu-
tions (observed P values plotted against expected P values)
were shown in Q-Q plots.
We checked the LD (r2) among markers significantly

associated with black point reaction on the same
chromosomes to compare the resistance loci. LD block
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on the same chromosome were computed and visualized
by Haploview v4.2 [76] (www.broadinstitute.org/haploview/
haploview). To compare resistance loci identified in the
present study with known genes/QTL, deletion bin informa-
tion for SSR and SNP markers was obtained following [23].

The effect of favorable alleles on black point resistance
Each locus comprises two alleles based on SNP marker a
single base substitution, transition or transversion. Alleles
with positive effects leading to higher black point resistance
are referred to as “favorable alleles”, and those leading to
lower resistance are “unfavorable alleles”. The representa-
tive SNPs at the resistance loci were used to count the
frequencies of favorable and unfavorable alleles and their
allelic effects were determined (Table 2). Regression analysis
between favorable, unfavorable alleles and black point
scores were conducted using the line chart function in
Microsoft Excel 2016.

In silico annotation of SNPs
To identify candidate genes or putative protein functions of
SNP flanking-regions, the flanking sequences correspond-
ing to the SNP markers significantly associated with black
point resistance were used in BLASTn and BLASTx
searches against ENA (http://www.ebi.ac.uk/ena) and NCBI
(http://www.ncbi.nlm.nih.gov/) databases. Sequences were
imported to Blast2Go software (https://www.blast2go.com/)
in fasta formats that were blasted, mapped and annotated
using standard parameters embedded in the software.
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