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Abstract

Background: Polyploidy has pivotal influences on rice (Oryza sativa L.) morphology and physiology, and is very
important for understanding rice domestication and improving agricultural traits. Diploid (DP) and triploid (TP) rice
shows differences in morphological parameters, such as plant height, leaf length, leaf width and the physiological
index of chlorophyll content. However, the underlying mechanisms determining these morphological differences
are remain to be defined. To better understand the proteomic changes between DP and TP, tandem mass tags
(TMT) mass spectrometry (MS)/MS was used to detect the significant changes to protein expression between

DP and TP.

Results: Results indicated that both photosynthesis and metabolic pathways were highly significantly associated with
proteomic alteration between DP and TP based on biological process and pathway enrichment analysis, and 13 higher
abundance chloroplast proteins involving in these two pathways were identified in TP. Quantitative real-time PCR
analysis demonstrated that 5 of the 13 chloroplast proteins ATPF, PSAA, PSAB, PSBB and RBL in TP were higher

abundance compared with those in DP.

Conclusions: This study integrates morphology, physiology and proteomic profiling alteration of DP and TP to address
their underlying different molecular mechanisms. Our finding revealed that ATPF, PSAA, PSAB, PSBB and RBL can
induce considerable expression changes in TP and may affect the development and growth of rice through

photosynthesis and metabolic pathways.
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Background

Polyploidy is a prevalent biological phenomenon in the
chromosomal evolution of extant species and genera [1, 2],
including the major crop plants such as rice, maize, wheat,
soybean, and cotton. Most plant species have polyploid an-
cestries [3], and polyploidy may have played a critical role
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in flowering plant diversification [4]. Polyploid genotypes
may lead to the differences in morphology, physiology and
molecular characteristics, etc. Physiological traits, such as
cell size, plant height (PH), growth rate, flowering time and
fertility, can be altered by polyploidization [5]. Miller and
coworkers’ research suggests that ploidy can affect flower
size, stomatal size and seed weight [6]. Compared with the
corresponding diploids (DPs), autopolyploids tend to have
larger cells, resulting in the enlargement of some organs,
such as leaves, flowers and seeds [7, 8]. Chao and coworker
discover that polyploid Arabidopsis exhibit resistance to
salinity and higher potassium uptake [9]. Some other
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changed traits, such as pest resistance, apomixes, drought
tolerance, flowering time and organ size, can also contrib-
ute to the success of polyploids in agriculture [10, 11].

Besides offering evolutionary flexibility and phenotypic
diversity for newly formed polyploids, polyploidy has
considerable impacts on chromosomal rearrangement,
nuclear enlargement and epigenetic changes, leading to
the restructuring of the transcriptome, metabolome and
proteome [12]. The epigenetic and developmental alter-
ations allow polyploids to establish new species and
promote their niches in local environments through re-
structuring genome and regulatory networks [13]. Poly-
ploidy plays a key role in duplicating gene expression, and
many of these expression alterations are organ-specific
[14]. Blanc and Wolfe propose that the functional diversi-
fication of duplicated genes is a major characteristic of
long-term polyploidy events in Arabidopsis thaliana [15].
Polyploidy also has important impacts on genome struc-
ture and gene expression [16, 17]. DNA methylation
changes are observed in allopolyploids and their progeni-
tors in many plants [18-21]. However, little is known
about the complex nature of polyploidy [22].

Interestingly, large differences in morphology and
physiology, including PH, leaf size and color, and chloro-
phyll content, are shown among rice with different
ploidies, such as haploid (HP), DP and triploid (TP) rice.
Besides, these differences are obviously amplified by the
increase of ploidy level. The gene expression differences
between HP and DP rice have been well documented
[23], and the proteomic alterations during rice hull de-
velopment are demonstrated by our recent research [24].
However, the proteomic changes between DP and TP in
rice are poorly understood.

Thus, to test the impacts of polyploidy on rice devel-
opment and chloroplast protein expression, we used
tandem mass tags (TMT)-based proteomic methods to
quantitatively screen the differentially expressed proteins
among DP and TP. Meanwhile, chloroplast proteins were
further analyzed to evaluate the influences of photosyn-
thesis on DP and TP rice plants. In addition, quantitative
real-time PCR (qRT-PCR) was used to verify the reliability
of the chloroplast-related proteins with differential expres-
sions. Through these approaches, our results may provide
a global insight into the associated proteomic alterations
in chloroplast and the impacts of ploidy on rice traits.

Results

Phenotypes of DP and TP

To identify the phenotypes of rice plants between DP
and TP, nuclear DNA ploidy analysis was firstly performed
by flow cytometry to identify DP and TP (Fig. 1b). The in-
creases of PH, LL and LW were positively correlated with
ploidy levels (Fig. 1). The values of PH, LL and LW in TP
were significantly larger than those in DP (Fig. 1c, d, e).

Page 2 of 10

Similarly, the contents of chlorophyll and carotenoid were
higher in TP than in DP (Fig. 2).

Comparative proteomic analysis of biological process in
DP and TP

Of the 1256 identified proteins, 365 differentially expressed
proteins (fold change >1.5) showed the global false dis-
covery rate <0.01 with =95 % confidence. Compared
with their expressions in DP, 311 proteins were up-
regulated and 54 were down-regulated in the TP. To
uncover the different biological mechanisms between
DP and TP, we annotated the differentially expressed
proteins with GO terms and conducted a GO biological
process. Multiple significant biological process were found
to be involved in the differentially expressed proteins be-
tween DP and TP (Fig. 3), including generation of precur-
sor metabolites and energy (GO:0006091, p = 8.96 x 107,
photosynthesis  (GO:0015979, p=52x10"7), metabolic
process (GO:0008152, p =2.13 x 10°°), response to abiotic
stimulus (GO:0009628, p =2.3 x 10°°), response to stress
(GO:0006950, p =8.04x107°), carbohydrate metabolic
process (GO:0005975, p = 1.2 x 107*), and catabolic process
(GO:0009056, p = 0.0494).

Pathway analysis

To identify potential protein targets, we performed path-
way analysis on differentially expressed proteins using
KEGG databases in rice plants with DP and TP (Fig. 4).
Our results demonstrated that 16 significant pathways
were enriched at the 5 % significant level. Among these
significant pathways, photosynthesis, metabolic pathways,
glyoxylate and dicarboxylate metabolism, and carbon fix-
ation in photosynthetic organisms were highly significant
(p <0.001) associated with the differentially expressed pro-
teins between DP and TP. Both photosynthesis and meta-
bolic pathways were found to be related to alterations of
protein expression in the development between DP and
TP according to GO biological process and pathway en-
richment analysis.

Analysis of differentially expressed chloroplast proteins
and gRT-PCR validation

Chloroplast plays a crucial role in conducting photosyn-
thesis and regulating and regulating metabolic biological
process. To demonstrate the roles of chloroplast in rice
ploidy, we studied the protein expression alterations in
the chloroplasts of DP and TP. Chloroplast proteins CYB6,
ribulose bisphosphate carboxylase large chain (RBL), Apoc-
ytochrome f (CYF), 3 ATP synthase subunits ATPA, ATPB
and ATPEF, 4 photosystem II reaction center proteins PSBB,
PSBC, PSBD and PSBH, as well as 3 photosystem I related
proteins PSAA, PSAB and PSAC were shown to have dif-
ferentially up regulated in TP compared with DP (Table 1).
None of these chloroplast proteins was differentially



Wang et al. BMC Plant Biology (2016) 16:199

(]

o
[*2]
o

= ~~
5 £
N’
L
L <
Ry ko)
_g’lso Sa0
|
b
c L
S b
o |

w

o
N
o

DP P
Different_ploidies

P<0.05

= B E——
I 2-0_ |
0_ 0 - I 0-0 - I
DP P DP P

Different_ploidies

Fig. 1 Phenotypes and growth indexes of diploid and triploid rice plants. a DP showed smaller plant and lighter leaf color compared to TP;

b The flow cytometry of DP and TP rice plants; ¢ The PH of DP and TP rice plants; d The LLs of DP and TP rice plants; e The LWs of DP and TP
rice plants. (PH: plant height; LL: leaf length; LW: leaf width; DP: diploid; TP: triploid)
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down-regulated in TP. Among these chloroplast proteins,
12 and 13 proteins were involved in photosynthesis
and metabolic pathways, respectively; while three, one
and one proteins were associated with oxidative phos-
phorylation, glyoxylate and dicarboxylate metabolism,
and carbon fixation in photosynthetic organisms,
respectively.

qRT-PCR was performed to validate the transcriptional
levels for differentially expressed proteins among DP
and TP (Fig. 5). qRT-PCR results showed that five of the
13 chloroplast genes were differentially transcripted be-
tween TP and DP, including ATPF, PSAA, PSAB, PSBB
and RBL (Fig. 5). All five genes were associated with
metabolic pathways, and ATPF, PSAA, PSAB and PSBB
were related to photosynthesis.

Discussion

Ploidy is a common feature and major factor of plant
speciation. It drives the evolution of novel phenotypes and
ecological tolerances [25]. Although the identification of
candidate genes and developmental regulations in plant
polyploids have been extensively pursued [16, 17, 23], a
clear picture of proteins and pathways involved in regula-
tory and developmental differentiations has not been
drawn for ploidy rice plants. In this study, our results sug-
gests that proteomic alterations may account for the di-
versifications caused by ploidy in rice, and the
significantly differentially expressed proteins and
enriched pathways may help to unravel the complex
underlying mechanisms in rice ploidy. Multiple pathways,
especially photosynthesis and metabolic pathways, were
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Fig. 2 The chlorophyll and carotenoid contents of diploid and triploid rice plants. a The chlorophyll contents of DP and TP rice plants; b The
carotenoid contents of DP and TP rice plants. DP: diploid; TP: triploid
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found to be greatly significantly associated with proteomic  regulate plant development, photosynthesis and metabol-
alterations between DP and TP, indicating that photosyn-  ism with a exquisite way [26]. In Arabidopsis, chloroplast
thesis and metabolic pathways account for major contri-  potassium efflux antiporters influence photosynthesis and
bution to the proteomic differentiation. growth of fully developed rosettes [27]. The critical role of

Accumulating evidence demonstrates that chloroplasts  chloroplasts is beyond dispute and has been reported in
participate in a variety of complex signaling pathways to  plant immunity recently [28, 29]. Recently, a chloroplast-
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localized protein LLB was found to affect the growth in
rice [30]. Although it is well known that chloroplast affects
the growth of rice, the underlying molecular mechanisms
are not yet understood clearly. Consistent with the higher
chlorophyll content in TP, 13 significantly differentially
expressed chloroplast proteins were found to be up-

regulated in TP, and 5 proteins were validated by qRT-PCR.
Cytochrome bc complexes play key roles in respiration and
photosynthesis [31]. The differential expression of CYB6
between the rice with different ploidies indicates that it
may participate in energy transduction in respiratory
membranes and photosynthesis. Among these validated

Table 1 The pathways participated by the differentially expressed chloroplast proteins between diploid and triploid rice plants

Protein Name Description Pathways FCf
CYB6 Cytochrome b6 05a00195%0sa01100° 1.80
TPB ATP synthase subunit beta, chloroplastic (EC 3.6.3.14) (ATP synthase F1 sector subunit beta) 05a00190%05a00195% 1.79
(F-ATPase subunit beta) 0sa01100°
RBL Ribulose bisphosphate carboxylase large chain (RuBisCO large subunit) (EC 4.1.1.39) 05a00630%05200710% 1.99
05a01100°
PSBH Photosystem Il reaction center protein H (PSII-H) (Photosystem Il 10 kDa phosphoprotein) 05a00195%0sa01100° 284
CYF Apocytochrome f 05a00195%05a01100° 1.66
PSBD Photosystem Il D2 protein (PSIl D2 protein) (EC 1.10.3.9) (Photosystem Q(A) protein) 05a00195% 05a01100P 2.15
PSBC Photosystem Il CP43 reaction center protein (PSIl 43 kDa protein) (Protein CP-43) (Protein P6) 05a00195%0sa01100° 1.97
PSBB Photosystem Il CP47 chlorophyll apoprotein (PSIl 47 kDa protein) (Protein CP-47) 05a00195%0sa01100° 1.71
PSAC Photosystem | iron-sulfur center (EC 1.97.1.12) (9 kDa polypeptide) (PSI-C) 05a00195% 05a01100P 2.60
(Photosystem | subunit VII) (PsaC)
PSAB Photosystem | P700 chlorophyll a apoprotein A2 (EC 1.97.1.12) (PSI-B) (PsaB) 05a00195%0sa01100° 2.09
PSAA Photosystem | P700 chlorophyll a apoprotein A1 (EC 1.97.1.12) (PSI-A) (PsaA) 05a00195%0sa01100° 1.64
ATPA ATP synthase subunit alpha, chloroplastic (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) 05a00190%0s5a00195% 1.79
(F-ATPase subunit alpha) 05a01100°
ATPF ATP synthase subunit b, chloroplastic (ATP synthase F(0) sector subunit b) (ATPase subunit I) 0sa00190%0s5a00195% 274

05a01100°

205a00195 represents photosynthesis; ®0sa01100 represents metabolic pathways; “0sa00190 represents oxidative phosphorylation; %0sa00630 represents
glyoxylate and dicarboxylate metabolism; 0sa00710 represents carbon fixation in photosynthetic organisms; fFC fold change
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proteins, ATPF belongs to a plant-specific protein fam-
ily and is characterized by CRM domain, a recognized
RNA binding domain [32]. RBL is a RubisCO large sub-
unit, and the most abundant protein that serving as the
major engine for carbon assimilation [33]. It underlines
that TP may improve the efficiency of photosynthesis
via coupling with the reaction of RBL. PSAA, PSAB,
and PSBB are components of the photosystem II core
complex which is a critical element of photosynthesis
[34]. Currently, little is known about the functions of
PSAA, PSAB and PSBB.

To the best of our knowledge, this is the first study to
analyze the proteomic alterations of rice plants with differ-
ent ploidies using TMT MS/MS technology. Our analysis
suggested that TP tended to maintain their needs via more
photosynthesis and metabolic activities than DP. Among
the 13 candidate chloroplast proteins, 5 were validated.
Through the combination of morphology, physiology and
proteomic profiling, our results characterize the function
of ATPE, PSAA, PSAB, PSBB and RBL in TP, and provide
new insights for further understanding the molecular
characteristics of rice ploidy.

Conclusions

Both photosynthesis and metabolic pathways were highly
significantly associated with proteomic alteration between
DP and TP based on biological process and pathway

enrichment analysis, and 13 up-regulated chloroplast pro-
teins involving in these two pathways were identified in TP.
This study integrates morphology, physiology and prote-
omic profiling alteration of DP and TP to address their
underlying different molecular mechanisms. Our findings
show that ATPF, PSAA, PSAB, PSBB and RBL can in-
duce considerable expression changes in TP and may
affect the development and growth of rice through photo-
synthesis and metabolic pathways.

Methods

Plant materials

To investigate the proteomic changes among rice plants
with different ploidies, we sampled the leaves from
eighty-day-old rice plants of DP and TP. Late uninucle-
ate anthers collected from a rice strain (O. sativa ssp
japonica cv H14) that was supplied by Jiaxing Academy
of Agricultural Sciences (Jiaxing, China) using micro-
scopic identification were cultured at 27 °C under the con-
dition of 12 h light/dark photoperiod at light intensity of
2000 Ix for one and half month on dedifferentiation
medium containing N6, 1.0 mg/l 2,4-D, 3.0 mg/l NAA,
5.0 mg/l KT, 5 % (m/v) sucrose and 0.8 % (m/v) agar to
produce calli with haploid cells. Then calli were trans-
ferred and cultured under the same conditions as above
for two and half weeks on the differentiation medium with
the same formula as dedifferentiation medium to
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regenerate the haploid seedlings. By spontaneous chromo-
some doubling, doubled haploid seedlings were produced,
which could be grown into a doubled haploid (DP) plants.
In the doubling process, a small amount of TP plants were
obtained. All rice plants were cultivated in field during the
period from June 15th, 2013 to October 10th, 2013. Three
experimental replicates of each rice line were tested.

Measurement of plant height (PH), leaf length (LL) and
width (LW)

The heights of four replicates of 10 fifty-day-old plants were
measured. Plant height was calculated by the distance from
the basal part of stem to the tip of the highest leaf. The
lengths and widths of 10 leaves from four replicates of
fifty-day-old plants for each rice ploidy were measured.
The standard errors (SE) of mean PH, LL or LW were
calculated.

Ploidy identification

A total of 20 mg of young leaf tissues were chopped with
sharp scalpel in glass petri dish with 1 ml of Otto I buffer
containing 0.1 M citric acid and 0.5 % Tween-20. The
chopped materials were filtered with a 350 um nylon filter
and incubated for 10 min by stirring. Then, the nuclei in
the filtrate were pelleted by centrifugation for 5 min at
150 x g, resuspended in 200 pl of Otto I buffer, and incu-
bated at room temperature for 10 min. Subsequently,
500 pl of Otto II buffer containing 0.4 M sodium hydro-
gen phosphate, 5 uM propidium iodid (PI) and 50 pg/ml
RNase was added to stain DNA. Samples were then ana-
lyzed within 1 h or stored at 4 °C for 24 h. All samples
were analyzed with a Cell Lab Quanta™ SC (Beckman
Coulter Inc.) flow cytometer equipped with 488 nm diode
laser for excitation. Data were collected by the corre-
sponding software.

Determination of chlorophyll contents

The contents of chlorophyll a and chlorophyll b were
directly measured from the crude chlorophyll extracts of
flag leaves. A total of 0.2 g leaf tissues were homoge-
nized in ethanol at 4 °C as described by Porra et al. [35].
The homogenates were centrifuged and their fluores-
cence at 662, 645 and 470 nm was measured with a
UV2550 Spectrometer.

Protein preparation

One gram of fresh rice leaves were ground in liquid ni-
trogen and suspended in 5 ml acetone with 10 % (w/v)
trichloroacetic acid and 0.07 % (w/v) -mercaptoethanol
at —20 °C for 1 h, followed by centrifugation for 15 min
at 35,000 x g. The pellets were resuspended in acetone
with 0.07 % (w/v) B-mercaptoethanol, incubated at -20 °C
for 1 h, and then centrifuged for 15 min at 4 °C. This step
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was repeated for three times. Then, the pellets were lyoph-
ilized. The crude protein powders were solubilized in lysis
buffer (8 M urea, 2 M thiourea, 4 % CHAPS, 0.5 %
ampholine (pH 3-10), 50 mM DTT and 1 mM PMSF) for
1 h at room temperature, followed by centrifugation for
15 min at 15,000 x g. The supernatants were collected in
1.5 ml tubes, and 40 pl samples were used to detect pro-
tein concentrations by Bradford assay, with bovine serum
albumin as the standard.

Protein digestion and TMT labeling

A total of 100 pg of samples were digested during the
FASP procedure [36], with little modification. Each sam-
ple was transferred to a 10 k filter (Pall Corporation)
and centrifuged at 10,000 g at 20 °C for 20 min. A total
of 200 pl UA buffer (8 M urea, 0.1 M Tris-HCI, pH 8.5)
was added, and the samples were centrifuged at 14,000 g
for 20 min again. Then, the sediments were mixed with
200 pl 100 mM IAA in UA buffer and incubated at room
temperature in darkness for an additional 40 min. After
that, [AA was removed by centrifugation at 14,000 g for
20 min, diluted with 200 pl UA buffer, and centrifuged
twice. A total of 200 ul 0.5 M triethylammonium bicar-
bonate (TEAB) buffer (pH 8.5) was added and the sam-
ples were centrifuged at 14,000 g for 20 min. This step
was repeated twice. Finally, the samples were digested at
37 °C for 20 h, and peptides were collected by centrifu-
gation at 16,000 g. To increase the yield of peptides, the
filter was washed twice with 500 ul 0.5 M TEAB buffer
(pH 8.5). The peptide solutions were dried in vacuum
concentrator.

The TMT labeling procedure was performed following
the manufacturer’s instructions (Thermo Fisher Scientific).
Briefly, for each 6-plex experiment, the reaction mixtures
contained 25 ul TMT reagent and 75 pl (80 pg) tryptic di-
gest in TEAB buffer to ensure reagent’s stability by limit-
ing the organic (acetonitrile) content between 25 and 30 %
(v/v). The peptides from DP and TP samples were labeled
with reagents for three biological replicates. After labeling,
the reaction mixtures were incubated at room temperature
for 1.5 h, and then 8 pl of 5 % hydroxylamine solution was
added to quench the labeling reaction. Then the TMT-
modified digest from 6-plex experiment was combined
into one sample and dried in vacuum.

Peptide fractionation with strong cation exchange (SCX)
chromatography

Sample fractionation was performed by SCX chromatog-
raphy as previously described [37]. Briefly, the sample
was resuspended in SCX buffer (7 mM KH,PO,, pH 2.6,
30 % ACN) and separated through 2.0 x 50 mm poly-
SULFOETHYL A HPLC column (5 um, 200 A, PolyLC).
Separation was performed by applying a gradient SCX
buffer B (7 mM KH,PO,, 350 mM KCI, pH 2.6, 30 %
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ACN) from 0 to 50 % in 30 min at a flow rate of 0.1 ml/
min, followed by 50 to 100 % SCX buffer A gradients and
then buffer B in 10 min using an Agilent 1100 quaternary
pump outfitted with degasser and photodiode array de-
tector (PDA) (Thermo Scientific). Samples were collected
in 5 min increments, and dried under vacuum. Fractions
were then redissolved with 1 % FA and combined into a
total of seven samples based on their intensities from SCX
chromatographic UV trace. These samples were then
desalted by C18 SPE and dried under vacuum.

MS/MS analysis

RP-HPLC separation was performed on a nanoflow HPLC
(Proxeon Biosystems, now Thermo Fisher Scientific)
equipped with self-packed tip column (75 um x 150 mm;
C18, 3.0 pm) using a 120 min gradient at a flow rate of
300 nl/min. Q-Exactive mass spectrometer (Thermo Fisher
Scientific) was used and equipped with nanoelectrospray
ion source (Proxeon Biosystems, now Thermo Fisher Sci-
entific). Data were acquired in the data-dependent “top10”
mode in which the ten precursor ions with most abun-
dance were selected with high resolution (70 000 at m/z
200) from the full scan (300—1800 m/z) for HCD fragmen-
tation. Precursor ions with singly charged or unassigned
charge information were excluded. The resolution for
MS/MS spectra was set to 17 500 at m/z 200, target
value was 2E5 (AGC control enabled) and isolation
window was set to 2.0 m/z, with a lock mass option enabled
for the 445.120025 ion [38]. The normalized collision
energy was 29 %.

Protein identification and the relative quantitation criteria
All MS/MS spectra were searched using the MaxQuant
software [39]. The TMT tags on lysine residues, peptide
N termini (229.162932 Da) and the carbamidomethylation
of cysteine residues (57.02146 Da) were set as static modi-
fications, while the oxidation of methionine residues
(+15.99492 Da) was set as variable modification. The miss-
ing of two cleavage sites was allowed. The tolerances of
peptides and fragment ions were set at 10 ppm and
20 ppm, respectively. The false discovery rate on peptides
and proteins was fixed at no more than 0.01. Reporter ion
quantitation was based on the extraction of the TMT re-
porter ion signals of each peptide by MaxQuant software.
Proteins were then quantified by summing reporter ion
counts across all peptide matches, and then normalized by
assuming equal protein loadings across all samples. We
used the following criteria to identify the differentially
expressed proteins among DP and TP: (1) These proteins
must have been examined in all 3 MS preparations; (2)
They must have been verified with the confidence greater
than 95 %; (3) The fold changes of their expressions
should >1.5 or <2/3, and the significant differences
(p <0.05) in t-test should be reached.
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Biological process, pathway statistical analyses

Rice gene annotations were acquired from the Rice An-
notation Project Database (RAP-DB) [40], the Michigan
State University (MSU) Rice Genome Annotation [41]
and UniProt [42]. Chloroplast proteins were identified
from uniprot (www.uniprot.org). Gene Ontology (GO)
[43] and GOEAST [44] were used for biological process
analysis between DP and TP. The differentially expressed
proteins between DP and TP were analyzed using KEGG
pathway [45] to identify the molecular pathways that
may have differential activities involved in DP and TP.
Two-tailed Student’s t-tests were conducted to deter-
mine whether there are differences between DP and TP,
including plant height, leaf length, width, chlorophyll
content, carotenoids level and mRNA abundance levels.
All statistical analyses were performed in R environment,
using several CRAN packages (http://cran.r-project.org/).

Validation of protein expression by qRT-PCR

Frozen leaf tissue was homogenized in liquid nitrogen
using a mortar and pestle. Total RNA was extracted
using Trizol according to the supplier’s recommendation
(Invitrogen, Karlsruhe, Germany). Residual DNA was re-
moved with an RNase-free DNase (Fermentas, EU). One
microgram total RNA was reverse-transcribed using
0.5 pg of Oligo (dT) 20 and 200 units of ReverTra Ace
(TOYOBO, Japan) following the supplier’s recommenda-
tion. qRT-PCR assays were performed to validate the ex-
pression changes of chloroplast proteins among DP and
TP. Relative gene expression levels were quantified based
on cycle threshold (Ct) values and normalized to the refer-
ence proteins Tubulin and glyceraldehydes 3-phosphate
dehydrogenase. The experiment for each sample was re-
peated for three technique replicates and the qRT-PCR re-
sults were calculated by means of three replications. Gene
expression levels were calculated by 2-°““* method. Six
pairs of primers were designed for gene-specific transcript
amplification (Additional file 1).

Additional file

Additional file 1: Six pairs of primers were designed for gene-specific
transcript amplification. (DOC 25 kb)
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