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Abstract

Background: Plants have evolved disease resistance (R) genes encoding for nucleotide-binding site (NB) and leucine-rich
repeat (LRR) proteins with N-terminals represented by either Toll/Interleukin-1 receptor (TIR) or coiled-coil (CC) domains.
Here, a genome-wide study of presence and diversification of CC-NB-LRR and TIR-NB-LRR encoding genes, and shorter
domain combinations in 19 Arabidopsis thaliana accessions and Arabidopsis lyrata, Capsella rubella, Brassica rapa and
Eutrema salsugineum are presented.

Results: Out of 528 R genes analyzed, 12 CC-NB-LRR and 17 TIR-NB-LRR genes were conserved among the 19 A. thaliana
genotypes, while only two CC-NB-LRRs, including ZAR1, and three TIR-NB-LRRs were conserved when comparing the five
species. The RESISTANCE TO LEPTOSPHAERIA MACULANS 1 (RLM1) locus confers resistance to the Brassica pathogen
L. maculans the causal agent of blackleg disease and has undergone conservation and diversification events particularly in
B. rapa. On the contrary, the RLM3 locus important in the immune response towards Botrytis cinerea and Alternaria spp.
has recently evolved in the Arabidopsis genus.

Conclusion: Our genome-wide analysis of the R gene repertoire revealed a large sequence variation in the 23 cruciferous
genomes. The data provides further insights into evolutionary processes impacting this important gene family.

Keywords: Arabidopsis thaliana, Brassicaceae, CC/TIR-NB-LRR domains, Genomes, Leptosphaeria maculans,
Resistance genes
Background
As sessile organisms, plants have adapted to their changing
surroundings and their survival is based primarily on timely
evolved immune responses. The first line of defense occurs
at the plant cell surface with the recognition of conserved
microbial groups such as lipopolysaccharides and peptido-
glycans, commonly revered to as pathogen or microbe-
associated molecular patterns (PAMPs/MAMPs). The
MAMPs are recognized by cognate pattern-recognition
receptors (PRRs) and trigger immediate immune responses
leading to basal PAMP-triggered immunity (PTI) [1,2].
Known PRRs fall into one of two receptor classes: trans-
membrane receptor kinases and transmembrane receptor-
like proteins, the latter of which lack any apparent internal
signaling domain [3]. Notably, PRRs are components of
multiprotein complexes at the plasma membrane under
tight control by protein phosphatases and other regulatory
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proteins [4]. In a number of cases specialized pathogens
are able to overcome basal PTI by either circumventing
the detection of PAMPs or interfering with PTI by delay-
ing, suppressing or reprogramming host responses via de-
livery of effector molecules inside host cells. As a counter
mechanism, deployed intracellular resistance (R) proteins
detect the presence of these effectors directly or indirectly
leading to effector-triggered immunity (ETI). The RPM1-
INTERACTING PROTEIN 4 (RIN4) is a well-studied
key-player in the former situation [5,6], whereas direct
interaction could be exemplified by the R genes and effec-
tors in the rice – Magnaporthe oryzae pathosystem [7,8].
The plant resistance proteins are modular, that is, they

consist of combinations of conserved elements some
with features shared with animals reviewed by [9-11].
The majority of R proteins are typically composed of a
nucleotide-binding site (NB) with a leucine-rich repeat
(LRR) domain of variable length at the C-terminus.
These NB-LRR proteins are divided into two classes on
the basis of their N-terminal sequences consisting either
of a coiled-coil (CC) sequence or of a domain that
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shares sequence similarity with the Drosophila melano-
gaster TOLL and human interleukin-1 receptor referred
to as TIR. These blocks of conserved sequences have
remained throughout evolution and can still be identi-
fied in diverse organisms of eubacteria, archaea, meta-
zoans and bryophytes [12]. Despite this high degree of
conservation, the R proteins confer resistance to a broad
spectrum of plant pathogens, including viruses, bacteria,
fungi, oomycetes and nematodes [13-15].
NB-encoding resistance genes have been annotated in

many monocot and dicot species pioneered by Arabi-
dopsis thaliana [16]. The current wealth of genomes of
sequenced plant species has revealed R genes to be one
of the largest plant gene families. In the reference gen-
ome of A. thaliana, 149 R-proteins harbor a LRR motif
whereof 83 are composed of TIR-NB-LRR and 51 have
CC-NB-LRR domains [17,18]. Several shorter proteins
also are present comprising one or two domains repre-
sented by 19 TIR-NB encoding genes and 30 genes with
TIR-X domains. In total, A. thaliana has approximately
~200 proteins with one to three R gene-associated pro-
tein domain combinations.
In this study we took advantage of the accelerating gen-

ome information in A. thaliana and performed genome-
wide analyses of R genes in 19 A. thaliana genomes. We
further expanded the analysis by including the genomes of
the related Arabidopsis lyrata, Capsella rubella, Brassica
rapa and Eutrema salsugineum species. In addition we se-
lected two loci harboring resistance to Brassica fungal
pathogens in order to trace down their evolutionary pat-
terns. We found that 29 R genes formed a core set within
A. thaliana, whereas as few as five R genes were retrieved
from the genomes of the five different species. One of
those five genes, the HOPZ-ACTIVATED RESISTANCE 1
(ZAR1) gene known to possess novel signaling require-
ments is also present in other plant families within the
Rosid clade. The RESISTANCE TO LEPTOSPHAERIA
MACULANS 1 (RLM1) locus was partly conserved in A.
lyrata and C. rubella and greatly diversified in B. rapa and
E. salsugineum, while the RLM3 locus has recently
evolved in the Arabidopsis genus. This work provides as-
pects on R gene diversity and choice of reference genotype
in comparative genomic analysis.

Results
A core set of 29 R genes is present in 19 A. thaliana
genomes
To gain insight on the level of R gene conservation in A.
thaliana, we analyzed the reference genome of Col-0 and
18 additional accessions (Bur-0, Can-0, Ct-1, Edi-0, Hi-0,
Kn-0, Ler-0, Mt-0, No-0, Oy-0, Po-0, Rsch-4, Sf-2, Tsu-0,
Wil-2, Ws-0, Wu-0 and Zu-0) [19]. These 18 genomes
were chosen primarily for their sequence quality, high
coverage, RNA sequencing data and de novo assembly.
Pfam homology and COILS server searches on the pre-
dicted 148 NB-LRR-encoding genes [18] resulted in a re-
duced list of 124 R genes in Col-0 for further analysis,
comprising 48 CC-NB-LRR (CNLs) and 76 TIR-NB-LRRs
(TNLs) (Additional file 1: Table S1). Between 97 (Edi-0) to
109 (Hi-0 and Po-0) of these R genes were found within
the genomes of the 18 newly sequenced A. thaliana acces-
sions (Figure 1A, B). No additional R genes besides those
present in Col-0 were found in the trace sequence ar-
chives of the 18 genomes.
In a comparison of the 48 CNL encoding genes in

Col-0, between 27 (Edi-0) to 40 (Hi-0) were recovered in
the selected accessions (Figure 1A). The protein products
of the remaining genes orthologous to the CNL
proteins in Col-0 were either missing one or several
domains (CN, NL, N or L) or were completely absent in
at least one accession (Figure 1C). Representatives of
known defense-related genes that were absent included
RPS5 in Edi-0, No-0 and Sf-2, and ADR1 in Zu-0. For
gene abbreviations, see Additional file 2: Table S2. In the
TNL group, the number of complete TNL genes varied
between 49 (No-0) and 59 (Po-0 and Wu-0) (Figure 1B, D).
Examples of missing genes were RPP5 in Ct-1, Mt-0,
Oy-0 and Wu-0, and SNC1 in Can-0, Edi-0, No-0, Rsch-4,
Tsu-0 and Wu-0.
In summary, a rather wide distribution of R gene rep-

ertoires was found among the 19 A. thaliana accessions.
Out of the 124 encoding R genes in Col-0, 41 genes had
orthologs in the other 18 accessions. However, 12 of
these genes lacked one or two domains in at least one
accession. For example, RPP13 had lost its LRR domain
in No-0, Rsch-4, Wil-2 and Zu-0. In the remaining core
set of 12 CNL and 17 TNL encoding genes, all randomly
distributed over the genome (Additional file 3: Figure
S1), nine genes (ADR1-L1, ADR1-L2, LOV1, RPS2, RPS4,
RPS6, SUMM2, TTR1 and ZAR1), are known to be im-
plicated in various plant defense responses.
Five NB-LRR genes are conserved in five members of the
Brassicaceae family
To expand the analysis on R genes in A. thaliana, we moni-
tored possible conservation of R genes across lineages in
Brassicaceae represented by A. lyrata, C. rubella, B. rapa
and E. salsugineum. Pfam homology and COILS server
searches identified 404 proteins with CNL or TNL architec-
ture (Additional file 1: Table S1). The number of predicted
CNL and TNL encoding genes varied greatly: E. salsugi-
neum (67), C. rubella (75), A. thaliana Col-0 (124), A.
lyrata (127), and B. rapa (135), numbers that do not reflect
the genome sizes or number of predicted gene models in
the individual species.
Orthologous sequences in the five species were identi-

fied by phylogenetic analysis of the NB domains in the
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Figure 1 Diversity in domain architecture of NB-LRR encoding R genes in 18 A. thaliana accessions in comparison with Col-0. In (A) number
of genes encoding full-length or fragmented CC-NB-LRR (CNL) genes, and (B) number of genes encoding full-length or fragmented TIR-NB-LRR (TNL)
genes. The distribution of 124 core A. thaliana Col-0 R genes in 18 A. thaliana accessions, with in (C) CNL genes and (D) TNL genes. For gene names,
see supporting information Additional file 2: Table S2. The genes encoding only a LRR are grouped with the absent genes.
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CNL and TNL sequences. In the resulting phylogenetic
tree, 57 clades with orthologs from at least two plant
species were formed (Additional file 4: Figure S2 and
Additional file 5: Table S3). Within these 57 clades, multi-
copy genes from single species were also found identified
as in-paralogous sequences within that specific species.
The placement of the sequences outside the 57 clades was
not resolved. Within the orthologous sequences a bias to-
wards the TNL group was seen, with 52 out of 76 A. thali-
ana TNL sequences having an ortholog in one or more
species, while only 17 out of 48 CNLs had an ortholog.
Excluding in-paralogous genes, the highest number of
orthologous sequences was identified between A. thaliana
and A. lyrata (Figure 2), as concurrent with earlier find-
ings [20,21]. From the A. thaliana core set of 29 genes, 7
CNL and 9 TNL genes were also found within two or
more species including ADR1-L1, ADR1-L2, RPS2, RPS6,
TTR1 and ZAR1.
In total, two CNL clades and three TNL clades with

sequences from all five species were identified. Only one
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of these clades (no. 5; Additional file 4: Figure S2) con-
tained a gene implicated in defense responses, known as
ZAR1 and required for recognition of the Pseudomonas
syringae T3SE HopZ1a effector [22]. ZAR1 has homo-
logs in several species within the Rosid clade as well as
in Vitis vinifera and Solanum species, and in our dataset
ZAR1 was well conserved, with a Ka/Ks ratio of 0.4 sup-
porting purifying selection. Two other genes, At5g66900
and At5g66910 were found in the same clade (no. 12;
Additional file 4: Figure S2), suggesting that they were
paralogous to each other and possibly have redundant
functions. In this clade, B. rapa and E. salsugineum were
represented with three and two genes, respectively, while
there was a single gene from A. lyrata and C. rubella.
Phylogenetic analysis of the CDS sequences revealed that
only the At5g66900 gene was conserved among the five
species (Additional file 6: Figure S3). The RPS2 gene was
earlier found in several Brassica species, including B.
montana, B. rapa and B. oleracea [23,24], and it has
most likely a homolog (945467, identity of 94%) in A.
lyrata [20]. In our dataset, the A. thaliana RPS2 gene
was also identified in E. salsugineum but not in C. ru-
bella. However, a BLASTN homology search, revealed
similarity between RPS2 and a region annotated on the
anti-sense strand as a gene without any domains in C.
rubella (Carubv10005994m). The high similarity and
identity of 88.7 suggested a possible third CNL gene be-
ing conserved among the five species.
In summary, orthology with two CNL genes (At3g50950

and At5g66900) with the possible addition of RPS2 and
three TNL genes (At4g19510, At5g45230, At5g17680) was
observed in all five species. Within the 19 genomes of A.
thaliana only the CNL genes were conserved in this par-
ticular genomic comparison. No known function has been
attributed to four out of the five conserved genes, includ-
ing their orthologs.

Conservation and diversification of the RLM1 locus
L. maculans is a hemitrophic fungal pathogen and the
causal agent of the widespread blackleg disease of Brassica
crops [25]. The RLM1 locus in A. thaliana Col-0 was earl-
ier identified as displaying important roles in the immune
response [26] and contains seven genes with TNL archi-
tectures spanning between At1g63710 and At1g64360
(Additional file 7: Figure S4). Two genes, RLM1A and
RLM1B were found to be responsible for RLM1 activity,
with RLM1A as the main player in the immune response
[26]. No function is known for the remaining five
RLM1C-RLM1G genes. Diversification in resistant loci in
different accessions has been demonstrated in several
cases [21,27,28] and to expand our knowledge on RLM1,
we studied the presence and diversification of RLM1 in
our genomic data set.
Here, we found RLM1A to be present in all 18 A. thali-

ana accessions encoding all three domains in fourteen ac-
cessions (Can-0, Ct-1, Edi-0, Hi-0, Ler-0, Mt-0, No-0, Po-0,
Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0 and Zu-0 (Additional file 8:
Table S4). This is in agreement with their resistance pheno-
type [29]. In general the RLM1A genes in 17 accessions had
very few variable sites compared to RLM1A in Col-0 (p-dis-
tance 0.2 to 0.9%). Ws-0 was atypical and diverged most
with 230 variable sites in comparison to RLM1A in Col-0
resulting in a p-distance of 13.8% (Figure 3A and Additional
file 9: Table S5). No RLM1A homologs were identified in
the A. lyrata, B. rapa and E. salsugineum genomes. One
RLM1A candidate was found un-annotated in the C. ru-
bella genomic sequence and RNA expression data of the
LRR region [30] suggests that this gene is expressed, and



Figure 3 The TNL genes within the RLM1 locus, TN genes in 19
A. thaliana accessions and the RLM3 locus. In (A) p-distance of the
different TNL encoding proteins in the RLM1 locus in the 19 A. thaliana
accessions. Details on individual gene values see supporting
information Additional file 9: Table S5. Domain architecture diversity of
TIR-NB encoding R genes in 18 A. thaliana accessions in comparison
with Col-0 with (B) total full-length or fragmented TIR-NB (TN) genes,
and (C) distribution of 11 Col-0 TN proteins in 18 A. thaliana accessions.
The genes encoding only a LRR are grouped with the absent genes.
(D) Synteny in the RLM3 locus between A. thaliana Col-0, A. thaliana
Kn-0, A. lyrata (Al), C. rubella (Cr), B. rapa (Br) and E. salsugineum (Es).
*Early stop codon; **RLM3 locus in Rsch-4, Tsu-0, Wil-2, Ws-0 and Wu-0
are identical to Kn-0.
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might have a potential role in defense responses. To sup-
port our findings, PCR amplification and sequencing of the
RLM1A region in A. lyrata, B. rapa and C. rubella con-
firmed that only C. rubella has maintained RLM1A. B. rapa
species are not known to host resistance to L. maculans
[31] except the weedy relative B. rapa ssp. sylvestris [32,33].
In order to clarify the presence of RLM1A we used RLM1A
specific primers to amplify this region in B. napus cv. Sur-
pass 400 harboring resistance traits from the wild B. rapa
relative, the gene progenitor, and for comparison, a known
susceptible B. rapa genotype. Here, only B. rapa ssp. sylves-
tris contained a genomic sequence highly similar to the
RLM1A gene of A. thaliana (identity 81%).
The RLM1B gene has a minor role in the immune re-

sponse and is flanked by RLM1C and RLM1D. These
three TNL genes encoded proteins lacking one or more
domains in most of the 18 accessions in comparison to
Col-0, especially RLM1D (Additional file 8: Table S4). One
possible candidate orthologous to RLM1C was found in
the genomic sequence of C. rubella but using the annota-
tion of A. thaliana for comparison the potential gene had
multiple stop codons. Similarity was found for the RLM1B
to RLM1C genes in the genome of A. lyrata, B. rapa and
E. salsugineum (Additional file 7: Figure S4). Due to the
lack of orthology between species this chromosomal
region seems to be under positive selection, showing a re-
duction of the RLM1B to RLMD genes within A. lyrata
and E. salsugineum. In B. rapa on the contrary an expan-
sion was observed with five TNL and one TN genes anno-
tated to the RLM1B-RLM1D region, showing similarity to
the RLM1B and RLM1C genes of A. thaliana Col-0.
The most conserved sequence within the A. thaliana ac-

cessions were RLM1E, F and G genes which displayed
only a few modifications (p-distance 0.5-0.8%) (Additional
file 9: Table S5). Further conservation was observed for
RLM1F and RLM1G in A. lyrata, the latter containing two
orthologs to the RLM1F and RLM1G genes with Ka/Ks
ratios of 1.3 and 0.8 in comparison to A. thaliana Col-0.
Additionally, similarity was found for RLM1G to the gen-
omic region in C. rubella (Ka/Ks ratio of 0.7) and tran-
script data has previously revealed that RLM1G is
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expressed in C. rubella [30]. In B. rapa, five TNL encoding
genes were found to be orthologous to RLM1F and
RLM1G (clade no. 21, Additional file 4: Figure S2), but
only two were found in the RLM1 locus. The three other
TNL encoding genes were located elsewhere with no syn-
teny with the RLM1 locus. No orthology was found for
the RLM1E to RLM1G genes in E. salsugineum.
Overall, in the A. thaliana accessions the RLM1 locus is

conserved in the RLM1E to RLM1G region and appears to
have experienced diversification in the RLM1A to RLM1D
sequence stretch. An exception was Wu-0, in which the
RLM1 locus was highly similar to the RLM1 locus in Col-
0, with only an average p-distance of 0.2% (Additional
file 9: Table S5). In the other four species, several of the
RLM1 genes have experienced diversification in compari-
son to A. thaliana as well as to each other. The exception
is the conserved RLM1G in both A. lyrata and C. rubella
and the RLM1F in A. lyrata while RLM1A was also found
in C. rubella.

The RLM3 locus is unique for A. thaliana and A. lyrata
The RLM3 gene is of importance for immune responses
not only to L. maculans but also to Botrytis cinerea and
Alternaria species [34]. The gene encodes TIR and NB
domains, but lacks a LRR domain. Instead, the C-terminal
end contains three copies of the DZC (disease resistance,
zinc finger, chromosome condensation) or BRX domain
(brevis radix) originally described having a role in root de-
velopment [35]. In addition to RLM3, 18 genes in A. thali-
ana Col-0 contain TN genes without LRR domains [18].
However, RLM3 is the only TN gene in the A. thaliana
reference genome that contains BRX domains. To gain
more insight on the TN encoding genes in A. thaliana
Col-0, a Pfam homology and COILS server search was
employed. This was designed to exclude genes with trun-
cated TIR or NB domain, resulting in eleven TN genes
(Additional file 1: Table S1). The presence of the TN en-
coding genes was further investigated in the 18 additional
A. thaliana genomes.
Overall, we found between six (Wil-2) and eleven (Hi-0,

Po-0 and Zu-0) genes encoding both the entire TIR and
NB domain (Figure 3B). Of the eleven TN genes in Col-0,
seven were present in all 18 accessions, with three encoding
the complete TN. The remaining four genes encoded modi-
fications (T or N) in at least one accession (Figure 3C).
At1g72850 was absent in most accessions (Can-0, Edi-0,
Mt-0, No-0, Oy-0, Wil-2 and Ws-0) and encoding only a
TIR domain in Bur-0, Ct-1 and Sf-2. When we expanded
the Pfam homology searches we found seven TNs in A.
lyrata, one in C. rubella, sixteen in B. rapa and no TN en-
coding gene in E. salsugineum. Within the phylogenetic
tree, five clades with orthologous proteins were identified
(Additional file 4: Figure S2). None of the clades contained
proteins from all four species.
A complete RLM3 sequence was present in 13 out of 19
A. thaliana accessions including Col-0 and no transcripts
lacking one or more domains were identified. The high Ka/
Ks ratio of 2.3 suggests that RLM3 is under positive selec-
tion in the 13 accessions. Examination of the chromosome
region spanning the RLM3 locus revealed that approxi-
mately 8,200 bp in Col-0 was completely absent in six ac-
cessions (Kn-0, Rsch-4, Tsu-0, Wil-2, Ws-0 and Wu-0),
while the flanking genes; At4g16980 and At4g17000 were
present (Figure 3D). The At4g17000 gene has experienced
mutations and small deletions, resulting in early stop co-
dons. The approximately 400 bp between At4g16980 and
At4g17000 not found in the Col-0 genomic sequence
showed minor polymorphisms between these six accessions
indicating that the deletion of RLM3 resulted from a single
event.
A RLM3-like gene was found in A. lyrata (clade no. 3;

Additional file 4: Figure S2) suggesting the presence of
RLM3 before the split from A. thaliana ~13 Mya [36]. In
contrast, no RLM3 homolog was found in the C. rubella, B.
rapa and E. salsugineum genome sequences. To further
trace a possible origin of RLM3, the BRX domain was used
in phylogenetic analysis but no orthology could be found to
sequences within the kingdom Plantae (Additional file 10:
Figure S5). We conclude that RLM3 has most likely evolved
entirely within the genus of Arabidopsis.

Discussion
In this report we describe a genome-wide survey of the
large R gene family in 19 A. thaliana accessions and four
related species in the Brassicaceae family. The compari-
sons of the A. thaliana accessions revealed a great vari-
ation in gene numbers and a biased loss of LRR
domains. Interestingly, the Col-0 genome was the most
R gene dense accession in the dataset. We checked for
biases in the re-sequencing and gene annotation process
of the additional A. thaliana genotypes but could not
identify any obvious explanation for loss of R genes in
these accessions. This is in line with a recent genome
study comprising de novo assembly of 180 A. thaliana
accessions, which revealed large variation in genome
size, with 1.3-3.3 Mb of new sequences and 200–300
additional genes per genotype [37]. The differences were
however found to be mainly due to 45S rDNA copies
and no new R genes absent in Col-0 was reported.
Col-0 is a direct descendent of Col-1 and was selected

from a Landsberg population based on its fertility, and vig-
orous plant growth [16]. The same population was used in
irradiation experiments, resulting in the Landsberg erecta
accessions (Ler). It has now become clear that the original
Landsberg population contained a mixture of slightly differ-
ent genotypes, explaining the observed difference in R gene
repertoire between Col-0 and Ler-0. The genetic variation
among A. thaliana accessions as observed in our dataset
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has a long history of being exploited for R gene mapping
and cloning. Characterization of resistance genes to P. syrin-
gae (RPM, RPS) together with RPP genes to the oomoycete
Hyaloperonospora arabidopsidis have been in the forefront
and also advanced the understanding of interactions with
pathogen effectors. The RPP1 locus of the Ws-0 and Nd-1
accessions recognize different H. arabidopsidis isolates, an
observation that lead to the discovery of the avirulence gene
ATR1 and six divergent alleles [38]. Sequence alignment
with ATR1 syntenic genes in Phytophthora sojae and P.
infestans in turn revealed the RxLR translocation core motif,
adding another dimension to the genetic makeup of host-
pathogen pairs and effector biology.
Within the 18 accessions of A. thaliana a large number

of R genes were missing one or more domains in compari-
son to Col-0, with the loss of LRR domains as the most
common alteration. Modulation of the LRR sequences to-
gether with gene conversion, domain swapping and dele-
tion events are suggested strategies for a plant to co-
evolve with a pathogen. LRR domains have been identified
in a diverse variety of bacterial, protist and fungal species,
together representing thousands of genes [12]. Fusion of
the LRR domains with the NB domain is of a more recent
origin than LRR fusion with receptor-like kinases, which
are seen only in the land plant lineage. The LRR domain is
suggested to have evolved several times resulting in eight
specific classes, which differ in sequence length and simi-
larity within the variable segment of the LRR domain
[39,40]. One of the LRR classes, referred to as Plant Spe-
cific LRRs has been shown to be under diversifying selec-
tion in several R proteins [41-44]. This type of sequence
diversifications most likely reflects co-evolution with
pathogen effectors, proteins known to directly or indir-
ectly interact with the LRR motifs [7,45-47]. The import-
ance of presence or absence of a particular LRR domain
has also been demonstrated. In the absence of the P. syrin-
gae effector AvrPphB, the LRR domain of RPS5 inhibits
the activity of the CC and NB domains [48]. Conse-
quently, loss of the LRR suppressor activity results in plant
cell death due to constitutive RPS5 activity. It was there-
fore not surprising that none of the RPS5 homologs in our
dataset lacked the LRR domain. RPS2, RPS4 and RPS6 se-
quences were highly conserved between accessions and
the LRR domains showed low degree of polymorphisms
(Ka/Ks ratio between 0.64 and 0.76). In case of RPS4 the
LRR domain is important for protein stability but it lacks
the suppressor activity, like RPS5 [49].
In many A. thaliana accessions in our dataset we found

R genes encoding bipartite proteins, often represented by
the loss of the LRR domain in comparison to Col-0. Such
TN-encoding genes have been speculated to function as
adapter proteins interacting with TNL proteins or with
downstream signaling components [17]. For example,
PBS1, an important player in the RPS5 defense response,
was found to interact with a TN protein [50]. Whether
CN and TN genes in general act in protein complexes rec-
ognizing pathogen effectors remains to be demonstrated.
Plant R genes encoding bipartite proteins also have been
speculated to be part of an evolutionary reservoir in plants,
allowing the formation of new genes through duplications,
translocation and fusion [12,51,52]. The fusion between the
TN and BRX domain in RLM3 is unique for A. thaliana
and A. lyrata, possible dimerizing with other BRX domain-
containing proteins, since homo- and heterodimerization
capability between BRX domains of individual proteins has
been shown [53]. Further, the transcription factor BRX,
containing two BRX domains was shown to control the ex-
pression of a gene important in brassinolide synthesis [54]
and thereby modulate both plant root and shoot growth.
In our dataset we observed a great variation in the

number of unique CNL and TNL R genes, ranging from
33 in E. salsugineum to 63 in B. rapa. Copy number dif-
ferences within different species of the R gene family is
proposed to be driven by gene loss through pseudogen-
ization or expansion through duplication events and
subsequent divergence [12]. The five species in our data-
set represent two lineages; lineage I (Arabidopsis and
Capsella) and lineage II (Brassica and Eutrema), diver-
ging at approximately 43 Mya [36,55]. Due to the close
relationship between the five species, higher numbers of
conserved R genes was expected, but no lineage-specific
R gene repertoires were found. Comparative genomic
analysis between A. thaliana and B. rapa already estab-
lished orthology between several NB-LRR genes [24].
However, in our study we found eleven additional sets
including orthologs to ADR1-L1, ADR1-L2, RPP1, RPP13
and ZAR1. Out of the 528 R genes analyzed, only two
CNLs and three TNLs were conserved in the five spe-
cies. One of these, ZAR1, is also present in many other
species within the eudicots, mainly within the Rosid
clade [22]. The Rosid clade diverged from the Caryo-
phyllales and Asterids more than 110 Mya [56] suggest-
ing an ancient origin of the ZAR1 gene. Recently it was
shown that ZAR1 interacts with the pseudokinase ZED1
in mediating immunity to P. syringae [57]. This pseudo-
kinase family is also common among flowering plants
and it could be speculated that pseudokinases and ZAR1
plays a general role in basal plant defense responses not
seen in the ETI response triggered by P. syringae in A.
thaliana.

Conclusions
Here, we have revealed a large variation in the R gene rep-
ertoire in the A. thaliana accessions, highlighting both the
fast evolving nature of the R gene family but also a potential
bias in the usage of a single genotype for genome compari-
sons. The recent advances in genome sequencing technolo-
gies enable re-sequencing of genotypes of interest for crop
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improvements with reasonable costs and rapid generation
of molecular markers that co-segregate with traits of inter-
est. An abundant supply of gene information from the rich
genetic resources of Brassica species can therefore be fore-
seen along with methods for enrichment of genes of inter-
ests. Using such strategies, the number of NB-LRR genes in
the potato genome was increased from 438 to 755 [58],
demonstrating new avenues and breakthroughs made pos-
sible by next generation sequencing in the relatively short
time that has passed since the sequencing of the first flow-
ering plant.

Methods
Data sampling
The coding (CDS) and protein sequences of the A. thali-
ana Col-0 reference genome, 18 A. thaliana accessions,
A. lyrata, C. rubella, B. rapa and E. salsugineum (previ-
ously Thellungiella halophila) genomes were downloaded
from online databases [19,59-66]. Proteins with significant
match according to the Pfam software [67] with the TIR
domain (PF01582), NB-ARC (NB) domain (PF00931), and
LRR domains (LRR1-5, 7–8), (PF00560, PF07723,
PF07725, PF12799, PF13306, PF13504, PF13855) were se-
lected. All proteins lacking the TIR domain were analyzed
for the presence of the CC region with the COILS server
using default settings and a confidence threshold >0.9
[68]. For the A. thaliana reference genome of Col-0 and
the four species, genes encoding a TIR domain in combin-
ation of a NB and LRR (TNL) or a CC in combination
with a NB and LRR (CNL) domains were selected. In the
case of different isoforms, the longest transcript of each
gene was included in the dataset. All protein sequences
were subjected to Pfam homology and COILS server
searches to identify CNL or TNL as described above for
the A. thaliana accessions.
The RESISTANCE TO LEPTOSPHAERIA MACULANS 1

(RLM1) and RESISTANCE TO LEPTOSPHAERIA MACU-
LANS 3 (RLM3) loci were selected for detailed analysis.
Genomic and CDS sequences spanning two genes up-
stream (At1g63710) and downstream (At1g64090) of the
RLM1 locus [26] were retrieved from the TAIR10 database
[16]. The CDS sequences of At1g63710 through At1g64090
in Col-0 were used to identify the corresponding chromo-
somal regions in A. lyrata, C. rubella, B. rapa, and E. salsu-
gineum by BLAST search against the Phytozome database
[60,69]. Similarly, the At4g16980-At4g17000 region around
the RLM3 locus (At4g16990) [34] was selected and identi-
fied in A. lyrata, C. rubella, B. rapa, and E. salsugineum.
The Pfam software was used to select genes encoding a
combination of TIR and NB domains (TN) in Col-0 and
subsequent orthologs in the 18 A. thaliana accessions were
identified. For the presence/absence (P/A) polymorphisms
of the NB-LRR genes the definition of [70] was used. The
average non-synonymous and synonymous substitutions
per site ratio (Ka/Ks) for each gene were determined using
the number of differences with the Nei-Gojobori distance
method implemented in MEGA 5.2 [71].

Multiple sequence alignment and phylogenetic analysis
The NB domains in the CNL and TNL proteins identified
in A. lyrata, C. rubella, B. rapa and E. salsugineum ge-
nomes were aligned with ClustalW [72] using default set-
tings and the alignment translated to nucleotides with the
TranslatorX tool [73]. Poorly aligned sites were removed
from the dataset using GBlocks 0.91b [74] with following
settings: −b1 = 282, −b2 = 283, −b4 = 5, −b5 = h, −b6 = y.
Identical proteins were reduced to one representative. A
neighbor-joining tree was constructed using PAUP* 4.0β10
[75] through Geneious version 7.0.4 [76] using the GTR+G+I
model with a 0.1 proportion of invariable sites and 1,000
bootstrap replicates. Proteins with a bootstrap confidence ≥70
were selected as orthologous. To further analyze parts of
the resulting tree, a maximum likelihood (ML) analysis was
performed using the GTR+G+I model and 1,000 bootstrap
rates replicates in MEGA 5.2 [71]. Proteins with a BREVIS
RADIX (BRX) domain were identified in BLASTP hom-
ology searches using a hidden Markov model (HMM) of
the BRX domain sequence (PF08381). The BRX domain
sequences were aligned and translated to nucleotides with
translatorX and a ML tree was constructed in MEGA 5.2
using the GTR+G+I rates and 1,000 bootstrap replicates.

Analysis of the RLM1 and RLM3 loci
Syntenic orthologs between A. thaliana Col-0, A. lyrata,
C. rubella, B. rapa, and E. salsugineum were identified
using the SynOrths v1.0 tool with default settings [77], by
comparing all genes in the selected region between all
pairs of species. Protein pairs with an E-value cutoff of
<1e-9 were considered orthologous. All none-TNL pro-
teins within the RLM1 region in the different species were
assigned to orthologous groups using the OrthoMCL ver-
sion 2.0 server [78] followed by Pfam homology search to
identify domain architecture. TNL proteins and the unan-
notated regions within the RLM1 locus in the different
species were aligned using ClustalW, manually inspected
and classified as highly similar (≥60% aa identity) or ortho-
logous (≥80 aa identity). The evolutionary p-distance (the
proportion of amino acid sites at which two sequences are
different divided by the total number of sites converted to
percentages) between the TNL genes in the RLM1 region
of the 18 A. thaliana accessions [19] was calculated in
comparison to Col-0 [79]. For the RLM3 locus, the region
between At4g16980-At4g17000 in A. thaliana Col-0, A.
lyrata, C. rubella, B. rapa and E. salsugineum were aligned
using ClustalW with the default settings and manually
inspected.
To PCR amplify the RLM1A region in different species,

DNA was extracted by dissolving crushed leaves of A.
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lyrata, (I2_AUT1 [80]), C. rubella (Cr1GR1, Samos,
Greece), B. rapa ssp. pekinensis cv. ‘Granaat’, B. napus Sur-
pass 400 and B. rapa ssp. sylvestris in extraction buffer
(50 mM Tris, pH 7.9; 0.06 mM EDTA, pH 8; 0.62 mM
Triton X-100 and 50 mM LiCl) followed by incubation at
55°C for 10 min. DNA was purified by phenol/chloro-
form/isoamyl alcohol (25:24:1) followed by chloroform/
isoamyl alcohol (24:1), and precipitated with 3 M NaOAc
(pH 5.2) and 100% ethanol. The RLM1A region containing
part of the flanking genes (AT1G64065 and AT1G64080 in
A. thaliana) was PCR amplified in C. rubella (Cr), A. lyrata
(Al) and B. rapa ssp. pekinensis (Br) using species specific
primers, Cr_Fw: GTTGTGGTTGAGATCGGTTC, Cr_Rv:
TGTTGCACGAAAAGAGACAA, Al_Fw: GAACCTCCA
GGGAAATGTCT, Al_Rv: CCATTGTCACTTCCGTTAC
C, Br_Fw: CACTTCCCCCATTAACTCCT and Br_Rv:
TAAAAGCGGAGAGGGAGATT. In Surpass 400 and
B. rapa ssp. sylvestris RLM1A was amplified using RL
M1A_Fw3: CATCCCATTGGTCTTGATGA and RLM
A_Rv3: TGGCTTTCACAAGATCACCA. The PCR pro-
ducts were purified using the GeneJET PCR purification
kit (Thermo Scientific) followed by sequencing (Macro-
gen Inc. Amsterdam, the Netherlands).

Availability of supporting data
The data supporting the results of this article are in-
cluded within the article.
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Additional file 1: Table S1. List of R genes in the genomes of A.
thaliana, A. lyrata, C. rubella, B. rapa and E. salsugineum. Nomenclature is
according to Phytozome or otherwise stated. Identifiers in B. rapa are
according to [81]. *Plant Resistance Gene Wiki [82], **Uniprot [83], §Not
used in the Neighbor Joining analysis.

Additional file 2: Table S2. List of R genes in A. thaliana with known
function used in this study [22,26,28,34,41,84-100].

Additional file 3: Figure S1. Chromosomal distribution of conserved
and selected NB-LRR genes in 19 A. thaliana accessions. On the right side
of each chromosome the 29 conserved CNL and TNL genes are depicted
together with orthologs in A. lyrata, C. rubella, B. rapa, and E. salsugineum
in blue. The red genes have orthologs in the four Brassicaceae species
but are absent in several of the A. thaliana accessions. Genes on the left
side of the chromosomes are attributed to a defense response but were
not found conserved between the 19 accessions. R gene information is
compiled in Additional file 2: Table S2.

Additional file 4: Figure S2. Phylogenetic analysis based on the NB
domain in R proteins from A. thaliana, A. lyrata, C. rubella, B. rapa, and E.
salsugineum. The neighbor joining tree was constructed using the GTR
model and 1,000 bootstrap replicates. Orthologous proteins were
identified in individual clades at a bootstrap value of ≥70 and are
highlighted and numbered. Labeling is as follows: CNL proteins (green),
TNL proteins (blue), TN proteins (light blue) and clades with bootstrap
<70 (grey). The identifiers of each gene are described in Additional file 1:
Table S1.

Additional file 5: Table S3. Orthologous R genes between A. thaliana,
A. lyrata, C. rubella, B. rapa and E. salsugineum.

Additional file 6: Figure S3. Maximum likelihood analysis of ten CNL
genes. The construction of the maximum likelihood tree was done using
the alignment of the complete CDS sequence of the ten sequences in
clade 12 (CNL) in Additional file 4: Figure S2. The GTR model was used
and bootstrapping was with 1,000 replicates. The identifiers of each gene
are described in Additional file 1: Table S1.

Additional file 7: Figure S4. Synteny in the RLM1 locus between five
species. In (A) between A. lyrata (Al), A. thaliana (Col-0) (Al) and C. rubella
(Cr) and (B) between B. rapa (Cr), A. thaliana (Col-0) and E. salsugineum
(Es). The seven RLM1 genes; RLM1A (A, At1g64070), RLM1B, (B, At1g63880),
RLM1C, (C, At1g63870), RLM1D, (D, At1g63860), RLM1E (E, At1g63750),
RLM1F (F, At1g63740) and RLM1G (G, At1g63730) and the other TNL
encoding genes in the four species are in orange (light orange if
un-annotated). The non-TNL genes are depicted in black (synteny) or
white (no synteny). Synteny between genes is depicted dotted lines
showing similarity between two TNL proteins with an identity of 60 or
higher. Reduction in bp length is depicted by the double forward slashes.

Additional file 8: Table S4. Distribution of presence and absence of
gene members in the RLM1 locus in 19 A. thaliana accessions.

Additional file 9: Table S5. p-distance of the different TNL encoding
genes in the RLM1 locus in the 19 A. thaliana accessions.

Additional file 10: Figure S5. Maximum likelihood analysis of the BRX
domain. The GTR model was used and bootstrapping was with 1,000
replicates. Labeling is as follows: dicots (green), monocots (dark blue),
green algae (orange), moss (pink) and lycophyta (light blue). The clades
consisting of BRX domains of RLM3 is highlighted.
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