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Abstract
Background: MicroRNAs (miRNAs) are recently discovered small non-coding RNAs that play
pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals.
Identification of miRNAs in large number of diverse plant species is important to understand the
evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available
databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are
conserved in higher plants, a homology based search using these databases can help identify
orthologs or paralogs in plants.

Results: We searched all publicly available nucleotide databases of genome survey sequences
(GSS), high-throughput genomics sequences (HTGS), expressed sequenced tags (ESTs) and
nonredundant (NR) nucleotides and identified 682 miRNAs in 155 diverse plant species. We found
more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species
and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in
important model legumes such as Medicago, Lotus and soybean. Five miRNA families – miR319,
miR156/157, miR169, miR165/166 and miR394 – were found in 51, 45, 41, 40 and 40 diverse plant
species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444
homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots,
thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore,
we provide computational and/or experimental evidence for the conservation of 6 newly found
Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840) and 2
small RNAs (small-85 and small-87) in Brassica spp.

Conclusion: Using all publicly available nucleotide databases, 682 miRNAs were identified in 155
diverse plant species. By combining the expression analysis with the computational approach, we
found that 6 miRNAs and 2 small RNAs that have been identified only in Arabidopsis thus far, are
also conserved in Brassica spp. These findings will be useful for tracing the evolution of small RNAs
by examining their expression in common ancestors of the Arabidopsis-Brassica lineage.

Background
Cytoplasmic control of mRNA degradation and transla-
tion is one of the important strategies of eukaryotic gene

expression programs. Recently discovered miRNAs are
important regulators of gene expression at the post-tran-
scriptional level. In plants, miRNA genes are transcribed
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by RNA polymerase II, and primary miRNAs transcripts
are subsequently capped, spliced and poly-adenylated [1-
4]. Plant miRNA processing appears to be confined to the
nucleus, and only mature miRNAs are exported to cyto-
plasm [2]. In plants, DCL1 processes primary miRNA
transcripts into an miRNA-miRNA* duplex, with 2-nt
overhangs at the 3' end [2]. Arabidopsis hyponastic leaves
(HYL1), a double-stranded RNA-binding domain
(dsRBD)-containing protein, and SERRATE, a C2H2 zinc
finger protein, assists DCL1 in releasing the miRNA
duplex [5-7]. Then HEN1, a methyl transferase, adds
methyl groups to the 3' ends of the duplex and stabilizes
the miRNA duplex [8]. The miRNA duplex is then
exported into the cytoplasm by HASTY, the plant ortholog
of exportin 5 [9,10]. Only the active miRNA strand of the
duplex, but not the passenger strand (miRNA*) is incor-
porated into the RNA-induced silencing complex (RISC).
Guided by miRNA present in the RISC, the complex can
recognize the target transcript and prevent protein pro-
duction by degradation or translational repression [1,10-
13].

In plants, miRNAs are implicated in diverse aspects of
plant growth and development, including leaf morphol-
ogy and polarity, lateral root formation, hormone signal-
ing, transition from juvenile to adult vegetative phase and
vegetative to flowering phase, flowering time, floral organ
identity and reproduction [13,14]. A role of miRNAs in
plant stress responses was also evident from recent stud-
ies. Several miRNAs are regulated in response to diverse
stress conditions, which suggests that miRNA-directed
post-transcriptional regulation of their respective target
genes is important to cope with the stress [13,15-20].

Because miRNAs have emerged as vital components of
post-transcriptional regulation of gene expression impor-
tant for plant growth and development, as well as plant
stress responses, identifying conserved miRNA homologs
in as many plant species as possible is important. Compu-
tational approaches are successful in identifying con-
served miRNAs in many plants and animals, but they
require knowledge of the complete genome sequence,
which is unavailable for most plant species. However,
large genomic fragmented data in the form of genome sur-
vey sequences (GSSs), high-throughput genomics
sequences (HTGSs) and nonredundant nucleotides
(NRs), as well as expressed sequence tags (ESTs), are avail-
able for several plant species and can be used for identifi-
cation of conserved miRNAs. GSS and HTGS of GeneBank
represent only short stretches of genomic sequence but
can still provide a broader sampling of unfinished
genomes. The NR database contains finished genomic
sequences and cDNAs. Previously Zhang et al. [21] identi-
fied conserved miRNAs in plants using ESTs alone.

Here, we used the available GSS, HTGS, and NR repositor-
ies and ESTs to identify a large number of conserved
miRNA families in diverse plant species. Using BLAST
searches for miRNA homologs coupled with secondary
structure predictions with precursor sequences, we identi-
fied 682 miRNAs in 155 diverse plant species. Nineteen
miRNA families were found in 3 legumes, Medicago trun-
catula, Lotus japonicus and Glycine max. Additionally, 6
miRNAs, previously thought to be Arabidopsis specific,
are expressed in Brassica spp., which indicates that these
miRNAs evolved recently in the Arabidopsis-Brassica clade
and gives valuable information to trace their evolution.

Results
Identification of conserved plant miRNAs in 155 plant 
species
The basis for computational identification of miRNAs is
the conserved, mature miRNA sequence coupled with the
predictable secondary structure of miRNA surrounding
sequences [22]. We used NCBI BLASTN to find miRNA
sequences (orthologs/paralogs) matching at least 18 nt
and leaving 3 nt for possible sequence variations in differ-
ent plant species. To identify miRNA homologs in diverse
plant species, the whole set of Arabidopsis and rice mature
miRNA sequences from the miRBase (see Availability and
requirements for URL)were used in BLAST searches
against publicly available GSS, HTGS, EST and NR data-
bases. The miRNA precursor sequences containing the
miRNA sequences were extracted from the respective data-
bases and used for fold-back structure predictions with
use of mfold [23]. miRNAs are derived from either the 5'
or 3' arm of the hairpin structure, which is also conserved
across diverse plant species. To confirm this feature, the
hairpin structures were compared with the previously
reported miRNA hairpin structures. This search resulted in
identification of miRNAs in 155 diverse plant species.
Specifically, we found >15 miRNA families in 11 plant
species, 10 to14 families in 10 plant species and 5 to 9
families in 29 plant species. Our survey also identified rel-
atively more conserved miRNA families in some of the
plant species. For instance, we found 23 miRNA families
in maize, 19 in sorghum, 15 in wheat, and 14 in Citrus sps.
Other notable miRNA families were found in some
important plant species: 12 in grapes, 11 in tomato, 10 in
sugarcane and 7 in potato. We also found five families
(miR159, miR160, miR164, miR166 and miR168) con-
served in gymnosperms and two (miR396 and miR408)
in Selaginella.

Interestingly, miR319, miR156/157, miR169, miR165/
166 and miR394 homologs were found in 51, 45, 41, 40
and 40 diverse plant species, respectively (Table 1 and see
Additional file 1). Six families (miR159, miR160,
miR167, miR170/171, miR396 and miR399) were found
in 30–39 diverse plant species (Table 1). Similarly, seven
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Table 1: Diverse plant species with identified conserved miRNA families.

miRNA family Plant species

miR156/157 Arachis hypogea, Boechera stricta, Brassica napus, Brassica oleracea, Brassica rapa, Bruguiera gymnorhiza, Citrus × paradisi × Poncirus 
trifoliate, Euphorbia esula, Fragaria vesca, Gossypium hirsutum, Gossypium raimondii, Glycine max, Helianthus annuus, Ipomoea nil, 
Lycopersicon esculentum, Lactuca sativa, Lotus japonicus, Malus × domestica, Medicago truncatula, Nicotiana tabacum, Oryza 
australiensis, Oryza brachyanth, Oryza punctata, Oryza ridleyi, Oryza rufipogon, Oryza sativa, Populus trichocarpa, Poncirus trifoliata, 
Prunus persica, Solanum tuberosum Sorghum bicolor, Triticum aestivum, Zea mays

miR158 Brassica oleracea, Brassica rapa,
miR159 Boechera stricta, Brassica oleracea Brassica rapa, Euphorbia esula, Festuca arundinacea, Fragaria vesca, Glycine max, Hordeum vulgare, 

Oryza coarctata, Lactuca saligna, Lactuca serriola, Liriodendron tulipifera Lotus japonicus, Lycopersicon esculentum, Manihot esculenta, 
Medicago truncatula, Malus × domestica, Oryza alta, Oryza coarctata, Oryza ridleyi, Oryza rufipogon, Oryza sativa, Phaseolus vulgaris, 
Picea glauca, Pinus taeda, Populus deltoids, Populus tremula, Populus trichocarpa, Sorghum bicolor, Triticum aestivum, Vitis vinifera, Zea 
mays

miR160 Aquilegia formosa × Aquilegia pubescens, Beta vulgaris, Brassica rapa, Citrus sinensis, Citrus × paradisi × Poncirus trifoliate, Euphorbia 
esula, Festuca arundinacea, Gossypium hirsutum, Gerbera hybrida, Gossypium raimondii, Glycine max, Hordeum vulgare, Lotus japonicus, 
Lycopersicon esculentum, Manihot esculenta, Medicago truncatula, Malus × domestica, Oryza brachyantha, Oryza coarctata, Oryza 
glaberrima, Oryza ridleyi, Oryza sativa, Picea glauca, Picea engelmannii × Picea glauca, Populus trichocarpa, Populus trichocarpa × Populus 
deltoides, Prunus persica, Saccharum officinarum, Sorghum bicolor, Solanum tuberosum, Triticum aestivum, Vitis vinifera, Zea mays

miR162 Brassica oleracea, Euphorbia esula, Gossypium hirsutum, Gerbera hybrida, Glycine max, Helianthus petiolaris, Lactuca perennis, Lactuca 
saligna, Lactuca sativa, Lycopersicon esculentum, Medicago truncatula, Oryza sativa, Vitis vinifera, Zea mays

miR164 Brassica oleracea, Brassica rapa, Citrus sinensis, Gossypium hirsutum, Lotus japonicus, Medicago truncatula, Oryza australiensis, Oryza 
coarctata, Oryza glaberrima, Oryza granulate, Oryza minuta, Oryza punctata, Oryza rufipogon, Oryza sativa, Picea glauca, Populus 
trichocarpa, Populus tremula × Populus tremuloides, Poncirus trifoliate, Sorghum bicolor, Triticum aestivum, Zea mays

miR165/166 Aquilegia formosa × Aquilegia pubescens, Arachis hypogea, Brassica rapa, Brassica oleracea, Citrus sinensis, Citrus × paradisi × Poncirus 
trifoliate, Euphorbia esula, Gossypium hirsutum, Helianthus petiolaris, Hordeum vulgare, Lotus japonicus, Lycopersicon esculentum, 
Medicago truncatula, Malus × domestica, Oryza alta, Oryza brachyantha, Oryza coarctata, Oryza glaberrima. Oryza minuta, Oryza 
punctata, Oryza ridleyi, Oryza rufipogon, Oryza sativa, Phaseolus vulgaris, Pinus taeda, Populus deltoids, Populus trichocarpa, Sorghum 
bicolor, Vitis vinifera, Zea mays

miR167 Arachis hypogea, Brassica napus, Brassica oleracea, Brassica rapa, Citrus clementina, Fragaria vesca, Glycine max, Helianthus annuus, 
Ipomoea nil, Lotus japonicus, Medicago truncatula, Malus × domestica, Nicotiana tabacum, Oryza alta, Oryza australiensis, Oryza 
brachyantha, Oryza coarctata, Oryza granulate, Oryza minuta, Oryza nivara, Oryza punctata, Oryza ridleyi, Oryza rufipogon, Oryza sativa, 
Populus tremula, Populus trichocarpa × Populus deltoides, Populus tremula × Populus tremuloides, Saccharum officinarum, Sorghum 
bicolor, Triticum aestivum, Vitis vinifera, Zea mays

miR168 Beta vulgaris, Brassica napus, Brassica rapa, Citrus clementina, Glycine max, Ipomoea nil, Lotus japonicus, Malus × domestica, Picea glauca, 
Populus tremula, Populus trichocarpa, Vitis vinifera,

miR169 Brassica napus, Brassica oleracea, Brassica rapa, Carica papaya, Citrus sinensis, Euphorbia esula, Festuca arundinacea, Gossypium 
hirsutum, Glycine max, Helianthus petiolaris, Ipomoea nil, Lactuca sativa, Lactuca serriola, Lotus japonicus, Lycopersicon esculentum, 
Medicago truncatula, Oryza alta, Oryza australiensis, Oryza brachyantha, Oryza coarctata, Oryza granulate, Oryza minuta, Oryza nivara, 
Oryza officinalis, Oryza punctata, Oryza ridleyi, Oryza sativa, Populus tremula, Populus trichocarpa, Populus trichocarpa × Populus 
deltoides, Saccharum officinarum, Sorghum bicolor, Vitis vinifera, Zea mays

miR170/171 Aquilegia formosa × Aquilegia pubescens, Boechera stricta, Brachypodium distachyon, Brassica napus, Brassica oleracea, Brassica rapa, 
Carica papaya, Citrus sinensis, Euphorbia esula, Festuca arundinacea, Gossypium hirsutum, Hordeum vulgare, Lactuca perennis, Lactuca 
saligna, Lactuca sativa, Lotus japonicus, Lycopersicon esculentum, Malus × domestica, Medicago truncatula, Nicotiana tabacum, Oryza alta, 
Oryza brachyantha, Oryza coarctata, Oryza glaberrima, Oryza granulate, Oryza minuta, Oryza nivara, Oryza officinalis, Oryza punctata, 
Oryza ridleyi, Oryza rufipogon, Oryza sativa, Populus trichocarpa, Phaseolus vulgaris, Picea glauca, Pinus taeda, Prunus persica, Sorghum 
bicolor, Triticum aestivum, Vitis vinifera, Zea mays

miR172 Boechera stricta, Brassica oleracea, Brassica rapa, Citrus sinensis, Gossypium raimondii, Glycine max, Lactuca saligna, Lactuca sativa, Lotus 
japonicus, Lycopersicon esculentum, Manihot esculenta, Medicago truncatula, Malus × domestica, Oryza brachyantha, Oryza coarctata, 
Oryza sativa, Populus trichocarpa, Populus trichocarpa × Populus deltoides, Sorghum bicolor, Solanum tuberosum, Vitis vinifera, Zea mays

miR319 Brassica napus, Brassica oleracea, Brassica rapa, Glycine max, Ipomoea nil, Liriodendron tulipifera, Lotus japonicus, Lycopersicon 
esculentum, Medicago truncatula, Oryza glaberrima, Oryza minuta, Oryza punctata, Oryza rufipogon, Oryza sativa, Phaseolus vulgaris, 
Populus trichocarpa, Populus tremula × Populus tremuloides, Poncirus trifoliate, Saccharum officinarum, Sorghum bicolor, Triticum 
aestivum, Vitis vinifera, Zea mays

miR390 Boechera stricta, Brassica rapa, Citrus sinensis, Gossypium hirsutum, Lotus japonicus, Medicago truncatula, Oryza brachyantha, Oryza 
coarctata, Oryza granulate

miR391 Brassica oleracea,
miR393 Brassica napus, Brassica oleracea, Brassica rapa, Gossypium hirsutum, Gerbera hybrida, Glycine max, Lotus japonicus, Medicago truncatula, 

Malus × domestica, Oryza minuta, Oryza sativa, Picea glauca, Picea engelmannii × Picea glauca, Pinus taeda, Populus trichocarpa × 
Populus deltoides, Sorghum bicolor, Zea mays

miR394 Aquilegia formosa × Aquilegia pubescens, Brassica napus, Brassica oleracea, Brassica rapa, Citrus clementina, Citrus sinensis, Euphorbia 
esula, Gossypium hirsutum, Gossypium raimondii, Glycine max, Helianthus annuus, Hordeum vulgare, Ipomoea nil, Lactuca sativa, Lactuca 
serriola, Liriodendron tulipifera, Medicago truncatula, Malus × domestica, Oryza coarctata, Oryza glaberrima, Oryza minuta, Oryza sativa, 
Picea glauca, Picea engelmannii × Picea glauca, Populus deltoids, Populus tremula, Populus trichocarpa, Poncirus trifoliate, Prunus persica, 
Saccharum officinarum, Sorghum bicolor, Solanum tuberosum, Triticum aestivum, Vitis vinifera, Zea mays
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families (miR164, miR168, miR172, miR393, miR395,
miR398 and miR408) were found in 20–29 diverse plant
species. The families, miR162, miR390, miR397, miR403
and miR437 were found in 10–19 diverse plant species.

In dicots, leguminous plants form an important source of
human and animal dietary needs second only to cereal
plants. Molecular tools, including genomics, are being
used to rapidly develop Medicago truncatula, Lotus japoni-
cus and Glycine max as model legumes to pursue a number
of important biological questions unique to these plants.
However, only a few miRNAs from these important leg-
umes have been recorded in the miRNA registry. With the
exception of miR397 and miR403, our survey has identi-
fied the remaining 19 conserved miRNA families in leg-
umes (Table 1 and see Additional file 1). Among the ~21
miRNA families conserved between dicots and monocots,
miR319 homologs were found in the largest number (51)
of plant species, whereas miR397 homologs were found
in the least number (14) of plant species. By searching all
gene bank sources, we obtained a wider coverage, both in
terms of miRNA families and number of diverse plant spe-
cies.

On the basis of mature miRNA sequence similarity, these
miRNAs were grouped into families, with members often
varying by 1 to 2 nt. Here, we found 16 new miRNAs
belonging to 11 miRNA families in diverse plant species.
This includes one new member for each of the families,
miR158, miR159, miR160, miR172, miR390, miR395
and miR408. We also identified two new members

belonging to miR319, miR398 and miR403 families and
three new members belonging to miR169 (Table 1).

Zhang et al. [21] classified the miRNAs as highly, moder-
ately or lowly conserved, based on the number of plants
in which each family of miRNA is predicted, although the
number of ESTs available for different plant species varies
highly. Accordingly, miR395, miR399, miR403 and
miR408 families were classified as lowly conserved [21].
Zhang et al. retrieved miR395 and miR399 homologs
from nine and eight plant species, respectively, which
formed the basis for the authors' categorization of the
families as being lowly conserved [21]. miR395 and
miR399 are specifically up-regulated in response to low
nutrient conditions. miR399 is induced under low phos-
phate conditions [16,18,24,25], whereas miR395 is
induced in response to low-sulfate conditions [15]. Thus
the representation of primary miR395 and miR399 tran-
scripts in the ESTs generated from untreated plants is
highly unlikely. By contrast, using GSS, HTGs, EST and NR
databases, we found miR399 and miR395 homologs in as
many as 28 and 18 diverse plant species, respectively. In
fact, with use of GSS alone, miR395 and miR399
homologs were retrieved from 9 and 11 diverse plant spe-
cies, respectively (Table 1). These results suggest that these
two miRNA families are not lowly conserved miRNAs, as
previously considered.

miR408 was cloned from Arabidopsis and rice [3,26]. By
searching the EST database alone, miR408 homologs were
found in nine plant species. As a result, Zhang et al. [21]

miR395 Boechera stricta, Brassica oleracea, Brassica rapa, Gossypium hirsutum, Glycine max, Lotus japonicus, Medicago truncatula, Oryza alta, 
Oryza australiensis, Oryza coarctata, Oryza rufipogon, Oryza sativa, Populus trichocarpa, Saccharum officinarum, Sorghum bicolor, Triticum 
aestivum, Vitis vinifera, Zea mays

miR396 Beta vulgaris, Brassica napus, Brassica oleracea, Bruguiera gymnorhiza, Citrus clementina, Festuca arundinacea, Gossypium hirsutum, 
Glycine max, Hordeum vulgare, Lactuca sativa, Lotus japonicus, Medicago truncatula, Oryza coarctata, Oryza glaberrima, Oryza minuta, 
Oryza officinalis, Oryza sativa, Pinus taeda, Populus trichocarpa, Populus trichocarpa × Populus deltoides, Populus tremula × Populus 
tremuloides, Prunus persica, Saccharum officinarum, Sorghum bicolor, Solanum tuberosum, Zea mays

miR397 Brassica oleracea, Brassica rapa, Nicotiana tabacum, Oryza alta, Oryza brachyantha, Oryza coarctata, Oryza minuta, Oryza nivara, Oryza 
rufipogon, Oryza sativa, Populus tremula, Populus trichocarpa × Populus deltoides, Zea mays

miR398 Brassica oleracea, Brassica rapa, Gossypium hirsutum, Gossypium raimondii, Glycine max, Helianthus petiolaris, Lactuca perennis, Lactuca 
saligna, Lactuca serriola, Lotus japonicus, Medicago truncatula, Oryza sativa, Picea glauca, Poncirus trifoliate, Sorghum bicolor, Triticum 
aestivum, Zea mays

miR399 Boechera stricta, Brassica napus, Brassica oleracea, Brassica rapa, Carica papaya, Citrus sinensis, Fragaria vesca, Gossypium hirsutum, 
Lactuca sativa, Lotus japonicus, Lycopersicon esculentum, Medicago truncatula, Oryza australiensis, Oryza brachyantha, Oryza coarctata, 
Oryza glaberrima, Oryza nivara, Oryza punctata, Oryza rufipogon, Oryza sativa, Populus tremula, Populus tremula × Populus tremuloides, 
Prunus persica, Sorghum bicolor, Solanum tuberosum, Triticum aestivum, Vitis vinifera, Zea mays

miR403 Arabidopsis thaliana, Boechera stricta, Brassica napus, Brassica oleracea, Brassica rapa, Carica papaya, Helianthus annuus, Helianthus 
argophyllus, Helianthus petiolaris, Lycopersicon esculentum, Malus × domestica, Populus trichocarpa, Populus tremula × Populus 
tremuloides, Poncirus trifoliate, Solanum tuberosum, Taraxacum officinale

miR408 Brachypodium distachyon, Brassica napus, Brassica rapa, Bruguiera gymnorhiza, Citrus × paradisi × Poncirus trifoliate, Euphorbia esula, 
Fragaria vesca, Glycine max, Lotus japonicus, Medicago truncatula, Oryza minuta, Oryza officinalis, Oryza sativa, Pinus taeda, Populus 
trichocarpa, Poncirus trifoliate, Prunus persica, Saccharum officinarum, Sorghum bicolor, Triticum aestivum, Zea mays

miR437 Oryza coarctata, Oryza granulate, Oryza minuta, Oryza punctata, Oryza sativa, Saccharum officinarum, Sorghum bicolor, Triticum 
aestivum, Zea mays

miR444 Brachypodium distachyon, Hordeum vulgare, Oryza minuta, Oryza officinalis, Oryza sativa, Saccharum officinarum, Sorghum bicolor, 
Panicum virgatum, Triticum aestivum, Zea mays

Table 1: Diverse plant species with identified conserved miRNA families. (Continued)
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classified miR408 as one of the lowly conserved miRNAs.
In this study, we found miR408 homologs in 23 diverse
plant species, including Selaginella (Table 1). Thus,
miR408 is one of the deeply conserved miRNAs. miR408
has been shown to guide cleavage of plantacyanin, its tar-
get transcript in rice [3]. Also in a recent report, miR408
was found to be expressed in Selaginella and to target a
conserved plantacyanin transcript [27]. The deep conser-
vation of miR408 across the plant kingdom indicates that
the regulation of plantacyanin transcript levels has been
preserved for a long time. Similarly, we found miR403
homologs in 16 plant species (Table 1); therefore miR403
is not a lowly conserved miRNA as classified by Zhang et
al. [21]. Together, these findings indicate that the classifi-

cation of miRNAs as highly, moderately and lowly con-
served miRNAs on the basis of available ESTs alone may
not reflect the true depth of conservation.

Dicot- and monocot-specific miRNAs
miR403 was initially identified in Arabidopsis and later
found in Populus trichocorpa [4,26,28,29]. In a previous
report, miR403 was considered a dicot-specific miRNA
because its homologs were not found in rice. In the
present study, we found miR403 homologs in 16 dicoty-
ledonous plants, including Populus, papaya, tomato,
potato, sunflower, and Brassica spp (Table 1 and Figure
1A,B), but not in monocotyledonous plants. The identifi-
cation of miR403 homologs in other dicots revealed two

miR403 in several dicotyledonous plantsFigure 1
miR403 in several dicotyledonous plants. (A) miR403 homologs in Arabidopsis, Populus trichocorpa, Solanum tuberosum, 
Carica papaya, Lycopersicum esculentum and Helianthus annus. (B) Predicted fold-back structures using miR403 precursor 
sequences.

Ath   UUAGAUUCACGCACAAACUCG
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Pt    UUAGAUUCACGCACAAACUCG
Ha    UUAGAUUCACGCACAAACUCG
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St CUAGAUUCACGCACAAACUCG
Le CUAGAUUCACGCACAAGCUCG
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ggaaga gcauauu    guuugugcgugaaucua       acaac   uuuuc u 
cuuuuu uguauaa caaacacgcacuuagau       uguug   aaaag c 
      a       ugcu cguuugu     uca     a

Le

      u  u     au    u                   aa   uu--  gga--   gauu
gaagag cg auuac  guuu gugcgugaaucuaauucga  ggc    au     gga    u 
cuuuuc gu uaaug caaa cacgcacuuagauuagguu  ucg    ua     ccu    a 
      u  c cu    -                   g-   uuuu  aauag   aaac

Bs

St

(B).
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new members of this miRNA family. As compared to the
Arabidopsis mature miR403 sequence, miR403 differed at
the 5' most nucleotide in Papaya and potato and the 5'
most 2 nt in tomato (Table 1). Thus, the miR403 family is
represented by at least three members in dicots. The iden-
tification of miR403 in as many as 16 dicots provided
large-scale authenticity for considering it a dicot-specific
miRNA.

Sequencing of rice small RNA libraries resulted in the
identification of a few monocot-specific miRNAs [3]. Rice
miR437 homologs found in maize, sorghum and sugar-
cane but not in Arabidopsis or Populus led to the sugges-
tion that miR437 may be a monocot-specific miRNA [3].
In this study, we found additional evidence to support
classifying miR437 as a monocot-specific miRNA, because
miR437 homolog was recovered from Pennisetum ciliare,
another monocot (Figure 2A and 2B). Similarly, miR444

has been reported as a monocot-specific miRNA [3]; its
homologs were found in wheat, barley, sorghum, switch-
grass, sugarcane, Brachypodium distachyon, Oryza officinalis
and Oryza minuta (Table 1). Recently, five additional
members of the miR444 family, all of which are conserved
only in monocots were reported (30).

miR396 homologs were found to be deeply conserved
[27]. miR396 in rice is represented by two variants with
five loci (OsmiR396a,b,c and OsmiR396d,e) [3]. The
mature miRNA sequence corresponding to
OsmiR396a,b,c is conserved across dicots and monocots.
The other variant, represented by OsmiR396d,e, differs
from OsmiR396a,b,c by an additional nucleotide "G"
between positions 8 and 9 [3]. Because the exact sequence
of miR396d,e has not been found in the Arabidopsis or
Populus genomes and its expression could not be detected
in Arabidopsis, it was considered a monocot-specific ver-

Monocot-specific miRNAsFigure 2
Monocot-specific miRNAs. A) miR437 homologs from rice, Sorghum, sugarcane, maize and Pennisetum. (B) Predicted fold-
back structures for the miR437 precursor sequences from rice and Pennisetum ciliare. (C) miR396d,e homologs in rice, wheat, 
Festuca arundancea, barley and Maize. (D). Predicted fold-back structures for the miR396d/e precursor sequences from wheat 
(CJ776495), maize (EST DR802570), barley (EST AV925436, Festuca arundinacea (EST DT684101) and Sorghum bicolor (GSS).

     gu     ac             -       u  c      .-cauauaaauc    cua  
uuuua  uuugu  uaagucaaacuuc cuaacuu ga uaaguu            ugca   a 
aaaau  aaaua  auucaguuugaag gauugaa cu guucaa            acgu   u 
     ug     ga             a       u  a      \ ----------    cua  

S. bicolor

S. officinarum
c         c                     a        ugcaccaaa-     g  .-uaucaaacuaguuccauuaaa   uc 
  aagucaaac ucucuaacuuugaucaaguuu uagaaaaa          aucua aa                       uuc  \ 
  uucaguuug agagauugaaacuaguucaaa aucuuuuu          uagau uu                       aag  c 
 a         a                     a        uauauaauag     g  \ ---------------------   ua  

A).

B).

     uc    c    cuc    ca                    .-uc    g  
  aga  gcgg caug   ucca  ggcuuucuugaacugugaac    gcgc c 
  ucu  cgcc guac   aggu  cugaaagaacuugguacuug    cgcg g 
     c-    c    aaa    uc                    \ --    u  

Festuca arundinacea

Maize

Barley

      c    cuc    ca                    .-uc  -|  c    gcc  
--gcgg caug   ucca ggcuuucuugaacugucaac    gc gcg gcca   a 
  cgcc guac   aggu  cugaaagaacuugguaguug    cg cgu cggu   u 
\     c    aaa    uc                    \ --  u^  c    acc  

c      ca                g   .-uc  g  -  u  ----------      -   ug    ug     ugug     c   auga  
 uuucca  ggcuuucuugaacugu aac    gu gg cg gg          uggugg ugg  cugg  cuggg    uggga gga    \ 
 aaaggu  ccgaaagaacuuggua uug    cg cc gc cc          accacc acc  gacc  gaccc    acccu ccu    u 
-      ac                g   \ --  g  a  c  ccuucucuua      c   cu    cu     ug--     -   cggu  

Sorghum bicolor
          c    ca                g   u   uc   u  ucuu   uu  
  gccauguu ucca  ggcuuucuugaacugu aac cga  gcg gc    agc  g 
  cgguacaa aggu  cugaaagaacuuggua uug guu  cgc cg    ucg  c 
          a    uc                g   u   u-   u  cuc-   uu  

C).

A   C       AUGCU             CUUUU    U        C    C                   A     .-UG  CCA  
 UCC UUUCAAA     GGUCGUUUGGUUU     UCUU AAGUCAAA UUCU UAGCUUUGACCAAGUUUAU GAAAG    CG   \ 
 AGG AAGGUUU     CCAGUAAAUCAAA     AGGA UUCAGUUU AAGA AUUGAAACUGGUUCAAAUA CUUUU    GC   A 
A   C       AAAU-             AC---    -        U    C                   A     \ --  UAA 

Pennisetum ciliare

D).

Rice 396d,e  UCCACAGGCUUUCUUGAACUG 
Wheat        UCCACAGGCUUUCUUGAACUG 
Maize        UCCACAGGCUUUCUUGAACUG 
Barley       UCCACAGGCUUUCUUGAACUG 
Festuca      UCCACAGGCUUUCUUGAACUG 

Rice miR437   AAAGUUAGAGAAGUUUGACUU
Sorghum       AAAGUUAGAGAAGUUUGACUU
Sugarcane     AAAGUUAGGGAAGUUUGACUU
Maize         AAAGUUAGGGAAGUUUGACUU
Pennisetum AAAGUUACAGAAUUUUGACUU 
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sion of the miR396 family [3]. Consistent with this sug-
gestion, miR396d,e homologs were identified in five
other monocots – Sorghum bicolor, maize, wheat, barley
and Festuca arundancea – and a hairpin structure could be
predicted for all of these miRNA precursors (Figure 2C).
Thus, the identification of miR437, miR444 and the
miR396d/e variant of the miR396 family in several mono-
cots provided solid support for consideration of these
miRNAs as being monocot specific.

Arabidopsis-Brassica lineage-specific miRNAs
An initial experimental approach led to the identification
of at least four non-conserved miRNAs in Arabidopsis.
miR158 is one among them, and is represented by two
loci (miR158a and miR158b) in Arabidopsis [31] and
miR158 homologs are not computationally/experimen-
tally evident either in rice [3,15,32] or in poplar [17].
Therefore, miR158 has been considered an Arabidopsis-
specific miRNA. Here, we found computational evidence
for the presence of miR158 homologs in two Brassica sps.
(Figure 3A). Further, the mature miR158 sequence and

the sequence that adopts the fold-back structure is highly
conserved in Brassica oleracea and Brassica rapa (Figure
3B). miR158 in B. rapa differed from miR158 in Arabi-
dopsis by 2 nt at the 5' end. Northern blot analysis with
labeled miR158 antisense oligonucleotide revealed that
miR158 is abundantly expressed in B. oleracea and B. rapa
seedlings (Figure 4A).

miR391 is one of the recently identified miRNAs that has
some sequence similarity with the miR390; therefore, Xie
et al. [4] considered it a member of the miR390 family.
Although miR390 is one of the broadly conserved miR-
NAs, the miR391 sequence has not been identified in
plants other than Arabidopsis, which led to the hypo-
thesis that miR391 is a non-conserved Arabidopsis-spe-
cific miRNA [4]. Our search revealed an miR391
homolog, and a fold-back structure could be predicted for
the precursor sequence in B. oleracea (Figure 3C and 3D).

Recent deep sequencing of Arabidopsis small RNAs sug-
gested that the Arabidopsis genome encodes more non-
conserved miRNA families than conserved miRNA fami-
lies [19,33,34]. These newly found Arabidopsis miRNAs
are considered non-conserved because the orthologous
sequences have not been found in the rice or Populus
genomes [19,33,34]. The non-conserved plant miRNAs
presumably emerged and dissipated in short evolutionary
time scales [19,34]. High-throughput sequencing of small
RNAs from species closely related to Arabidopsis would
help define the lifespan of these transient miRNA genes
[34]. Bioinformatic inspection of the conservation of
these miRNAs in Brassica may not be completely inform-
ative at this time because of the lack of complete genome
information and the search for these miRNA precursor
sequences among ESTs has been unsuccessful. Because
these newly found miRNAs have been recovered only in
high-throughput sequencing suggests that their abun-
dance is extremely low, and thus their representation in
ESTs is unlikely. To examine whether any of these newly
found miRNA homologs are expressed in Brassica, a close
relative of Arabidopsis, we performed small RNA blot
analysis using RNA isolated from two Brassica spp. (B. oler-
acea and B. rapa). To enhance the detection ability, we
used low-molecular weight RNA isolated from 4-week old
seedlings of B. oleracea and B. rapa. The expression of 10 of
the newly found miRNAs (miR771, miR773, miR775,
miR825, miR827, miR828, miR837, miR840, miR846
and miR848) was analyzed. We chose these miRNAs
because they could be detected on small-RNA blot analy-
sis in Arabidopsis and were relatively more abundant in
the libraries than other newly found miRNAs in Arabi-
dopsis [19,33,34]. Three of the miRNAs (miR825,
miR827 and miR840) could be detected in one or both of
the Brassica spp, although their expression levels varied
greatly (Figure 4A). For instance, miR825, miR827 and

Arabidopsis-Brassica  lineage-specific miRNAsFigure 3
Arabidopsis-Brassica lineage-specific miRNAs. (A) 
miR158 homologs in Arabidopsis and Brassica oleracea and 
Brassica rapa. (B) Predicted fold-back structures with miR158 
precursor sequences from B. oleracea and B. rapa. (C). 
miR391 homologs from Arabidopsis and Brassica oleracea 
aligned with Arabidopsis miR390. (D). Predicted fold-back 
structures using miR391 sequences from Arabidopsis and 
Brassica oleracea.

B).

A).

       UCU   CUU           A   U     A  UG   A 
ACGUCAUC   GUG   CUUUGUCUACA UUU GGAAA AG  AUG C 
UGUAGUAG   CAU   GAAACAGAUGU AAA CCUUU UC  UAC G 
        UGC   AAC           -   C     C  GU   C  

Ath

Bo

Br

    U  U    A  U             CUU     AA       G 
ACGUC UC CGGU UU CUUUGUCUAUAUU   GGAAA  GCGAUGA G 
UGCAG AG GCCA AA GAAACAGAUGUAA   CCUUU  CGUUGCU U 
     U  U    A  C             AC-     CA       C  

      AUCU   CUU         U            AUU-    A 
ACGUUAU    GUU   CUUUGUCUA CGUUUGGAAAAG    GAUG C 
UGCAGUA    CAA   GAAACAGAU GUAAACCUUUUC    CUAU G 
       GUGC   AAC         -            ACAU    C  

Bo

   A   -   AU     U  C          G  C      CU-----   U 
UGCA AUA AAG  UUGCU CG AGGAGAGAUA CG CAUCAC       CUUC \ 
ACGU UAU UUC  AACGA GC UCCUCUCUAU GC GUGGUG       GAAG A 
    A   A   CU     U  A          G  A      AUCAAUU   A  

Ath

UUC   U C          G C     CU      UAAG 
AAGG   GCU CG AGGAGAGAUA CG CAUCA  UCUUCU    \ 
UUCC   CGA GC UCCUCUCUAU GC GUGGU  AGAAGA    A 
    UAA   U  A          G  A     --      UUUG  

Ath miR391 UUCGCAGGAGAGAUAGCGCCA
Bo  miR391  UUCGCAGGAGAGAUAGCGCCA 
Ath miR390 AAG--CUCAGGAGGGAUAGCGCC

C).

D).

Ath miR158a   UCCCAAAUGUAGACAAAGCA
Bo miR158     UCCCAAAUGUAGACAAAGCA
Br miR158     UUCCAAAUGUAGACAAAGCA
Ath miR158b   CCCCAAAUGUAGACAAAGCA
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miR840 were more abundant in B. oleracea than in B. rapa
(Figure 4A). Surprisingly, we were unable to detect a sig-
nal for miR827 and miR840 in B. rapa (Figure 4A). Com-
putational analysis revealed miR824 and miR828
homologs in Brassica (data not shown), although we were
not successful in detecting a signal using a probe against
miR828 in Brassica seedlings. miR828 appears to be spe-
cifically or abundantly expressed in siliques of Arabidop-
sis [34]. Recently, conserved miR824 homologs were
found in 3 Brassica spp. [35].

Computational analysis revealed the conservation of
miR158, miR391 and miR824 in Brassica spp, and our
small RNA blot analysis confirmed the expression of
miR827, miR825, and miR840 in at least one of the
Brassica spp (Figures 3 and 4A). Thus, 6 of the miRNAs
(miR158, miR391, miR824, miR825, miR827 and
miR840), whose expression is not known outside Arabi-
dopsis, are indeed conserved between Arabidopsis and
Brassica.

Arabidopsis and rice are known to express a large number
of non-conserved diverse small-interfering RNAs (siR-
NAs) [36-38]. The only exception to-date is that trans-act-
ing siRNAs (Tas3a,b,c), a sub-class of siRNAs that are
deeply conserved [39,40]. Recently, Lu et al. [33] found a
few non-miRNA small RNAs in Arabidopsis. We used
small-RNA blot analysis to test whether any of the three
small RNAs (small-85, small-86 and small-87) are con-
served between Arabidopsis and Brassica. Surprisingly,
small-85 and small-87 could be detected in both Brassica
species we tested (Figure 4B), which suggests that these
two small RNAs are conserved between Arabidopsis and
Brassica and represent lineage-specific small RNAs.

Clusters of plant miRNAs
Clusters of miRNAs frequently found in animals are tran-
scribed together as a polycistron [10,41-44]. Although
miRNA clusters are not common in plants, a few miRNA
families (miR395, miR399, miR169 and miR1219) have
been found to exist as clusters [26,45-47]. Recently, two

Small RNA blot analysis of newly identified small RNAs in BrassicaFigure 4
Small RNA blot analysis of newly identified small RNAs in Brassica. An amount of 20 μg of low-molecular-weight 
RNA used for northern analysis. Antisense oligonucleotide probes were designed for the Arabidopsis miRNAs to detect their 
expression in Brassica oleracea (Bo) and Brassica rapa (Br) seedlings. Radiolabeled antisense oligonucleotide probes were used 
for detection of miRNAs (A) or radiolabeled antisense LNA-probes for detection of small-85 and small-87 (B). Blots were re-
probed with U6, which served as a loading control.

small-85 small-87

miR840miR827

miR825

Bo Br

U6

miR158

U6

A).

B).

Bo Br

Bo Br Bo Br
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tandem miR156 homologs were reported in rice and
maize [48,49]. Here, we identified an miR156 cluster in
several other plant species: two tandem miR156
homologs located within 370 nt of the same orientation
in the rice EST AK110797, two miR156 homologs sepa-
rated by ~190 nt in the sugarcane EST CA294779, two
miR156 homologs separated by 340 nt in the EST
CL172990 of Sorghum bicolor, and two miR156 homologs
separated by 301 nt in the maize EST CL985276. Addi-
tionally two very closely spaced miR156 homologs were
found in a genomic clone of Oryza granulata (216 nt),
Oryza punctata (370 nt). In comparing the syntenic
regions among 3 cereals (i.e., rice, sorghum and maize),
Wang et al. [49] suggested that two miR156 homologs in
tandem arrangement are highly conserved among cereals.
Interestingly, we found a similar arrangement of two tan-
dem miR156 homologs separated by 590 nt in the EST
CJ743424 of Ipomea nil, a dicotyledonous plant. These
findings suggest that the tandem arrangement of two
miR156 homologs is not restricted to cereals and seems to
exist in diverse plant species that are distantly related.

We also found two tandem miR169 homologs in the
same orientation and separated by 250 nt in the cotton
genomic clone DX401397. Two miRNAs belonging to the
miR169 family in cotton (46) and Brassica napus (49)
have been recently reported. Because these homologs are
close together argues against their origin from two differ-
ent miR169 primary transcripts, although evidence for the
expression of these two miR169 homologs in one tran-
script in the form of an EST is lacking. Additionally,
miR169 homologs were found in clusters in Lactuca sativa
(DY980357), Populus tremula (CK111070) and Euphorbia
esula (DV142897) but not in Arabidopsis or rice. Thus, we
show miRNA gene clustering for miR156 and miR169 loci
in diverse plant species. The results suggest that at least
four miRNA families (miR156, miR169, miR395 and
miR1219) exist as miRNA clusters in plants.

Discussion
Recent studies have established that miRNAs play critical
roles in post-transcriptional gene expression in higher
eukaryotes. Evidence for conservation of plant miRNAs
has come from genomic and EST sequence data from
diverse plants showing sequences containing miRNA hair-
pins as well as sequences homologous to the known or
predicted Arabidopsis targets retaining miRNA comple-
mentary sites [15,21]. To date, ~21 miRNA families
known to be conserved between dicots and monocots
forms the basis for the identification of these miRNA fam-
ilies in diverse plant species by use of publicly available
nucleotide databases. By searching these databases, we
identified a total of 682 miRNAs in 155 different plant
species. Our analysis yielded >15 conserved miRNA fami-
lies in 11 plant species and 10 to14 conserved families in

10 plant species. We also identified relatively more con-
served miRNA families (i.e., 23 in maize, 19 in Sorghum,
15 in wheat, 14 in Citrus, 12 in grapes, 11 in tomato, 10
in sugarcane and 7 in potato). At least five families
(miR319, miR156/157, miR169, miR165/166 and
miR394) were found in more than 40 plant species (Table
1). We found six families (miR159, miR160, miR167,
miR170/171, miR396 and miR399) in 30–39 species;
seven (miR164, miR168, miR172, miR393, miR395,
miR398 and miR408) in 20–29 species; and five
(miR162, miR390, miR397, miR403 and miR437) in 10–
19 species (Table 1). Computational analysis coupled
with expression analysis provided evidence for six of the
newly found miRNAs as being conserved between Arabi-
dopsis and Brassica. Additionally, some of the non-
miRNA small RNAs (small-85 and small-87) found in
Arabidopsis were also found in Brassica (Figure 4B). These
findings provide the first large-scale identification of line-
age-specific miRNAs and other small RNAs.

miR395 and miR399 are specifically induced under low-
sulfate and low-phosphate conditions, respectively
[15,16,18,24,25]. miR399 and miR395 homologs are in
as many as 31 and 22 diverse plant species, respectively
(Table 1). miR399 plays an important role in phosphate
homeostasis [16,18]. Similarly, miR398 homologs were
found in 22 plant species. The down-regulation of
miR398 has been implicated in up-regulating Cu/Zn-
superoxide dismutase 1 (CSD1) and 2 (CSD2)in Arabi-
dopsis in response to oxidative stress conditions [13,20].
In contrast, miR398 is up-regulated in response to Cu2+

limiting conditions [50]. miR398 induction is inversely
correlated with the expression of CSD1 and CSD2 genes,
thus maintaining Cu2+ homeostasis and mobilizing the
available Cu2+ to more indispensable proteins such as
plastocyanin [50]. miR393 and its target gene TIR1 are
conserved [15,26]. A role for miR393 in Arabidopsis dis-
ease resistance has been shown recently [51]. Thus, we
found several stress-responsive miRNA homologs –
miR393, miR398, miR395 and miR399 – highly con-
served in diverse monocots and dicots, which suggests
that these miRNA-guided target gene regulations have
been well preserved, possibly because they are important
for plant stress tolerance [13].

Recent deep sequencing of plant small RNA libraries
clearly demonstrated that plants express more non-con-
served than conserved miRNAs [19,30,34]. The non-con-
served miRNAs presumably emerged and dissipated in
short evolutionary time scales [19]. Such rapid emergence
of new genes is likely facilitated by the small size and sim-
ple architecture of miRNA genes derived from their targets
[52], although whether such mechanisms are relevant for
most newly emergent miRNAs [19,34] is unclear. Small-
RNA blot analysis for 10 of the newly found miRNAs con-
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firmed that 3 are expressed in Brassica seedlings. Most of
the newly found non-conserved miRNAs in Arabidopsis
are abundantly expressed in inflorescence [33,34,36], but
we did not test this expression. Thus, the remaining seven
miRNAs not detected in Brassica seedlings need further
study. The absence of expression of some of the new miR-
NAs in Brassica could be due to their loss in Brassica, or
they recently evolved in Arabidopsis after the divergence.

The existence of miRNAs and Tas3-derived tasiRNAs in
plants is well known [39,40]. Interestingly, in the present
study, we found two small RNAs (non-miRNAs and non-
tasiRNAs) conserved between Arabidopsis and Brassica.
Small-85, has been recently identified [33] and is derived
from a long perfect fold-back structure that is reminiscent
of siRNAs derived from dsRNA. Small-85 accumulation
was dependent on all four of the dicers in Arabidopsis
[33]. It disappeared only in a quadruple dcl (dcl-1,2,3,4)
mutant but accumulated alone in dcl1 or in a triple
mutant [33]. Small-85 is derived from the SRK gene that
is capable of adopting a fold-back structure, and its expres-
sion is not dependent on RDR2 [32].

Loss of self-incompatibility in Arabidopsis thaliana and
Brassica is thought to be due to inactivation of a self-
incompatibility (SI) system that involves SRK and SCR
genes. In the Brassica SI system, genes encoding for SI spe-
cificity in pistil (SRK) and pollen (SCR) are thought to be
preserved because of rare or no recombination, and dis-
ruption of this structure would lead to loss of SI. Loss of
the SI system in A. thaliana Columbia-0 (Col-0) was
attributed to non-functional SRK and SCR genes [53]. Lu
et al. [33] hypothesized a role for small-85 in loss of SRK
function in A. thaliana with its accumulation. Here, we
showed that the Arabidopsis small-85 probe can detect a
strong signal at the expected size range in two Brassica spe-
cies, which indicates that small-85 RNA also accumulates
in Brassica seedlings. Further studies are required to clarify
the role of this small RNA in self-incompatibility. The
expression of several SRK genes from self-compatible
plant species in vegetative tissues suggests that SRKs may
play a developmental role. Similarly, the detection of
small-85 in Brassica seedlings also suggests its role in
development in Brassica.

Until now, only miR395 homologs were found to exist as
clusters in Arabidopsis and rice [45]. Some of these clus-
ters are co-transcribed because they were found in ESTs of
rice [45]. Similarly, the clustered organization of miR1219
in Physcometrella was recently reported [47]. Although
miR399 homologs in Arabidopsis and rice were found to
be closely spaced [26], their expression in one transcript is
unknown. Our analysis indicated that along with the well-
documented clustered organization of miR395, miR156
and miR169 also exist as clusters in several plant species.

These observations suggest that the tandem duplications
are the cause for such an organization. Retention of tan-
dem duplications may be due dosage response in some
plants. Gene duplication is estimated to occur at a higher
rate in eukaryotic genomes in general [54] and in flower-
ing plants in particular [55,56].

Although several similar attempts were made earlier (21,
28, 46, 57, 58), largely these studies used either single
plant species (for example, cotton or Brassica sps) or single
nucleotide repository (ESTs). In this study, we used all
nucleotide repositories and considered all plant species.
Furthermore, earlier reports (21, 28, 46, 57, 58) included
small RNAs that were initially identified as miRNAs but
turned out to be siRNAs (e.g., miR404-miR407 in Arabi-
dopsis and miR439, miR442 and miR445 in rice). Here,
we used a conservative approach and considered only
miRNAs that are confidently annotated for the identifica-
tion of homologs in diverse plant species.

The identification of conserved miRNAs by searching all
available nucleotide databases allows for wider and better
coverage of diverse plant species than that with use of the
EST database alone. Our discovery of some of the recently
found Arabidopsis miRNAs conserved in Brassica, a close
relative of Arabidopsis, will help in tracing the evolution
of these miRNAs by analyzing their expression in com-
mon ancestors of Brassica and Arabidopsis. Arabidopsis
and B. oleracea are closely related species that diverged
from a common ancestor approximately 15–20 million
years ago [59]. Because some miRNAs have been found in
both Arabidopsis and Brassica, these miRNAs may be
present in their ancestors. Expression analysis of the ori-
gin of Brassicacea (e.g., Carica papaya), at the base of the
order Brassicales, or Cleomaceae, a sister to Brassicaceae,
will provide close, intermediate and distant comparisons
to trace the evolution of these miRNAs.

Conclusion
Using all publicly available nucleotide databases, 682
miRNAs were identified in 155 diverse plant species. By
combining the expression analysis with the computa-
tional approach we found that 6 miRNAs and 2 small
RNAs that have been identified only in Arabidopsis thus
far, are also conserved in Brassica spp. These findings will
be useful for tracing the evolution of small RNAs by exam-
ining their expression in common ancestors of the Arabi-
dopsis-Brassica lineage.

Methods
Blast search against NCBI gene repositories
All previously recorded miRNAs in Arabidopsis, rice, Pop-
ulus and Physcometrella species were obtained from the
miRBase (Release 10.0, August 2007), and we extracted
the non-redundant miRNA sequences. We used these
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sequences for a BLASTN search of homologs in the GSS,
HTGS, EST and NR databases. We adopted mature miRNA
sequences matching at least 18 nt and leaving 0–3 nt for
possible sequence variations in diverse plants. We used 4-
nt variation cautiously and considered whether this 4-nt
variant was also conserved in other plants. BLASTN
parameters were essentially the same as described previ-
ously [21,46]. The parameters were expected values of
1000 and number of descriptions and alignments of
1000. The default word-match size between the query and
database sequences was 7. If the matched sequence was
shorter than the queried miRNA sequence, the aligned
parts were manually compared to determine the number
of matching nucleotides. Wherever available, precursor
sequences of 620-nt were extracted (300-nt upstream and
300-nt downstream to the BLAST hits) and used for the
hairpin structure predictions. For GSSs, we used the entire
available sequence as an miRNA precursor sequence.
These precursor sequences were retrieved and used for
BLASTX analysis; we removed the protein coding
sequences and retained only the non-protein sequences.
Precursor sequences of these potential miRNA homologs
underwent hairpin structure predictions by use of the
RNA secondary-structure prediction software mfold [23].
We used a cutoff of less than six mismatches between the
miRNA and miRNA* sequence in the other arm. Compu-
tational studies have reported that miRNA precursor
sequences have significantly higher negative minimal
folding free energies (MFEs) and minimal folding free
energy indexes (MFEIs) than other non-coding RNAs or
mRNAs [60]. As reported by Zhang et al. [60], we used an
MEFI cutoff of 0.85. Finally, the hairpin structures were
examined and compared with those of previously
reported miRNAs for confirming the location of mature
miRNA sequences within the hairpin. In brief, the follow-
ing criteria were applied in designating the RNA sequence
as an miRNA homolog: (1) an RNA sequence folding into
an appropriate stem-loop hairpin secondary structure, (2)
a mature miRNA sequence site in one arm of the hairpin
structure, (3) miRNAs having less than six mismatches
with the opposite miRNA* sequence in the other arm, (4)
no loop or break in miRNA* sequences, (5) predicted sec-
ondary structures with higher MFEIs and negative MFEs,
and (6) predicted mature miRNAs with no more than 3 nt
substitutions as compared with A. thaliana, rice, Populus
and Physcometrella mature miRNAs. These parameters ful-
filled the criteria proposed by Ambros and co-workers
[61].

RNA gel blot analysis
Total RNA was isolated from four-week-old rice seedlings
left untreated (control) or exposed to salt stress or drought
stress with use of Trizol Reagent. Low-molecular-weight
RNA was isolated from total RNA by use of PEG precipita-
tion. An amount of 20 μg low-molecular-weight RNA was

loaded per lane, resolved on a denaturing 15% polyacry-
lamide gel, and transferred electrophoretically to
Hybond-N+ membranes (Amersham Biosciences, Buck-
inghamshire, UK). Membranes were UV cross-linked and
baked for 2 h at 80°C. DNA oligonucleotides comple-
mentary to miRNA sequences were end labeled with γ-
32P-ATP by use of T4 polynucleotide kinase (New Eng-
land Biolabs). Membranes were prehybridized for at least
1 h and hybridized overnight with use of Perfect hybridi-
zation buffer (Sigma) at 38°C. Blots were washed three
times (twice with 2 × SSC + 1% SDS and once with 1 × SSC
+ 0.5% SDS) at 50°C. The membranes were briefly air
dried, then exposed to phosphorscreen, and images were
acquired by scanning the films with use of a Typhoon.
Two small-RNA sequences tested for their expression in
Brassica were small-85 (small-85 CAAGACAATAATCT-
TCTCGGCTA) and small-87 (small-87 AAGAACATC-
CAAGGTGTTTGT) [32].
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