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Abstract

Background: The ripening of fleshy fruits is a complex developmental program characterized by extensive
transcriptomic and metabolic remodeling in the pericarp tissues (pulp and skin) making unripe green fruits soft,
tasteful and colored. The onset of ripening is regulated by a plethora of endogenous signals tuned to external
stimuli. In grapevine and tomato, which are classified as non-climacteric and climacteric species respectively, the
accumulation of hydrogen peroxide (H,O,) and extensive modulation of reactive oxygen species (ROS) scavenging
enzymes at the onset of ripening has been reported, suggesting that ROS could participate to the regulatory
network of fruit development. In order to investigate this hypothesis, a comprehensive biochemical study of the
oxidative events occurring at the beginning of ripening in Vitis vinifera cv. Pinot Noir has been undertaken.

Results: ROS-specific staining allowed to visualize not only H,O- but also singlet oxygen ('0,) in berry skin cells just
before color change in distinct subcellular locations, i.e. cytosol and plastids. H,O, peak in sample skins at véraison was
confirmed by in vitro quantification and was supported by the concomitant increase of catalase activity. Membrane
peroxidation was also observed by HPLC-MS on galactolipid species at véraison. Mono- and digalactosy! diacylglycerols
were found peroxidized on one or both a-linolenic fatty acid chains, with a 13(S) absolute configuration implying the
action of a specific enzyme. A lipoxygenase (PNnLOXA), expressed at véraison and localizing inside the chloroplasts, was
indeed able to catalyze membrane galactolipid peroxidation when overexpressed in tobacco leaves.

Conclusions: The present work demonstrates the controlled, harmless accumulation of specific ROS in distinct cellular
compartments, i.e. cytosol and chloroplasts, at a definite developmental stage, the onset of grape berry ripening. These
features strongly candidate ROS as cellular signals in fruit ripening and encourage further studies to identify downstream
elements of this cascade. This paper also reports the transient galactolipid peroxidation carried out by a véraison-specific
chloroplastic lipoxygenase. The function of peroxidized membranes, likely distinct from that of free fatty acids due to
their structural role and tight interaction with photosynthesis protein complexes, has to be ascertained.
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Background
Grapevine is an economically important crop, producing
fruits that are consumed as fresh berries, pressed juice,
dried berries and processed to make wine. Berry quality
is determined by parameters measured at harvest, such
as sugar content, acidity, skin color, berry size and poly-
phenol content. These depend on metabolic processes
activated in the berry pericarp (skin and pulp) at the on-
set of ripening, reflecting a deep re-programming of the
transcriptome [1-6]. Moreover, skin and pulp develop
specialized features during ripening. In particular, skin
accumulates anthocyanin to attract animals for seed-
dispersal, provides a physical barrier against pathogens,
avoid berry withering by preventing water loss and pro-
tects from solar radiation. This functional specialization
is regulated at the transcriptional level [7]. Berry ripe-
ning inception is triggered by internal and external sti-
muli, via complex signal transduction pathways. Internal
factors are hormones, such as auxins [8], abscisic acid
[9,10], brassinosteroids [11] and ethylene [12,13]; me-
tabolic factors, such sugar accumulation [9] and the
increase of turgor pressure [14] and small signaling me-
diators, such as Ca** [2,15]. An oxidative burst coin-
ciding with berry color change and the modulation of
reactive oxygen species (ROS) scavengers at the gene
and protein level have been reported in grapevine, rai-
sing the possibility of ROS taking part to the signaling
mechanisms occurring at fruit ripening [3,6,7,16,17].
Intracellular ROS can be generated by the incomplete
reduction of oxygen or by energy transfer to an oxygen
molecule. The first group of ROS are usually by-products
of oxidative metabolisms such as respiration, photosyn-
thesis and fatty acid oxidation, respectively occurring in
mitochondria, chloroplasts and peroxisomes, and rapidly
interconvert into the more stable hydrogen peroxide
(Hp0,). The latter is represented by singlet oxygen (*0y)
and is produced by energy transfer at the phtosystem II
reaction center, inside the chloroplasts [18]. Nonetheless,
H,0O, can also be generated enzymatically by a family of
NADPH-oxidases [19,20]. Despite their toxicity, at low
levels ROS act as signaling molecules [21,22]. The specifi-
city and selectivity of ROS signaling depend on the origin,
reactivity and spatio-temporal accumulation of each ROS,
as highlighted by a meta-analysis of ROS-related micro-
array experiments [23]. H,O, is a signaling factor in plant
response to external biotic and abiotic stimuli as well as in
developmentally regulated processes (reviewed in [24]).
H,0O5 accumulation has been detected in numerous transi-
tional phases of development: in grapevine at the moment
of bud break [25], in sunflower during seed dormancy re-
lease [26], in tomato and grapevine at fruit ripening [3,27]
and in Arabidopsis at floral transition [28]. 'O, is the
principal ROS that accumulates in illuminated photo-
synthetic tissues [29] and can trigger either acclimation
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or programmed cell death depending on the intracellular
abundance [30,31]. A mechanism for plastid-to-nucleus
!0, signaling is based on the generation of small volatiles
derived from carotene oxidation which regulate
transcription [32].

Among the most abundant molecules prone to ROS-
induced damage, there are poly-unsaturated fatty acids
(PUFAs), such as linolenic (18:3) and linoleic (18:2) acid.
They can be oxidized by different molecules through dif-
ferent mechanisms generating specific regio- and stereo-
isomers and this feature allows to identify a posteriori the
ROS which accumulated. Indeed, lipid peroxidation can
be generated either by nucleophilic attack of oxygen radi-
cals, 'O, direct addition or lipoxygenase and a-dioxy-
genase-catalyzed O, addition [33]. Peroxidized fatty acid
chains are rapidly converted into lower-molecular-weight
compounds known as oxylipins [34,35], which can act as
signaling molecules or be precursors of aromatic volatiles
[36]. Jasmonic acid is an oxylipin derived via the lipoxy-
genase-mediated peroxidation of linolenic acid in the plas-
tids, but also other oxylipins are known to play signaling
roles in development [37] and defense [38].

Plant lipoxygenases (LOXs) are 95—-100 kDa monomeric
proteins with an N-terminal -barrel domain (25-30 kDa),
known as PLAT, probably involved in membrane or
protein interactions, and a C-terminal a-helix-rich domain
(55—65 kDa) containing the catalytic site, including a non-
heme iron coordinated by five amino acid side chains and
a water or hydroxide ligand [39]. They are classified ac-
cording to the positional specificity of linoleic acid oxy-
genation, i.e. at carbon atom 9 (9-LOX) or 13 (13-LOX),
leading to the formation of 9-hydroperoxy and 13-hydro-
peroxy derivatives (HpODEs and HpOT7Es). All plastidial
LOXs are 13-LOXs and usually have a neutral pH op-
timum, whereas extra-plastidial LOXs can be either
9-LOXs or 13-LOXs and usually have an alkaline pH
optimum [39].

We carried out a comprehensive analysis of the oxida-
tive burst occurring in Pinot Noir grape berry skin at the
onset of ripening to determine the potential signaling
roles of ROS in fruit development. We also identified a
plastidial LOX, likely responsible for galactolipid peroxi-
dation and oxylipin synthesis, which might represent a
novel component of this regulatory network.

Results

Singlet oxygen and hydrogen peroxide accumulate in
Pinot Noir berry skin at the beginning of ripening

The ripening of grapevine cv. Pinot Noir berries was
followed during seven weeks starting from pre-véraison
stage until mid-ripening (Figure 1A). Berries at pre-vérai-
son (collected at 6 and 7 weeks post flowering (wpf)) were
green and hard and were characterized by high content of
organic acids and low content of sugars whereas berries



Pilati et al. BMC Plant Biology 2014, 14:87
http://www.biomedcentral.com/1471-2229/14/87

Page 3 of 15

100
T

80

60

40

I ‘—”I\ L
e

e L | !

20

H202 content (nmol H202/ g FW)

A 4, - 0.25
Z 0.205
— [an]
=30 o o
~ m ~
2 T o015 g
= S S
% 20 k) g
© 2 1010 §
IS S 3
° 3 8
10 g 0.05 £
g 0% &
0 - 0.00
Bs &

6 7 8 9

—
\I
T3
| |
10 11 12

Weeks post flowering 2009

Figure 1 H,0, content and biochemical changes in Pinot Noir berries during development. A: Mean values of total acids (squares,
expressed as grams of tartaric acid per liter) and sugars (triangles, expressed as total soluble solids in °Brix) of the must obtained from three
clusters, at each time point. Berry skins anthocyanin content (circles) is expressed as grams of pelargonidin-3-glucoside per gram of berry fresh
weight. B: H,O, was measured separately in skin and pulp tissues of sampled berries. Data are means of three biological replicates + se. The x-axis
represents time in weeks post flowering (wpf). Véraison is indicated between dashed lines (8-10 wpf). Pre- (6-7 wpf) and post-véraison (11-12 wpf)
stages are indicated by boxes. The picture of a cluster at mid-véraison shows the typical asynchrony of berries at this developmental transition.

sampled after 10 wpf were colored, soft, rich in sugars and
with a low acidic content. The period between 8 and 10
wpf, named véraison, represents the transition to ripening
during which crucial events occur: dramatic opposing
changes of organic acids and sugars contents in the pulp,
softening of the fruit and coloring of the skin. These
changes do not take place in a synchronous way among
berries of the same cluster, as shown in the picture of
Figure 1A. As clusters were sampled by date and berries
randomly pooled for must and pigment analyses, the
obtained profiles, reported in Figure 1A, were smooth and
diluted in time. Conversely, when sampling is based on
physico-chemical characteristics of the berries, as for
instance in [7], the differences between developmental
stages are more sharp and larger.

H,0, levels were measured separately in the skin and
pulp of Pinot Noir berry samples (Figure 1B). While in the
pulp a gradual decrease of H,O, was observed, in the skin
there was a clear accumulation of H,O, at the beginning
of ripening, with a maximum in samples collected at 9
wpf. This result leads to the conclusion that the transient
peak in H,O, content previously observed in whole

berries at véraison [3] was actually contributed predomin-
antly by the skin. A similar profile was observed in Pinot
Noir during season 2008 (Additional file 1A). Taken in
consideration the fact that samples collected by date are
quite heterogeneous and that H,O, accumulation is usu-
ally a fast event, its increase between 8 and 10 wpf likely
corresponds to the proportion of berries undergoing the
transition to ripening rather than to H,O, increase within
a single berry. As our interest is focused on cell signals,
we did not further investigate the decreasing profile of
H,0, in the pulp, instead we characterized the events oc-
curring in the skin.

Imaging of '0, and H,0, at the onset of ripening

Single berries at the three developmental stages around
the onset of ripening (green hard, green soft and pale
red) were collected at 9 wpf in 2011 and sliced with a
microtome to be used for ROS detection. ROS imaging
was carried out by staining with three fluorescent dyes
each specific for three type of ROS: dichlorofluorescein
diacetate (DCFDA), which is sensitive to most ROS,
hydroxyphenyl fluorescein (HPF), which is specific for
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strong oxidants such as the hydroxyl radical and peroxy-
nitrite anion, and singlet oxygen sensor green (SOSG),
which is specific for 'O,. Confocal images of sections
stained with DCFDA and SOSG revealed the presence of
ROS at the green soft and pale red stages and in the
outer cell layers, i.e. those composing the skin (Figure 2,
upper row). HPF did not yield a signal (not shown), sug-
gesting that the ROS detected with DCFDA were weak
oxidants, such as H,O,. The merge of the pictures ob-
tained recording DCFDA/SOSG and chlorophylls fluo-
rescence signals superimposed to the bright field showed
that the localization of H,O, and 'O, was different at
the subcellular level: H,O, was detected in the cytosol
whereas 'O, exclusively in the plastids (Figure 2, bottom
row).

Catalase activity is strongly enhanced in the berry skin
during ripening

Catalase activity was investigated due to its relevance to
H,0, scavenging. It was initially visualized in total pro-
tein berry skin extracts by zymography as a strong single
band in the samples collected at 10-12 wpf, indicating
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the activation of one specific isoform (Figure 3A). Cata-
lase activity was then quantified in vitro by spectropho-
tometry (to measure H,O, consumption) and by proton
transfer reaction-mass spectrometry (to measure in-line
O, production), to unequivocally distinguish catalase
from other scavenger activities (Figure 3B). Both assays
confirmed the strong increase at 10 wpf, suggesting that
catalase contributes to H,O, scavenging after véraison.
According to our results, the low level of H,O, at pre-
véraison cannot be attributed to a catalase scavenging
activity and the following increase at véraison must thus
be linked to an augmented ROS production, as com-
mented in the discussion.

Galactolipid peroxidation occurs at the onset of ripening

Membrane lipids were analyzed with the aim to detect
characteristic modifications caused by ROS accumu-
lation. Crude lipid extracts were analyzed without pre-
processing (e.g. fatty acid hydrolysis or derivatization) in
order to study cell membrane lipid composition. Initially,
the presence of peroxidized galactolipids at véraison was
detected by MALDI-TOF mass spectrometry on extracts

HoO9 (DCFDA) 10, (SOSG)
Green hard Green soft Pale red Green hard Green soft
berries berries berries berries berries

ROS
sensor

For 'O, imaging, only skin is visualized, at a higher magnification.

Figure 2 Confocal images of Pinot Noir berries (100-um sections) sampled at the green hard, green soft and pale red stages, stained
for H,0, and '0,. The sections were incubated with either 30 pM DCFDA or 30 pM SOSG (ROS sensors). Chlorophyll fluorescence has been
recorded (Chl) to localize chloroplasts inside the cells. Merge is the computed overlay of the two fluorescence images and the bright field.
Reference bars are 75 um for H»0, imaging and 25 um for 'O.. Skin and pulp are indicated in the merge pictures with a “s” and “p’, respectively.
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Figure 3 Catalase activity during Pinot Noir berry development.
Native protein lysates were obtained from berry skins sampled at
the indicated time points. A: Zymogram of catalase activity using
50 pg total proteins per lane. B: Catalase specific activity measured
in vitro by determining either H,O, consumption (absorbance at
240 nm) or O, production (in-line O, recording using direct injection
MS). Data are means of biological duplicates =+ se.

of berries collected during 2008 (Additional file 1B).
Then, lipid extracts prepared from berries collected
during 2009 season were analyzed by chromatographic
separation coupled to mass spectrometry identification,
as outlined in Figure 4. Three peaks absorbing at 234
nm were identified as oxidized lipids, as this wavelength
is specific of the conjugated diene bonds formed during
PUFAs oxidation. They were identified as the oxidized
forms of monogalactosyl diacylglycerol and digalactosyl
diacylglycerol carrying two a-linolenic fatty acid chains
(MGDG 36:6 and DGDG 36:6). MGDG 36:6 and DGDG
36:6 were indeed the most abundant galactolipid species.
Their structures were determined by full-scan electro-
spray ionization (ESI) in positive-ion mode (Figure 4,
MS peaks 1 and 2) where they appeared as [M + Na]*
and [M + K]" ion adducts and showed the same ion frag-
ment at m/z 595 reflecting the loss of the corresponding
sugar moiety. ESI-MS/MS on the [M + Na]* ion adducts
revealed strong fragment signals at m/z 519 (MGDG) and
681 (DGDQG), reflecting the loss of linolenic acid at the
primary position on the glycerol backbone, thus sugges-
ting the presence of two identical 18:3 acyl chains in both
the membrane lipids [40]. The analysis of purified samples
containing MGDG and DGDG by "H-NMR spectroscopy
confirmed the presence of characteristic signals represen-
ting monogalactose (8;; 4.23 d, 7.3 Hz for the a-acetal
proton of B-galactose) and digalactose (8 4.87 d, 3.7 Hz
for the [-acetal proton of the a-galactose moiety in the
digalactose structure) and also confirmed the presence of
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the 97,127,157 octadecatrienoic (a-linolenic) acyl group
for both the unsaturated chains.

Comprehensive HPLC-MS analysis of the peaks with
lower retention times indicated the presence of more
polar lipids in the extracts, strongly absorbing at 234
nm. These species gave ESI(+) mass spectra with ion
adducts and fragment ions 16 Da heavier than the corre-
sponding native galactolipids, indicating the presence of
an additional hydroxyl group on one of the acyl chains
(Figure 4, peaks 3 and 4). In the ESI(+) mass spectrum
of peak 3 (Aax 234 nm), the ions at m/z 813 and 611
therefore represent the mono-oxidized forms of MGDG
18:3/18:3 (peak 1, m/z 797 and 595), whereas in the
ESI(+) mass spectrum of peak 4 (A.x 234 nm), the ions
at m/z 975 and 611 represent the mono-oxidized forms
of DGDG 18:3/18:3 (peak 2, m/z 959 and 595). At lower
retention times, we also detected di-oxidized forms
of MGDG 18:3/18:3 (peak 5, [M+Na]" at m/z 829,
Amax 234 nm) and DGDG 18:3/18:3 (peak 6, not showed
in the chromatogram of Figure 4, [M + Na]" at m/z 991,
Amax 234 nm). ESI-MS/MS of the mono-oxidized
MGDG 18:3/18:3 (m/z 813) revealed two fragment ions
at m/z 535 and 519 due to the loss of a-linolenic acid
and oxidized a-linolenic acid, respectively. Because this
neutral loss should occur more frequently at the primary
glycerol position [40], the finding of equally populated
fragment ions strongly indicates that the two acyl chains
have a similar oxidation propensity. ESI-MS/MS of the
di-oxidized MGDG 18:3/18:3 (m/z 829) revealed only
one fragmentation at m/z 535 reflecting the loss of
mono-oxidized a-linolenic acid, thus ruling out the pre-
sence of di-oxidized acyl chains.

The regio and stereo-specificity of the hydroxyl group
on the a-linolenic chain, obtained by alkaline hydrolysis of
the oxidized MGDG 36:6, was then studied (Figure 5). Be-
cause fragmentation, besides common loss of neutral mol-
ecules (H,O and CO,), mainly occurs at the two C-C
bonds adjacent to the carbon atom bearing the hydroxyl
group, the intense daughter ions at m/z 195 and 223
obtained by collision-induced dissociation of the parent
ion at m/z 293 (mono-oxidized «-linolenic carboxylate)
unambiguously established the regiochemical position of
the —OH function at the position 13 of the linolenic acyl
chain [33]. Finally, we used circular dichroism (CD) spec-
troscopy to determine the absolute configuration of
the C(13)-oxidized galactolipids. We found that the CD
spectrum of the compound obtained after alkaline hy-
drolysis of the oxidized MGDG 36:6 from berry skins
was identical to the CD spectrum of commercially avai-
lable (9Z,11E,15Z)-13-(S)-hydroxyoctadecatrienoic acid
(13HOTYE), thus indicating a 13-S absolute stereoche-
mistry (Figure 5).

Quantification of the oxidized MGDG and DGDG spe-
cies in Pinot Noir berry skin along development showed
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Figure 4 Overview of the characterization study of galactolipids extracted from Pinot Noir berry skins at véraison (9 wpf). The
chromatogram shows eluted peaks recorded at 210 nm, with retention time shown on the x-axis. The mass spectra of the indicated peaks
revealed that peaks 1 and 2 are attributable to MGDG 36:6 and DGDG 36:6. Peaks 3 and 4 are attributable to the corresponding mono-oxidized
forms and peak 5 to the di-oxidized MGDG 36:6. Di-oxidized DGDG 36:6 has been identified but was barely detectable in the chromatogram.

a transient peak of accumulation at 9 wpf, mirroring the
accumulation of H,O, (Figure 6). By statistically com-
paring the relative amount of oxidized lipids present in
the samples representing pre-véraison (6-7 wpf), véraison
(8.5-9 wpf) and ripening (11-12 wpf) stages, it was evident
that galactolipids oxidation state at véraison was signifi-
cantly different from the other two stages considered. As
the MGDG:DGDG ratio ranged from 1 to 0.8, the fact that
MGDG reached a higher level of peroxidation (6% and
nearly 2% for the mono- and di-oxidized forms vs. 3.5% of
mono-oxidized DGDG) suggests that MGDG is oxi-
dized preferentially. Moreover, even if di-oxidized MGDG
showed the highest increase in terms of fold change, they
accumulated to a lower extent than the mono-oxidized
ones, suggesting they are less stable.

A plastidial 13-lipoxygenase catalyzes galactolipid
peroxidation at the onset of ripening

Western blot analysis of total protein extracts obtained
from berry skin samples collected during 2009 was

performed using a commercial antibody raised against the
Arabidopsis plastidial LOX2 to characterize the presence
of LOX activity in concurrence with galactolipid peroxida-
tion. A single 95-100 kDa band was observed in the sam-
ples harvested from 8.5 to 11 wpf (Figure 7A). We wanted
to identify the proteins contained in that band by MS ana-
lysis, but their amount was below the instrument sensiti-
vity. In the attempt to enrich the sample in chloroplastic
LOXs, plastids were isolated from fresh berry skin col-
lected in 2011 at the green soft/pink stage (9 wpf) using a
Percoll gradient.Chloroplasts were lysed and their content
partitioned into stromal and thylakoid-enriched fractions.
All the obtained fractions were analyzed for LOX expres-
sion by western blot (Figure 7B). Pinot Noir LOX was
found predominantly in the thylakoid-enriched fraction,
which was then used for tryptic digestion and MS analyses
(Additional file 2). nanoLC/MS sequencing identified one
peptide unambiguously matching Vv06s0004g01510, a
13-LOX differing at only five out of 901 residues from
the recently described Sauvignon Blanc LOXA [41]. This



Pilati et al. BMC Plant Biology 2014, 14:87
http://www.biomedcentral.com/1471-2229/14/87

Page 7 of 15

H
\o 0. o\)\/o — — —
“ 0
HO OH 3aR=H MGDG OH-18:3/18:3
3bR=H MGDG 18:3/0H-18:3

1.00E+00 OI !
eO —

= —
13 (S)

0.00E+00
220 240 260 280
-1.00E+00

="
/’ m— 13(5)-HOTE ref
-==- 13(8)-HOTE sample

-2.00E+00

-3.00E+00 4
> wavelength (nm)

-4.00E+00

1. alkaline hydrolysis

2.HPLC purification 2 a._be
— Bo)k/w: NS

oH CD analysis

13-HOTE; m/z 293 [M-H]"; Amax 233 nm

ESI (-) MS/MS

Intens.|
ESI(-) MS/MS spectrum 1

of parent ion [M-H]~
at m/z 293

275.2

3000

MS-MS

C13-C14 cleavage C12-C13 cleavage

m/z: 195 miz: 223
9o ﬂ €o: o
— = —_
O)\/V\/M W/—,
[M-H-H,0]~ m/z: 179
m/z: 275

analysis 2000

——

1000

223.2
178.9

[M-H]"

2482 293.2

bl | Lol ol |\|

100 125 150 175 200 225 250 275

s
300 miz

Figure 5 Overview of the characterization study of the oxidized fatty acid chains obtained after hydrolysis of oxidized MGDG 36:6.
ESI MS/MS has been performed to assess the regiospecificity of the oxidation event and CD analysis has been performed to define its stereospecificity.

result was confirmed by comparative MALDI-TOF/MS
analysis performed on this fraction and on recombinant
Vv06s0004g01510 protein. We therefore named the pro-
tein PnLOXA.

PnLOXA gene expression was analyzed by RT-PCR in
a panel of Pinot Noir tissues and in developing berry

84
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Figure 6 Galactolipid peroxidation profiles during Pinot Noir
berry development. The mono-oxidized and di-oxidized forms of
MGDG 36:6 and DGDG 36:6 are shown as percentage of total
MGDG and DGDG, respectively. Data are means of three biological
replicates + sd. Lipid peroxidation at pre-véraison (6 and 7 wpf),
véraison (8.5 and 9 wpf) and ripening (11 and 12 wpf) were analyzed
by ANOVA and Tukey's HSD (honestly significant difference) test.
Asterisks indicate that the amount of peroxidized species accumulated
at véraison is significantly different from that of the other two
moments (p < 0.01).

skin (season 2009). We observed a 20-fold increase in its
expression at the onset of ripening (Figure 8) matching
precisely with the peaks of protein abundance detected
by western analysis (Figure 7A) and of galactolipid per-
oxidation (Figure 6). Statistical comparison among the
three berry development stages defined above high-
lighted that PnLOXA expression at véraison was signifi-
cantly different from pre-véraison and ripening stages.
PnLOXA expression was not restricted to the berry.
Indeed, the gene was expressed in all the photosynthetic
tissues we analyzed, particularly in plant structures un-
dergoing developmental changes (such as bud and in-
florescence). These results agree with in silico analysis
of LOX gene expression in the grapevine atlas ([42],
Additional file 3A): the only tissues where PnLOXA is
not expressed are woody stem, root and senescent leaf
while in winter bud it is minimally expressed. Conversely,
it is highly expressed in inflorescence, flower, bud, tendril
and berry at véraison. The atlas data show that five LOX
genes are modulated during berry development: two
9-LOX (Vv05s0020g03170 and Vv14s0128g00790) and
three 13-LOX genes (PnLOXA, Vv09s0002¢g01080 and
W01s0010g02750). However, only PnLOXA shows an in-
duction at véraison (Additional file 3B). Primary structure
analysis of PnLOXA indicated the presence of a plastid
targeting peptide (residues 1-47), a PLAT domain which
might be involved in protein-protein or protein-lipid in-
teractions (72-204), and a C-terminal catalytic domain
that coordinates Fe** (207-901). We created two fusion



Pilati et al. BMC Plant Biology 2014, 14:87 Page 8 of 15

http://www.biomedcentral.com/1471-2229/14/87

MW B Triton

markers
(kDa) P S P S P S

Chl
100
:9() : — - —_— —— _——W(_
— 70 —
. {

Weeks post flowering NaCl

7 8 85 9 10 11 12

Lipoxygenase

Figure 7 Western blot analysis of lipoxygenase expression in Pinot Noir berry skin extracts. A: Analysis of plastid lipoxygenases expression
during berry development using a commercial antibody against Arabidopsis LOX2 and 10 pg of total protein extracts per lane. B: Analysis of plastid
lipoxygenase expression in chloroplast-enriched samples obtained from fresh berry skins collected at 9 wpf. Total chloroplast protein extract (Chl) was
fractionated into membrane (P) and soluble (S) fractions by centrifugation. Membrane pellets were treated with 1 M NaCl or 0.05% Triton X-100,
incubated for 10 min on ice and centrifuged again to separate the membrane (P) and the soluble (S) fractions. Pellets were resuspended in a volume
identical to the corresponding soluble fractions and loaded in equal amounts for separation by SDS-PAGE and detection by western blot. MW markers:
molecular weight markers (kDa).

J

constructs with yellow fluorescent protein (YFP): one con-
taining only the transit peptide to study PnLOXA intracel-
lular localization and the other containing also the PLAT
domain to gain insights into its function. Transient ex-
pression of the first construct in grapevine and tobacco
leaves followed by confocal imaging showed that YFP was
efficiently translocated into the chloroplasts (Figure 9 and
Additional file 4, left column). The presence of the PLAT

Finally, we analyzed PnLOXA enzymatic activity to
confirm its ability to peroxidize free fatty acid chains
and also membrane galactolipids. The mature protein
was firstly expressed in E. coli, purified by ion-chelating
affinity chromatography and tested in vitro. PnLOXA
catalyzed the regiospecific peroxidation of a-linolenic
acid to produce exclusively 13-HOT7E (ESI-MS/MS ana-
lysis). To test the ability of the enzyme to catalyze the

domain is responsible of a non-uniform distribution of
YFP fluorescence inside the plastid, consistent with that of
a thylakoid-associated protein (Figure 9 and Additional
file 4, right column). Similar results, showing a spot-like
localization inside the chloroplast, were reported for po-
tato and tomato lox [43,44]. The in vivo localization sup-
ports the previous chloroplast fractionation experiment
(Figure 7B) and suggests that the PLAT domain is in-
volved in protein localization at the thylakoid.

leaderPLAT ox-YFP

leader ox-YFP

* %
h

[e2}
L

Chl

Pn LOXA gene expression (NRQ)
.

Bud - S—!

Stem 4}4

Root -
B. Skin 6 wpi|{}

o ™~
Young Leaf AIlﬂ

Mature Leaf {_Hi

B. Skin 7 wpfl{__ HH

B. Skin 8 wpf
B. Skin 8.5 wpf|{

B. Skin 10 wpf | E’—%

B. Skin 11 wpf| H—I
B. Skin 12 wpf| H-i

Inflorescence A
B. Skin 9 wpf[

Figure 9 PnLOXA localization demonstrated by the expression
of YFP fusion constructs in grapevine leaves. Leaves were
infiltrated with Agrobacterium tumefaciens carrying the pGreen
[PnLOXAtransitpeptide; 4,-YFP] and pGreen[PnLOXAtransitpeptide-
PLAT200-YFP] constructs. Chlorophyll (Chl) and YFP fluorescence were
recorded using Leica SP Il confocal microscope. Merge is the computed
overlay of the two fluorescence images. Reference bar is 10 um.

Figure 8 PnLOXA gene expression in grapevine tissues and in
berry skins along development (6-12 wpf). Normalized relative
quantities + se were calculated using three reference genes; n=3.
PnLOXA expression at véraison (marked by asterisks) was significantly
different from pre-véraison (6-7 wpf) and ripening (11-12 wpf) as
assessed by ANOVA and Tukey HSD test (p < 0.01).




Pilati et al. BMC Plant Biology 2014, 14:87
http://www.biomedcentral.com/1471-2229/14/87

peroxidation of galactolipids, we incubated PnLOXA with
the most pure galactolipid fraction isolated from grape
berry skins, which was that enriched in DGDG. PnLOXA
efficiently catalyzed the 13-peroxidation of DGDG 36:6,
producing both mono-oxidized (3.6%) and di-oxidized
products (5.6%). Table 1 shows the degree of peroxidation
within each DGDG species: the prevalence of di-oxidized
forms indicates that PnLOXA acts on both galactolipid
chains without significant discrimination. We also studied
membrane lipid peroxidation in vivo by transiently over-
expressing PnLOXA in tobacco leaf cells. We agro-infil-
trated leaves with either the PnLOXA construct or the
empty vector and collected leaf transformed spots during
the following days for protein expression analysis. Overex-
pression of PnLOXA, monitored by western blot, reached
a maximum at 7 days after transformation (not shown).
The experiment was then repeated in biological triplicates
collecting samples 7 days after infiltration and lipid ex-
tracts were analyzed by HPLC-MS. The amount of oxi-
dized species in the control samples was nearly detectable,
whereas the presence of the grapevine enzyme caused a
statistically significant increase of galactolipid peroxidation
(Figure 10). The amount of peroxidized galactolipids was
normalized to the amount of PnLOXA protein actually
present in each replicate (see Additional file 5) and used
to calculate the average peroxidation value. As in grape-
vine berry skin, also in tobacco leaves MGDG seem pre-
ferentially oxidized; however in the latter, di-oxidized
galactolipids accumulate more than mono-oxidized spe-
cies (as observed in vitro, Table 1).

Discussion

The transition from mature green to ripening berries is
a crucial developmental phase in grapevine, as well as in
many fleshy fruits, because it involves broad metabolic
reprogramming and definitive specialization. Internal
signals (developmental, hormonal and metabolic) refined
by external cues trigger a set of integrated regulatory
cascades, possibly including a burst of oxidative stress,
at the transition to the ripening phase [3,6,7,16,17]. This
study definitely confirms the transient accumulation of
H,0, in the cytosol of berry skin cells at the beginning
of ripening and shows the concomitant accumulation of
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'0, inside chloroplasts (Figure 2), where also enzymatic
peroxidation of membrane galactolipids occurs.

Although it is difficult to measure H,O, in plant tissues
accurately [45], it clearly accumulates in berry skin at soft-
ening and color change (Figures 1, 2 and Additional file
1A). Basal levels are probably restored by the activity of a
catalase isoform which is specifically expressed and active
since 10 wpf (Figure 3). This catalase isoform resembles
Arabidopsis CAT3, which is stress- and substrate-in-
ducible and is expressed at bolting time, when a peak of
H,0, occurs in the leaves and senescence is triggered
[46]. We have no evidence to attribute the accumulation
of HyO, to a down-regulation of scavenger activities, at
least of catalase, rather we might speculate about an in-
crease in ROS production at ripening onset. Potential
sources could be chloroplasts, which are undergoing a
transition to non-photosynthetic organelles, or mitochon-
dria, which transiently shift to an aerobic fermentative
metabolism [47].

H,0, accumulation and catalase activity are reported
also at bud-break in grapevine [48-51], where the role of
H,O, as a signal molecule in the release of buds endo-
dormancy has been proposed.

In plants, 'O, is usually generated at photosystem II by
energy transfer from excited triplet chlorophylls to triplet
oxygen (O,) under photo-oxidative conditions [52]. At the
onset of ripening, a developmentally regulated switch off
of photosynthesis occurs and 'O, is likely to be generated.
Quite unexpectedly, we do not detect significant oxidative
damage on thylakoid membrane lipids attributable to
'0,, rather the lipoxygenase-mediated accumulation of
13-peroxy galactolipids (Figures 4 and 5). At 9 wpf, 6% of
the MGDG and 3.5% of the DGDG are oxidized on one
chain and nearly 2% of the MGDG are oxidized on both
chains (Figure 6). A grapevine plastidial 13-lipoxygenase
(PnLOXA) probably responsible for the transient galacto-
lipid peroxidation in Pinot Noir grapes has been identi-
fied. It differs at only five out of 901 residues from the
Sauvignon Blanc orthologue [41]. The véraison-specific
expression profile of this LOX isoform (Figures 7 and 8)
was already highlighted in a proteomic study which pro-
posed it as a biomarker of grapevine ripening [53]. Ac-
cording to the Vitis atlas [42] other two 13-LOX genes are

Table 1 In vitro galactolipids peroxidation after incubation with purified recombinant PnLOXA (10 minutes at 25°C),
expressed as relative percentage over total DGDG within each class

Chain composition

Mono-oxidized (%)

Di-oxidized (%) Relative abundance in the extract (%)

DGDG 36:6 18:3/18:3 16
DGDG 34:3 18:3/16:0 9.3
DGDG 36:3 18:3/18:0 9.3
DGDG 36:4 75% 18:3/18:1 25% 18:2/18:2 85
DGDG 36:5 18:2/18:3 0

9.8 513
0 14.2
0 139
1.2 76
76 6.4
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Figure 10 Galactolipid analysis of tobacco leaves transiently expressing PnLOXA. Leaves transformed either with the PnLOXA or the empty
vector (pGreen) as control were collected 7 days after Agrobacterium inoculation. Galactolipid peroxidation is reported as a percentage of mono- and
di-oxidized species within each class, normalized on the amount of PnLOXA protein. Data are means of three replicates + sd. ANOVA and Tukey HSD
test were performed to compare control and PnLOXA over-expressing samples. Asterisks indicate significant differences from control at p < -0.05.

expressed in the berry, but with a descending profile from
fruit set to full ripening. Moreover, one of these, LOXO, is
induced by abiotic and biotic stresses, such as wounding
and Botrytis infection [41] and is regulated by VWWRKY1
in response to downy mildew [54]. An important feature
of PnLOXA is the ability to peroxidize membrane galacto-
lipids both in vitro and in vivo (Table 1 and Figure 10) and
not only free fatty acid chains, as it is usually assumed.
Moreover, PnLOXA causes the preferential accumulation
of di-oxidized forms of MGDG and DGDG. We can thus
conclude that in the fruit skin the di-oxidized MGDG do
not accumulate due to a very fast scavenging or con-
version. Similar conclusions were reported for Arabidopsis
chloroplastic lipoxygenase LOX2 [55]. The study of
lox2 mutant suggested that LOX2 could directly oxidize
membrane galactolipids and that di-oxidized forms were
strictly related to its presence, whereas mono-oxidized
forms accumulation occurred also in a lox2 background.
Finally, the preferential accumulation of oxidized MGDG
was observed: we speculate that this phenomenon could
be related to a PLAT-mediated specific localization of
PnLOXA at the thylakoid (Figure 9), rather than to sub-
strate discrimination. In fact, MGDG and DGDG have
distinct structural properties and distribution in the mem-
brane and there are proteins known to interact preferen-
tially with MGDG, such as violaxanthin de-epoxidase and
cytochrome béf [56,57].

The biological function of enzymatically generated
membrane peroxy-lipids in the chloroplast at the onset
of ripening is not clear yet. Usually peroxidation occurs

on free fatty acid chains and generates, through catalyzed
or spontaneous reactions, compounds called oxylipins,
among which the hormone jasmonic acid [34]. The signa-
ling function of oxylipins is well established, as many stu-
dies have demonstrated their influence on physiological
processes such as root development and plant defense in
Arabidopsis [37] and light acclimation in Chlamydomonas
[58]. Besides, some oxylipins are volatile aromatic com-
pounds, such as C6 volatile aldehydes, alcohols and esters,
which confers the characteristic flavors to fruits including
grapes and wine [36]. In tomato, a chloroplastic LOX
expressed in the fruit at the moment of color change,
named TomLOXC (U37839), has been related to the
aroma flavor of ripe fruits [44,59-61]. A phylogenetic ana-
lysis based on protein sequence similarity shows that
TomLOXC and PnLOXA belong to the same group of
chloroplastic 13-LOX (Additional file 6), suggesting they
could have conserved functions in the two fruits. The
observation that their expression pattern is centered at
véraison rather than at ripening, when the aroma are
accumulated, and that TomLOXC is directly activated by
the MADS box transcription factor RIN, which is a major
regulator of the onset of ripening in tomato [62], strongly
support the hypothesis of these LOXs participation to
fruit development signaling. Moreover, the peculiarity
of PnLOXA of peroxidizing membrane lipids instead of
free fatty acid chains allows to speculate on at least
other two possible functions of peroxy-lipids. On the
one hand, membrane peroxidation could undergo frag-
mentation and generate a particular class of oxylipins,
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namely phytoprostanes with signaling function [35,63],
while on the other hand it could regulate membrane
proteins activity by reversible oxidation of active-site
cysteines, as reported for a human protein tyrosine
phosphatase [64].

Conclusion

This work sheds light on the oxidative species transiently
accumulating in the skin of grapevine berries at the onset
of ripening. Skin cells are continuously exposed to solar
radiation, even during the programmed dismantling of the
photosynthetic apparatus at the onset of ripening. In this
transitional phase, ROS could exceed skin cells scavenging
capacity, accumulate and affect the transcription of
nuclear genes involved in photo-protection and ROS-
scavenging. Besides, the enzymatic peroxidation of thyla-
coidal membranes may represent the first step in oxylipin
synthesis or a mechanism to regulate membrane proteins
through redox control.

Methods

Plant material and biochemical analysis

Three clusters of grape berries (Vitis vinifera cv. Pinot
Noir ENTAV115) were collected during 2008 and 2009 at
FEM study site between 9 and 10 am at eight time-points
between 6 and 13 weeks post flowering (wpf, flowering is
intended as 50% of open flowers in the vineyard). Half of
each cluster was immediately frozen in liquid nitrogen
and the other half was pressed for must analysis by means
of Fourier transform infrared spectroscopy (FTIR) using
the instrument WineScanTM Type 77310 (Foss Electric,
Denmark). Frozen berries were peeled with a scalpel, sepa-
rating the most external cell layers (exocarp, skin) from
the rest (mesocarp and endocarp, pulp). Skin and pulp,
were ground separately to obtain a fine powder. The
anthocyanin concentration in the skin was measured after
methanol extraction (1 g berry skin powder in 10 ml
methanol) according to the double pH differential method
[65]. HyO, was measured using the Amplex UltraRed
(Molecular Probes, USA) as described in [3] but using
10 pl of aqueous extracts instead of 50 pl.

For confocal microscopy experiments and plastid iso-
lation, fresh berries were collected at the green soft and
color change stages during 2011.

Total protein was extracted from 6 g of skin powder
plus 25% (w/w) PVPP in 10 ml lysis buffer (0.2 M so-
dium phosphate buffer, pH 7.5, 5 mM EDTA) containing
protease inhibitors (Sigma, MO). Samples were incu-
bated on ice for 10 min then centrifuged for 15 min at
15,000 x g at 4°C. The supernatant was clarified by pre-
cipitation with 30% ammonium sulfate and centri-
fugation at 20,000 x g for 30 min, washed to remove
salts and concentrated on Amicon Ultra (Millipore). The
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protein concentration was determined using Quantlt
(Invitrogen).

In vitro catalase activity was measured by spectropho-
tometry and mass spectrometry. In the first assay, cata-
lase activity was measured in 250 ul phosphate buffer
(pH 7) at 25°C using 10 pg of grape skin protein extract
following [66]. The specific catalase activity was calcu-
lated using the H,O, molar extinction coefficient at 240
nm (43.6 M'cm™) and was expressed as moles of H,O,
consumed per min per mg total protein. In the second
assay, catalase activity was measured in 180 ml 50 mM
potassium phosphate buffer (pH 7) in the presence of 50
mM H,O, with a continuous nitrogen flux taking vola-
tiles to the PTR-TOF-MS (lonicon Analytik, Austria).
The production of O, was measured using the signal
at m/z 32 after the addition of 1 mg grape skin protein
extract. Preliminary calibration using bovine catalase
(Sigma-Aldrich) showed that maximum O, production
(O2max) was proportional to the enzyme concentration
in the solution so Ogy,, was used to quantify catalase
activity in the extracts.

Native gel and zymography catalase detection was done
as described by [46]. SDS-PAGE was performed using pre-
cast 4—12% NuPAGE gels and 1x MOPS running buffer
(Invitrogen). Proteins were transferred onto PVDF mem-
branes (Millipore) using an XCell II Blot Module (Invitro-
gen) at 40 V for 1 h. Membranes were blocked with 5%
BSA in TBST buffer for 1 h at room temperature and in-
cubated overnight at 4°C with the primary antibody. Anti
LOX-C plastidial lipoxygenase (AS07258, Agrisera) was
used to detect VVLOXs. Anti catalase (AS09501, Agrisera)
was used to detect VVCATs. Alkaline phosphatase-con-
jugated goat anti-rabbit AffiniPure (Jackson ImmunoRe-
search) was used as the secondary antibody; detection was
performed using Alkaline phosphatase blue membrane
substrate solution (Sigma-Aldrich).

Preparation of chloroplasts

Chloroplasts were prepared from 20 g skin tissue as
described by [67]. Intact plastids were recovered using a
40-80% DPercoll gradient, washed with hypotonic lysis
buffer and centrifuged for 10 min at 10,000 x g to sepa-
rate soluble and membrane-associated proteins. The pel-
let was divided into three parts, which were dissolved in
0.1% TritonX-100 or 1 M NaCl or control buffer. These
three samples were centrifuged as above and the final
soluble and membranous fractions were prepared for
SDS-PAGE.

Cloning and expression of recombinant PnLOXA

The PnLOXA coding sequence (Vv06s0004g01510)
without the plastid targeting sequence was amplified
from Pinot Noir berry cDNA using Phusion DNA poly-
merase (Finnzymes) and the primers LOXfw5 'BamHI



Pilati et al. BMC Plant Biology 2014, 14:87
http://www.biomedcentral.com/1471-2229/14/87

(5'-GGATCCGTTGGCTACGTCCCTG-3") and LOX-
rev3'HindIIl (5'-AAGCTTTCAAATGGAGATACTGTA
TGGAA-3’) and inserted into the pGEM-T vector for
sequencing. PnLOXA was then transferred to the expres-
sion vector pQE30 using the BamHI/HindIII restriction
sites, thus adding an N-terminal His, tag. Escherichia coli
M15 [pRep4] cells transformed with pQE30:PnLOXA were
induced with 1 mM IPTG and 2% ethanol for 16 h at
20°C. A 1-L bacterial culture pellet was resuspended in
40 ml of 50 mM HEPES/NaOH buffer (pH 7.5) containing
150 mM NaCl, 5 mM DTT and protease inhibitors (Sigma).
After sonication and lysozyme treatment (0.2 mg/ml), the
cleared bacterial lysate was adjusted to 0.5M NaCl and
loaded onto a 5-ml HisTrap™ FF crude Column (GE
Healthcare, AKTA Purifier system) pre-equilibrated with
binding buffer (20 mM HEPES-NaOH pH 7.5, 0.5 M
NaCl). The column was washed with binding buffer and
50 mM imidazole (Merck), and the Hisg-PnLOXA protein
was eluted using 250 mM imidazole. Protein yield was
2 mg of pure protein per liter of bacterial culture. Re-
combinant PnLOXA activity was studied using 0.1 mM
a-linolenic acid (Sigma) at pH 6.5 and 25°C.

Transient expression in grapevine and tobacco leaves
Three constructs were prepared for transient expression:
two YFP fusion constructs for localization analysis, and
the complete PuLOXA gene for functional analysis. The
YFP coding sequence was subcloned from vector pAVA
554-p35S-YFP [68] into pSAT1-p35S-nVenus [69] using
the restriction enzymes Ncol and BglIl. The p35S-YFP
cassette was then inserted into pGreen0029 using the
EcoRV/Notl sites [70]. The 1-47 and 1-220 PuLOXA
peptides were amplified using primers 5’leaderBspHI
(5"-TTGCTCATGATGTTCAAGACTCAGGTCCA-3"),
3'leaderBspHI (5'-GCAGTCATGAGGCCAACCCTAAC
ATTCCT-3") and 3'PLATBspHI (5'-CTTGATCATGAC
TGGTGTTTCCAATGGTAAGT-3"). The PCR products
were digested with BspHI and inserted into pGreen0029-
35S-YFP, digested with Ncol. The pGreen[PnLOXA
transitpeptide; 47-YFP] and pGreen[PnLOXAtransitpepti-
dePLAT) »50-YFP] binary vectors were introduced into the
Agrobacterium tumefaciens strain GV3101-pSoup [69,71]
as described by [72].

The complete PuLOXA coding sequence was amplified
from Pinot Noir ¢cDNA using primers 5'leaderBspHI
and LOXrev3 'HindIIl. The amplified product was intro-
duced into vector pUC19 and sequenced. The 2450 bp-
Ncol/Xbal PnLOXA fragment from the pUC19-PunLOXA
was cloned into the pGreen[PnLOXAtransitpeptide-
PLAT] 550-YFP] vector previously digested with Ncol
and Xbal, obtaining the pGreen[PnLOXA].

For PnLOXA transient expression in tobacco leaves,
Agrobacterium transformed either with the pGreen empty
vector or the pGreen[35S:PnLOXA] was inoculated into
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leaves of six tobacco plants, so that each tobacco plant
was a biological replicate. For time-course expression ana-
lysis, leaves were collected from 4 to 12 days after infiltra-
tion and protein extracts analyzed by western blot. For
galactolipid peroxidation analysis, western blot was used
to quantify the PnLOXA expression in each biological
replicate using Image ] software and lipids were extracted
as described below for HPLC-MS analysis.

Lipid analysis

Total lipids were extracted from frozen Pinot Noir berry
skin samples according to [73]. We added 1 mM 3,5-di-
tert-butyl-4-hydroxytoluene (BHT) to the extraction buffer
to prevent oxidation during sample preparation and 1 mM
triphenylphosphine (TPP) to reduce hydroperoxyl groups
to hydroxyl groups, which are more stable and suitable for
quantitative analysis. The extracts were dissolved in 90:10
methanol/chloroform and 5 pL were injected into a
Hewlett-Packard Model 1100 Series liquid chromatograph
(Hewlett-Packard Development Company, CA) coupled to
a photodiode array (PDA) detector (Agilent Technologies,
Italy, Agilent 1100 Series) and to a Bruker Esquire-LC
quadrupole ion-trap mass spectrometer (Bruker Optik
GmbH, Germany) equipped with atmospheric pressure
electrospray ion source. Analysis was carried out at room
temperature on an Agilent ZORBAX Eclipse XDB-C8
150 x 4.6 mm, 3.5 um column. The eluent (0.8 mL/min)
consisted of (A) methanol: water/12 mM ammonium ace-
tate (70:30) and (B) methanol/12 mM ammonium acetate
using a linear gradient: 35%—100% B in 40 min, followed
by isocratic B held for 10 min. The details of the MS
parameters have been described previously [40,74]. The
regiochemical distribution of galactolipids was established
as described by [40] using either short-wavelength UV-
DAD or ESI-MS detection. The relative percentage of per-
oxidation of MGDG 36:6 and DGDG 36:6 in all the sam-
ples was established by the ratio of the absolute ESI (+)
area of the extracted ion current (EIC) of each oxidized
product with respect to the ESI (+) area of the extracted
ion current (EIC) of total (native and oxidized) MGDG
and DGDG, respectively.

Galactolipids were purified by Si-60 flash chromato-
graphy and chloroform-methanol gradient elution. Near
pure (TLC analysis) MGDGs and DGDGs were obtained
in fractions 9 and 10, respectively. Fraction 10 was used
as the DGDG substrate for in vitro enzymatic oxidation.
Portions of fraction 9 and 10 were purified further by re-
verse phase HPLC (methanol/water gradient elution) to
obtain pure (NMR analysis) MGDG 18:3/18:3 (1.5 mg)
and DGDG 18:3/18:3 (1.4 mg).

MGDG 18:3/18:3 were hydrolyzed in methanol solution
(1 mM, 200 pL) by treatment with an aqueous KOH solu-
tion (500 mM, 300 pL) for 1 h at room temperature. The
basic solution was neutralized with 500 mM HCI, and an
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organic extract was obtained by extracting three times with
400 pL n-hexane. LC-MS analysis confirmed the presence
in the hexane extracts of linolenic acid (~90%) and of its
corresponding 13- hydroxy derivative (13-HOT7E). The
peak corresponding to the latter was collected, evaporated
and rinsed with 1 ml methanol for chiral analysis. The CD
spectrum of methanolic 13-HOT?E was recorded with a
Jasco J710 spectropolarimeter.

'H-NMR spectra were obtained for MGDG 18:3/18:3
and DGDG 18:3/18:3 by dissolving each in 600 pL tetra-
deuterated methanol (99.9% CD3OD, Aldrich) and carry-
ing out measurements at 298 K on a Bruker-Avance 400
MHz spectrometer with a 5-mm BBI probe set at a 90°
proton pulse length of 9.4 ps and a transmission power of
0 db. The chemical shift scale (8) was calibrated on the
residual proton signal of deuterated methanol at &y
3.310 ppm.

Confocal imaging
ROS sensitive fluorescent dyes and YFP were imaged
using a Leica SP5 confocal microscope (Leica, Germany).
Dichlorofluorescein diacetate (DCFDA), hydroxyphenyl
fluorescein (HPF) and singlet oxygen sensor green (SOSG,
Molecular Probes) staining was carried out by preparing
100 ppm berry sections on a microtome, and incubating
them for 2 h at room temperature in the dark with 30 uM
DCEDA, 30 pM SOSG or 10 um HPF dissolved in 50 mM
sodium phosphate buffer (pH 7.5). The excitation wave-
length was 488 nm and the emission wavelengths were
500-535 nm, 500-540 nm, 505-535 nm and 675-725 nm
for DCFDA, SOSG, HPF and chlorophyll, respectively.

For PnLOXA localization study, leaf pieces from the
agroinfiltrated areas collected at 6 days after infiltration
were mounted on slides. YFP detection was carried out
using excitation and emission wavelengths of 488 nm
and 515/530 nm, respectively.

Confocal images were processed using Image] software.

Quantitative RT-PCR

Total RNA was extracted from grapevine tissues using the
Spectrum Total Plant RNA kit (Sigma) and quantified
using Nanodrop 8000 (Thermo Scientific). Integrity was
checked by capillary electrophoresis using Bioanalyzer
2100 (Agilent). First strand cDNA was synthesized from
2 pg RNA using the SuperScript VILO ¢cDNA Synthesis
Kit (Invitrogen) according to the manufacturer’s instruc-
tions, with the primers indicated in Additional file 7. The
cDNAs were mixed with Fast SYBR Green Master Mix
(Applied Biosystems) and amplified on a ViiA 7 Real Time
PCR System (Applied Biosystems) using an initial heating
step of 95°C for 20 sec, followed by 40 cycles of 95°C for
1 sec and 60°C for 20 sec. Raw fluorescence data were
extracted using Viia 7 Software v1.0. Ct and reaction effi-
ciency were calculated using LinRegPCR software [75].
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Relative expression was calculated according to [76] by
centering expression values for each gene on the mean
value. Three reference genes out of five (ubiquitin, SAND
and GAPDH) were selected by geNorm and used for
normalization [77].

Additional files
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