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Abstract

Background: Little is known about the potential of Brachypodium distachyon as a model for low temperature stress
responses in Pooideae. The ice recrystallization inhibition protein (IRIP) genes, fructosyltransferase (FST) genes, and
many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here
we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better
understand its potential as a model species for agriculturally important temperate grasses.

Results: Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium
specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4
homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae
FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared
to core Pooideae species.

Conclusions: We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms
involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes
involved in low temperature responses has been different in Brachypodium and core Pooideae species. These
differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

Keywords: Brachypodium distachyon, Cold climate adaptation, Ice recrystallization inhibition protein, Gene expression,
Fructosyltransferase, C-repeat binding factor, Gene family evolution
Background
Brachypodium distachyon became the first Pooideae grass
species to have its genome fully sequenced [1]. The Brachy-
podium genus is a phylogenetic sister group to the Triticeae
(cereals) and Poeae (forage grasses) tribes, which provided
compelling rationale for sequencing the B. distachyon gen-
ome to develop a model more suitable for temperate
grasses than rice (Oryza sativa). B. distachyon possesses
features typical of a model plant [2]; it is of relatively
short height (15–20 cm), there are inbred lines with
an annual and rapid life cycle (eight to twelve weeks),
it’s genome is one of the smallest among diploid grass
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genomes (about 300 Mbp) [1], and it can be genetic-
ally transformed via Agrobacterium-mediated trans-
formation [3]. Different ecotypes exhibit a range of
adaptations to environments which also are important
challenges faced in agricultural production systems, for
example differences in flowering time, vernalization
requirements [4], and disease resistance [5]. Altogether,
these features make B. distachyon a suitable model plant
for studying agronomic traits in Pooideae grasses.
A characteristic feature of species in the Pooideae sub-

family is their adaptation to temperate ecosystems,
which is reflected in the global distribution of Pooideae
grasses [6] (Figure 1). The most recent common ances-
tor of Pooideae grasses was adapted to tropical or sub-
tropical climates [7,8]. Subsequent radiation of Pooideae
into cooler environments is thought to be associated with
evolution of mechanisms involved in low temperature
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:mojupp@163.com
mailto:simen.sandve@umb.no
http://creativecommons.org/licenses/by/2.0


Figure 1 Worldwide distribution of members of Pooideae species as percentage of the total grass flora. The native distributions of
Brachypodium distachyon and a typical cool season Pooideae forage grass, Phleum pratense, are indicated in two different green shadings. Data
for distribution is taken from Hultèn and Fries [11] for P. pratense, and Flora Europaea [12], Filiz et al. [13] and data retrieved from the Global
Biodiversity Data Portal (data.gbif.org, 2011-11-08) for B. distachyon. This figure (without B. distachyon and P. pratense distributions) was adapted
from Hartley [6] with permission from CSIRO publishing. Pooideae is cited as Festucoideae in the Hartley [6] original paper.
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stress [9]. Hence, the adaptation of the Pooideae to cooler
climates makes this group an ideal model system for
studying adaptive evolution in plants [10]. Nonetheless,
large intraspecific variation in tolerance to cold and freez-
ing stress exists within Pooideae. Some Pooideae species
(e.g. Phleum pratense) can tolerate extreme winter cli-
mates and has a species range which includes sub-arctic
regions (Figure 1), while B. distachyon on the other hand
is not adapted to extreme winter climates, which is
reflected by the middle-eastern and Mediterranean geo-
graphical distribution (Figure 1).
Phylogenetic studies suggest that B. distachyon

diverged from the core Pooideae approximately 35 mil-
lion years ago [2] while key Pooideae-specific adapta-
tions to cold climates evolved during the Eocene-
Oligocene cooling period (34–26 Mya), after the B. dis-
tachyon-core Pooideae split [9]. If this is correct, shared
ancestral molecular mechanisms involved in cold and
freezing stress might differ between B. distachyon and
agriculturally important species of the Triticeae and
Poeae tribes (referred to hereafter as core Pooideae).
Three Pooideae-specific genetic features involved in low
temperature stress tolerance have been well described;
(1) ice-recrystallization inhibition proteins (IRIPs), (2) fruc-
tosyltransferase genes (FSTs), and (3) expansions within
the C-repeat binding factors (CBF) family. IRIPs are
thought to minimize cell damage during ice formation
by restricting ice crystal growth in the apoplastic space
[14-16], a process known as ice crystal recrystallization.
The ancestral IRIP gene in Pooideae is thought to have
evolved from an LLR-protein kinase [17] by gaining an
ice binding domain [16] through an expansion of a re-
peat motif (NxVxG/NxVxxG) [18]. In core Pooideae spe-
cies extensive gene duplications have given rise to large
IRIP gene families [18,19]. FSTs convert sucrose mole-
cules into fructan sugars [20,21] and low temperature
stress induces FST gene expression and fructan accumu-
lation in core Pooideae species [22-24]. Both the intro-
duction of FSTs into plants lacking endogenous FST
pathways and over-expression of endogenous FSTs in
core Pooideae species has shown to increase freezing tol-
erance [25,26]. CBFs are transcription factors that
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regulate suites of genes during drought and low
temperature stress [27-29]. Two CBF subfamilies, CBF3
and CBF4, have undergone lineage specific duplications
in the Pooideae [30] and the members of these CBF3/4-
subfamilies are thought to play roles in Pooideae freezing
stress [31-33].
Even though IRIP, FST, and Pooideae-specific CBF3/4

genes have been studied in great detail in core Pooideae
species, a systematic study of homologs of these genes in
B. distachyon is lacking. In this study we ask the ques-
tion; to what extent are IRIP, FST, and Pooideae specific
CBF genes conserved between B. distachyon and agricul-
turally important core Pooideae species? We answer this
question by employing a suite of methods including
comparative genomics, gene expression analyses, and
characterization of carbohydrate metabolism. Our aims
were to (1) assess the use of B. distachyon as a model to
study mechanisms of low temperature stress responses
in core Pooideae species, and (2) improve our under-
standing of the evolution of cold stress response in the
Pooideae lineage.

Methods
Plant material, growth conditions and tissue sampling
for gene expression studies
Four diploid inbred B. distachyon lines, Bd3-1, Bd21-1,
Bd1-1, and Bd29-1 were used to characterize cold
induced IRIP gene expression by quantitative real-time
polymerase chain reaction (qRT-PCR). The seeds were
kindly provided by Dr. David Garvin, University of
Minnesota, USA. Bd3-1 and Bd21-1 originate from Iraq
and are spring genotypes that do not require vernaliza-
tion to induce flowering. Bd1-1 and Bd29-1 originate
from northern Turkey and the Ukraine, respectively, and
are winter genotypes which require long vernalization
periods (six and 12 weeks respectively) to flower (http://
www.ars.usda.gov/SP2UserFiles/person/1931/GarvinLab
CoreBrachypodiumdistachyonLineSet(2).pdf) [34,35]. For
the microarray gene expression experiments only Bd21-1
was used.
In the qRT-PCR experiment 7 weeks old plants were

used which had been established from seeds using the fol-
lowing growth conditions: 20/16°C day/night temperature
and 16 h photoperiod with a photon flux density of
150 μmol m-2 s-1. Half of the plants were cold acclimated
(CA) following the procedure outlined in Alm et al. [36]
except that pre-acclimation was done at 12 h photo-
period, 12/6°C day/night temperature for 1 week. Plants
were kept in CA conditions at 14 h photoperiod at a con-
stant temperature of 1°C. Leaf tissues were collected from
control plants (non-acclimated, NA) at the start of the
pre-acclimation period and from CA plants at 4 h, 1 day
and 10 days after the start of the cold acclimation period.
To avoid experimental bias introduced by diurnal clock
regulation of gene expression all samples were collected
at the same hour of the day (in the morning) for each
time point. Tissue for RNA extraction was sampled from
different plants of each genotype at each time point.
All sampled leaf tissues were frozen immediately in liquid
nitrogen and stored at −80°C.
For the microarray experiment plants were grown in

16 hours photoperiod in a controlled growth room.
The temperature was 23°C and the photon flux density
was 200 μmol m-2 s-1. Cold experiments were conducted
on three-week-old plants in a walk-in cold room at 4°C
with a photon flux density of 200 μmol m-2 s-1. Control
plants remained in the environmentally controlled
growth room at 23°C. Experimental treatment began
two hours post-dawn (10:00 am). Leaves and stems
(total above ground tissues) from individual plants were
collected at 1, 2, 5, 10, and 24 hours after experiments
were initiated.
Identification of Brachypodium distachyon IRIP-homologs
and design of paralog specific primers
Brachypodium distachyon IRIP homologs were identified
through web-based blast search (www.Brachypodium.
org) using IRIP genes from Lolium perenne (AY968588;
EU680848; EU680850; EU680851) as queries. Multiple
alignments of translated IRIP genes were made with
default settings on the MAFFT web server [37] to verify
that B. distachyon IRIP genes contained the typical
NxVxG/NxVxxG-repeat ice binding domain. IRIP-paralog
specific primers were designed using primer3 [38] such
that there were mismatches between IRIP-paralogs in
the 5’ end of at least one primer for each primer-pair.
IRIP paralog specificity was verified by cloning the PCR-
product of the paralog specific primers pairs using a
TOPO TA cloning kit (Invitrogen) and subsequent
sequencing of five to ten clones. Final TaqMan MGB probes
and primer sets for the quantitative reverse transcriptase
PCR analyses (qRT-PCR) of IRIP genes were designed using
Primer Express Software (Applied Biosystems).
Gene expression analysis by qRT-PCR
Total RNA was isolated with the RNeasy plant mini kit
(Qiagen) and the RNA extraction was performed as
described in the manufacturer`s protocol using 100 mg
frozen tissue powder (ground with mortar in liquid ni-
trogen). DNase digestion was used to eliminate genomic
DNA contamination. RNA quality was controlled with
an Agilent 2100 Bioanalyzer (Aglilent Technologies)
and RNA quantity measured on a Nanodrop ND-1000
UV–vis Spectrophotometer (Nanodrop Technologies).
2.5 μg of total RNA was reversed transcribed using
SuperScriptVilo cDNA synthesis kit (Invitrogen). For
qRT-PCR we used the EXPRESS two-step qRT-PCR

http://www.ars.usda.gov/SP2UserFiles/person/1931/GarvinLabCoreBrachypodiumdistachyonLineSet(2).pdf
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universal kit (Invitrogen) with the superscript VILO
cDNA synthesis kit (Invitrogen).
Two μl cDNA in a total reaction volume of 20 μl was

used for each qRT-PCR reaction. Primers were used at a
concentration of 0.5 μM and TaqMan probes at a con-
centration of 0.2 μM. Final ROX Reference Dye was
0.05 μM. Transcript levels were analysed using a
ABI7500 real-time PCR machine (Applied Biosystems)
with Fast Cycling Program; 95°C for 20 s and 40 cycles
of 95°C for 3 s, and 60°C for 30 s. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) was used as refer-
ence gene. Standard curves were made to control that
primer and probe pairs had efficiency close to 100%.
B. distachyon IRIP genes transcript levels were calcu-
lated relative to GADPH gene transcript levels using the
comparative threshold cycle method (ΔCt method).
Three biological replicates (leaf samples from three dif-
ferent plants) were used to estimate expression levels.
Mean and standard deviation of 2-ΔΔCt was calculated
for comparison of relative expression levels in CA com-
pared to NA samples. A t-test was used to test if ΔCt
values of CA samples were significantly different from
NA samples (i.e. cold induced gene expression). Three
no-template controls for each qRT-PCR plate per gene
were performed to control for primer-dimer formation
and DNA contamination.

Expression analysis by microarray
Leaf tissues were ground in liquid nitrogen and total cel-
lular RNA was extracted using RNA Plant reagent (Invi-
trogen) and RNeasy kits (Qiagen) and treated with
RNase-free DNase as previously described [39]. RNA in-
tegrity was evaluated using an Agilent Bioanalyzer.
Labeled target cDNA was prepared from 125 ng total
RNA samples using the NuGen Applause WT-Amp
PlusST RNA amplification system Kit protocols (Cat#
5510–24) and Encore Biotin module V2 (Cat# 4200–12).
Approximately 4.55 μg fragmented cDNA from each
sample was hybridized for 18 hours to an Affymetrix
Brachypodium Genome Array (BradiAR1b520742).
Hybridization was performed using GeneChipW Fluidics
Station 450. Arrays were scanned using GeneChipW

Scanner 3000 with autoloader at 570 nm and quality-
controlled according to the standard Affymetrix protocols
(Affymetrix GeneChipW Expression Analysis Technical
Manual, 701021 Rev. 5; http://www.affymetrix.com) at the
Oregon State University Center for Genome Research
and Bioinformatics, Central Service Laboratory (detailed
protocols are available at http://www.cgrb.oregonstate.
edu/). Image processing and data extraction were per-
formed using AGCC software version 3.0. The Affymetrix
eukaryotic hybridization control kit and Poly-A RNA con-
trol kit were used to ensure efficiency of hybridization
and cDNA amplification. All cDNAs from cold stress
treatments and control samples were synthesized at the
same time and microarray hybridizations were conducted
simultaneously. Each array image was visually screened to
discount for signal artifacts, scratches or debris.
Probe level normalization was done with Robust

Multi-array Analysis (RMA) utilizing the Affymetrix
Power Tools (APT) software package (http://www.affy
metrix.com/partners_programs/programs/developer/tools/
powertools.affx; [40]). Probe set summarization and
expression estimates for each gene were conducted
using the apt-probeset-summarize (1.14.3) program from
Affymetrix. Data manipulations were performed using
Perl scripts to calculate fold change between normalized
treatment and control probe set values.

Phylogenetic analyses
IRIP, FST, and CBF gene families contain recently
derived paralogs (i.e. having few substitutions), hence all
phylogenetic analyses were carried out on the nucleotide
level. Sets of coding sequences (CDS) of IRIP, FST and
CBF3/CBF4 genes from core Pooideae species were
assembled from different sources. For the IRIP phyl-
ogeny, a representative collection of CDS from both Tri-
ticeae and Poeae tribe species were downloaded from
NCBI and merged with the identified B. distachyon IRIP
homologs (see text above). To identify CBF3/4 and FST
homologs in B. distachyon, the CDS (v1.2) annotation
was downloaded from (http://ftp.brachypodium.org/files/
Annotation/) and local blast searches were performed
using CBF3/4 genes identified in Skinner et al. [41] as
queries. The CBF3/4 phylogeny were constructed using
CBF3/4 genes from Triticeae [41], Poaea [42], and rice
[30]. Additional barley CDS sequences were collected
from a large collection of full length (fl) cDNA and used
in one analyses of the FST phylogeny. CDS were pre-
dicted from fl-cDNA sequences with orfpredictor (http://
proteomics.ysu.edu/tools/OrfPredictor.html) using hom-
ology information from blastx searches against proteins
from rice, maize, sorghum, and B. distachyon down-
loaded from ftp.plantbiology.msu.edu, ftp.brachypodium.
org, ftp.maizesequence.org, and ftp://ftpmips.helmholtz-
muenchen.de/plants/sorghum/, respectively. Only target
sequences with a blast evalue <1e-10 were included in
further analyses. Multiple sequence alignments of IRIPs
and CBFs were made with MAFFT [37] using a codon
model at the Guidance web server (http://guidance.tau.
ac.il) [43]. One hundred bootstrap replicates were calcu-
lated for each guidance alignment and sequences below
0.6 sequence score and 0.8 column score were automat-
ically removed from the alignments. The FST alignment
were produced with prankster [44] on amino acid resi-
dues which were back translated to codons for phylogen-
etic analyses. All alignments were manually checked and
edited in BioEdit [45].
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Maximum Likelihood (ML) phylogenetic reconstruction
using the best evolutionary model according to Akaike In-
formation Criterion (AIC) was carried out in Treefinder
[46]. The trees from ML phylogenetic reconstructions were
checked for consistency with alternative Bayesian phylo-
genetic reconstruction estimated with MrBayes [47]. The
model used in the MrBayes analyses were GTR+G+ I (lset
nst = 6 rates = invgamma), and simulations were run for
1×105 or 1×106 generations with tree sampling every 100
or 1000 generations, respectively. Average deviations be-
tween the split frequencies were <0.01 in all analyses and
a ‘burn in’ which excluded half the sampled trees was used
to generate a consensus tree. Phylogenetic trees were
visualized in MEGA v5 [48].

Bacteriophage library construction and screening
DNA of the inbred diploid line Bd3-1 was used to con-
struct a bacteriophage lambda genomic library. Bd3-1
genomic DNA was a kind gift from Dr. David Garvin,
University of Minnesota, USA. This library was screened
with a rice cDNA probe encoding C-Repeat Binding Fac-
tor (CBF)/Dehydration Responsive Element Binding Pro-
tein (Os-DREB1A), and a probe encoding Os-DREB1B
[49]. DREB1A is an CBF3 subfamily CBF while DREB1B
is an CBF4 subfamily CBF. The same clones cross-
hybridizing to Os-DREB1A cross hybridized to Os-DREB1B,
and no additional Os-DREB1B cross-hybridizing clones
were identified. All clones fell into one of two classes
based on restriction enzyme patterns. Two representative
clones were sequenced and these sequences deposited in
GenBank (accessions JQ180470 and JQ180471).

Fructan measurement
We measured total carbohydrate and fructan content in
one B. distachyon spring (21–1) and winter type (29–1)
and in the core Pooideae species Lolium perenne L. (peren-
nial ryegrass) and Phleum pratense L. (timothy) before and
after cold acclimation. Eight plants of each species were
grown in the greenhouse under 16 h photoperiod. After
eight weeks, half the plants were placed in a cold chamber
at 2°C, while the other half was kept in the greenhouse as
control. Leaf tissue from cold treated and control plants
was harvested after four days and stored at −80°C. Extrac-
tions of total carbohydrate and fructan were carried out as
described in Thorsteinsson et al. [50]. For the colorimetric
quantification we made slight modifications to the method
described in Pollock [51]; because levan is the principal
monocot fructan in grasses [52,53] we chose levan as our
fructan standard instead of inulin. Different concentrations
(0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, and 5 mg ml-1) of levan and glu-
cose were used to make separate standard curves.
Fructan samples were analyzed by high-performance

anion-exchange chromatography (HPAEC) on a Dionex
ICS3000 system (Dionex Corp.). Two μl of each filtrate was
injected on a CarboPac PA1 column (2x250 mm analytical
column with a 2x50 mm guard column) operated at 30°C,
with 0.25 ml min-1 and analyses were detected with pulsed
amperometric detection (PAD). Analyte separation was
obtained by applying a gradient of eluent A (100 mM
NaOH) and B (1.0 M NaOAc in 0.1 M NaOH) starting at
100% eluent A, followed by a two min linear gradient to 5%
eluent B, then increasing to 25% eluent B in 23 min and a
final increase to 50% eluent B reached at 45 min was kept
for three min. Column reconditioning was obtained by
returning to initial conditions in one min which was kept
for 10 min. The following external standards were used for
peak identification; levan (Sigma-Aldrich), fructose (Sigma-
Aldrich), glucose (Sigma-Aldrich), sucrose (Sigma-Aldrich),
and a set of fructooligosaccharides (1-Kestose, Nystose and
1-Fructofuranosylnystose) (Wako Chemicals).
Results and discussion
Cold responsive IRIP genes evolved early in the
pooideae lineage
Seven Brachypodium distachyon IRIP-like genes from
two gene clusters containing two and five genes were
identified on chromosome 5 (Figure 2a). Bradi5g22870.1
and Bradi5g22880.1 in the proximal cluster have both
truncated ice binding domains (Additional file 1). To
test whether the B. distachyon IRIPs are induced by low
temperature, paralog specific qRT-PCR primers were
designed for four IRIP paralogs with non-truncated ice-
binding domains (Bradi5g27300.1, Bradi5g27310.1, Bra-
di5g27330.1, Bradi5g27350.1) (Table 1). Strong cold
induction of all genes except Bradi5g27300.1 was observed
after one day of cold acclimation in both winter types and
the 21–1 line (Figure 3). Bradi5g27300.1 was cold induced
in three genotypes, but the level of expression was gener-
ally lower than the other IRIP genes (Figure 3, Additional
file 2). Expression data from the microarray experiment
confirmed the general patterns of IRIP gene cold induc-
tion observed in the qRT-PCR experiment; little or no
cold induction of Bradi5g27300.1 and medium to strong
(2.5-25 fold) cold induction of the other IRIP genes
within 24 hours cold treatment (Table 2).

The large standard deviations of the qRT-PCR expres-
sion values obscures detailed analyses of expression
differences, nevertheless one interesting pattern in the IRIP
expression data is apparent. In our limited dataset, the win-
ter types express IRIPs more rapid than the spring types.
For three of the four IRIP genes only the winter types have
significant p-values at 4 hours (Figure 3a-b,d), while the
fourth IRIP gene (Figure 3c) has marked higher expression
in winter types at 4 hours, compared to Bd21-1. The pat-
tern of low IRIP gene induction early in the CA treatment
(<5 hrs) is also observed for Bd21-1 in the microarray
experiments (Table 2). One hypothesis is therefore that
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winter types have a more rapid IRIP gene cold induction
compared to spring types. It must be noted that expression
data from many more lines of different flowering habits is
needed to test this hypothesis.
Occurrence of bona fide IRIP genes in B. distachyon,

containing the conserved ice-binding domain and being
cold responsive, places the evolution of IRIP’s early in
the Pooideae evolution prior to the Brachypodium-core
Pooideae divergence. Moreover, the phylogenetic analysis
supports a monophyletic origin of the B. distachyon IRIP
genes (Figure 2b) which means that independent IRIP
gene family expansions occurred in the Brachypodium
lineage after the divergence from core Pooideae species.

Low IRIP induction in Bd3-1 could be explained by
extreme spring type habits
The Bd3-1 spring type showed dramatically lower IRIP
cold induction compared to the other lines, with only
three qRT-PCR measurements being significantly higher
than the NA samples (Figure 3). Since the spring type
Bd21-1 has strong cold induced IRIP gene expression,
the Bd3-1 IRIP expression phenotype cannot be related to



Table 1 Primer sequences used for qRT-PCR experiments

Gene name forward primer
5′> 3′

reverse primer
5′> 3′

probe
5′> 3′

product
size (bp)

Bradi5g27300.1 ggctaccggacaaccaaata aacgttgttgtccccagtg ccggggccaacaactctgtca 109
Bradi5g27310.1 aacactgttatgggggagga ggatacgctattgttgctgcc tggggacaacaacgttgtgtctgg 120
Bradi5g27330.1 ttcgaaacaggttccttgct agcacacggaggtcatcg gcaataagcacggcggtggc 121
Bradi5g27350.1 aaccacaacaaaatcctaagtgg gttgtggctcctggtcacg tgccgtaagtggtcacatgcatg 117
BradiGAPDH ggtgccaagaaggttgtcat ggtgccaagaaggttgtcat gcacccagcaaagatgctccc 190
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the spring type life strategy per se. A recent vernalization re-
sponse study showed that Bd3-1 is a rapid flowering spring
type which expresses the flowering promoting genes VRN1
and VRN3 at very high levels early in the life cycle. In fact
non-vernalized seedlings of Bd3-1 had approximately 4- and
6-fold higher expression levels of one of the two VRN1
paralogs and VRN3, respectively, compared to Bd21 [4].
The physiological transition from vegetative to generative
growth stage in cereals is associated with VRN1 induction,
repression of cold induced gene expression, and loss of
freezing tolerance [54]. Thus, the strikingly low IRIP gene
Figure 3 Quantitative reverse transcript PCR analyses of Brachypodium
acclimation. (a) Bradi5g27300.1 (b) Bradi5g27310.1 (c) Bradi5g27330.1 (d)
above bars denote the significance levels of t-test (*P< 0.05, **P< 0.001). S
estimation of expression levels and standard deviations (see Additional file
expression observed in Bd3-1 could be related to the very
rapid transition from vegetative growth form to flowering
observed in this line [4].

Brachypodium distachyon has a large cold responsive
CBF3 family but lack CBF4 genes
Fourteen out of the total 18 B. distachyon CBF3/4
gene homologs identified in the blast search could be
classified as CBF3 members according to the phylogen-
etic analysis of all CBF homologs (Additional file 3).
Thirteen of these genes belong to the CBF3c/d clades.
distachyon IRIP genes at three timepoints after cold
Bradi5g27350.1 The expression values are given as 2-ΔΔCt and stars
ingle extreme outliers were removed from four samples before
2).



Table 2 Gene expression values from microarray study of cold induction of IRIP, CBF3 and FST-like homologs in
Brachypodium distachyon

Fold change values (treatment/control) for each time point

Gene family Gene name 1 hr 2 hr 5 hr 10 hr 24 hr

IRIP Bradi5g27350.1 1.31 1.31 1.40 3.84 24.18

Bradi5g27340.1 1.39 0.86 2.23 6.13 14.38

Bradi5g27300.1 1.40 0.80 1.10 0.46 0.89

Bradi5g27310.1 0.92 1.01 0.54 0.91 2.92

Bradi5g27330.1 1.95 0.87 3.57 23.61 25.46

CBF3c/d Bradi4g35630.1 105.40 30.19 21.27 1.94 2.48

Bradi1g57970.1 0.74 0.66 1.42 0.77 1.23

Bradi4g35570.1 66.85 191.10 262.59 10.89 1.43

Bradi2g60331.1 20.49 32.94 10.98 7.32 4.61

Bradi2g60340.1 5.19 5.61 2.46 1.84 1.25

Bradi3g57360.1 0.62 0.69 0.79 0.87 1.04

Bradi4g35590.1 3.67 5.66 5.20 2.38 0.71

Bradi4g35600.1 41.81 59.32 24.30 13.55 2.07

Bradi4g35610.1 3.82 6.53 3.73 0.76 0.49

Bradi4g35620.1 5.24 8.56 4.69 4.25 1.51

Bradi1g77120.1 17.02 11.02 6.87 12.16 2.26

FST-homologs Bradi3g00910.1 2.44 2.82 4.88 3.35 1.67

Bradi1g52210.1 1.61 1.04 1.08 0.81 0.61

Expression values given as fold change values (treatment/control).
*Note: gene expression data unavailable for Bradi4g35580 and Bradi4g35640.
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Figure 4 shows the phylogeny of the CBF3c/d genes in
B. distachyon and two core Pooideae species. One B.
distachyon gene (Bradi4g35630.1) belongs to the CBF3c
subgroup, while the other 12 belong to the CBF3d sub-
group. Both the single CBF3c (Bradi4g35630.1) gene
member and the majority of the CBF3d genes in B. dis-
tachyon belong to a gene cluster on chromosome 4.
This chromosome is in large parts syntenic with Triti-
ceae chromosome 5 [1] which contains clusters of cold
induced wheat and barley CBF3c/d genes [55,56].
Microarray expression data shows that all but two
CBF3d genes (Bradi1g57970.1 and Bradi3g57360.1) are
cold induced (>2 fold) during 24 hours of cold expos-
ure (Table 2). Together with the phylogenetic analyses
this expression data suggests that both cold responsive
CBF3c and CBF3d genes were present in a Pooideae
ancestor prior to Brachypodium and core Pooideae
divergence.
A monophyletic origin of all B. distachyon CBF3d

paralogs is supported by both ML and Bayesian phylo-
genetic reconstructions (Figure 4). Moreover, several
CBF3d members are found on chromosome 2 and 3
(Figure 4), which does not conform to the syntenic Tri-
ticeae 5 relationship [1]. Taken together, this data
indicate extensive B. distachyon specific duplications of
CBF3d genes, both tandem and to other chromosomes,
even though alternative scenarios could explain the
observed CBF3d topology. First, what appears to be a
B. distachyon-specific CBF3d clade could have evolved
prior to Brachypodium divergence and later lost in core
Pooideae. Second, gene conversion may homogenize
gene sequences and create an ‘illusion’ of evolutionary
relatedness [57]. Lastly, all sequence orthologs of the
B. distachyon CBF3d genes might not yet have been dis-
covered in core Pooideae species.
Surprisingly, none of the 13 B. distachyon CBF homo-

logs identified in the blast analyses belonged to the
CBF4 group genes (Additional file 3). Screening a bac-
teriophage lambda genomic library for B. distachyon
CBF gene content also failed to recover CBF4 homologs
from B. distachyon. Two phage clones, λBd1C
(JQ180470) and λBd5D (JQ180471), harbored four and
three CBF3 genes, respectively, and comparison to the
Bd21-1 genome showed that λBd1C and λBd5D corres-
pond to two regions on Bd21-1 chromosome 4. The
sequence encompassed by both clones was colinear with
the Bd21-1sequence over their entire length. Because
rice contains a single CBF4 gene (OsCBF4 AY785894),
the most parsimonious model to explain the absence of
CBF4 in B. distachyon is lineage specific gene loss.
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Brachypodium distachyon lacks FST genes and differs
from core pooideae species in fructan accumulation
during cold stress
In total, fifteen genes with some homology to the core
Pooideae FSTs were identified. Thirteen of these were
more distantly related than the closest FST homolog in
rice (an invertase-like gene), and were thus not consid-
ered in the analyses. Core Pooideae FST genes encode
a diagnostic h(A/G)Y/F motif [58] and are induced by
low temperatures [59,60]. Neither of the two FST-like
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homologs in B. distachyon encoded the FST-motif, but
just the invertase motif (Figure 5). The most distant
homolog to the FSTs (Bradi3g00910.1) was cold induced
in Bd21 (Table 2) and belongs to a monophyletic cluster
of invertase-like genes containing gene members from
core Pooideae species (Figure 5). Bradi1g52210.1 was
placed closest to the FSTs in the phylogeny, but was not
cold induced in Bd21-1 within 24 hours of low
temperature treatment (Table 2). Some FST-genes are
known to be induced by cold only after several days of
CA [60], but unfortunately we do not have experimental
data for B. distachyon cold treatments longer than
24 hrs. Hence it is possible that also Bradi1g52210.1 is
induced later in the CA process.
FST gain probably evolved through a mutation in the

substrate binding site of a vacuolar invertase gene [61].
A vacuolar invertase in rice is induced by low tempera-
tures [62] and in this study the expression of a vacuolar
invertase homolog in B. distachyon (Bradi3g00910.1) is
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would require a higher number of evolutionary changes
(i.e. 2 changes) to be consistent with the topology in
Figure 5; in addition to the FST loss, multiple FST gains
must have occurred in the Pooideae lineage, or the
NIASHV2001M19 barley gene must have reverted back
from a FST gene to an invertase-like gene.
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(a) (b)

Figure 6 Carbohydrate accumulation in Brachypodium distachyon and core Pooideae species in response to four days of cold
acclimation at 2°C. (a) Fructan contents (mg ml-1) and (b) total carbohydrate content (mg ml-1) from colorimetric quantification. Core Pooideae
species are Lolium perenne and Phleum pratense, while the B. distachyon lines used were the spring type Bd21-1 and winter type Bd29-1.
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fructan levels were measured before and after cold accli-
mation. Both core Pooideae species and B. distachyon
showed marked responses in carbohydrate accumulation
during cold stress (Figure 6) as has been shown for many-
plant species [63-67]. Interestingly, cold induced
fructan content increases were much higher in core Pooi-
deae (0.8-1.2 fold) than in B. distachyon (0.2-0.3 fold).
Qualitative analysis by HPAEC confirmed that both B. dis-
tachyon and L. perenne induce a large increase in fructose,
glucose and sucrose during low temperature. However, the
profile of short oligosaccharides that accumulated in B. dis-
tachyon was different from core Pooideae (Additional file
4). For example, significant levels of kestose, nystose and
other unidentified oligosaccharides are present after cold
acclimation of L. perenne but not in cold acclimated B. dis-
tachyon (Additional file 4a). Moreover, sugars with higher
degree of polymerization (DP) are also present to a much
larger extent in cold treated core Pooideae compared to B.
distachyon (Additional file 4b). The correlation of cold
induced modifications in fructan content and the phylo-
genetic clustering of presence/absence of amino acid
motifs conferring fructosyltransferase activity support
that B. distachyon does not possess orthologs of the core
Pooideae FST enzymes (Figure 5).
The distribution of fructan synthesising plants is

skewed towards ecosystems characterized by intermit-
tent drought and low temperature stress [68]. Further-
more, both correlative [69-72] and transgenic studies
[73] provide compelling evidence for an important role
of fructans in drought and cold stress tolerance in core
Pooideae grasses. Cold stress associated fructan accumu-
lation was historically assumed to be linked to storage
of easily accessible energy reserves as plants prepare for
winter [74]. However, results from functional studies
have provided insights into a more direct role of fructans
in abiotic stress protection, as part of stability enhancing
complexes of the cell membrane lipid bi-layers during
freezing stress [75-77]. It is thus possible that evolution
of FST function, and subsequent increase and diversifi-
cation of this enzyme family, was important for adapta-
tion to environments with increased abiotic stress levels,
such as colder ecosystems, in a core Pooideae ancestor.

Conclusion
It is evident from our comparative analyses that B. dis-
tachyon and the core Pooideae differ in key cold stress
pathways (Figure 7). Even though this difference limits the
use of B. distachyon as a holistic model for the
molecular biology of low temperature stress in core Pooi-
deae species, B. distachyon will be useful to study specific
genes and pathways, such as CBF3 or IRIP genes. For ex-
ample, IRIP RNAi knockout/knockdown lines can be used
to test the importance of IRIP gene function for cold and
freezing tolerance in Pooideae, and IRIP promoter dele-
tion constructs will be able to shed light on IRIP transcrip-
tional regulation. B. distachyon could also be useful to
understand the functional divergence between different
CBF-gene families, such as the CBF3d and CBF3c group
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genes, and thus increase our general understanding of
transcriptional control of cold stress responses in Pooi-
deae. Since the CBF3c gene is present in single copy in B.
distachyon, this could facilitate functional analyses and the
pathways this gene affect at a mechanistic level.
Differences between B. distachyon and core Pooideae

also reveal interesting, and potentially biological import-
ant, clues to understand the evolution and function of
cold acclimation and freezing tolerance in the Poaceae.
The absence of genes encoding enzymes in fructan bio-
synthesis provides a unique opportunity to carry out
investigations, using transgenic techniques, to test hy-
potheses on the evolution of fructan metabolism in rela-
tion to adaptation to abiotic stress in grasses.
Understanding the underlying genetic factors control-

ling climate adaptation within a species is of great
importance for breeding of abiotic stress resilience in
crop plants. Our study revealed large differences in the
transcriptional responses to cold stress among different
B. distachyon lines. The Bd3-1 spring type had substan-
tially lower levels of IRIP expression at all time-points
during cold acclimation (Figure 3), compared to the
other Bd-lines in the study. It is possible that this ‘cold
non-responsiveness’ is related to the early expression of
flowering pathway genes in Bd3-1 [4]. Bd3-1 could
therefore be an interesting model to study how mechan-
istically the transition to flowering (reproductive stage)
interact with the CA pathways. Moreover, winter and
spring types differed in the transcriptional response time
for the IRIP genes. These differences could be related to
local adaptations to climatic conditions, and thus pro-
vide an interesting model system to study general popu-
lation differences and adaptation to cold stress responses
in Pooideae. Because major transcriptional regulating
pathways are conserved across highly divergent species,
knowledge about mechanisms for local adaptation in
B. distachyon populations could be transferable and
valuable for agricultural important Pooideae crops.
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Additional files

Additional file 1: Amino-acid sequences alignment analysis of
Brachypodium distachyon IRI proteins with Lolium perenne IRI
proteins sequences. Sites with with black shade are highly conserved
(>70% of sequences). Bradi5g27350.1 and Bradi5g22870.1 have truncated
ice binding-domains.

Additional file 2: qRT-PCR expression levels in fold change and
p-values of Brachypodium distachyon IRIP genes.

Additional file 3: Minimum evolution CBF3/4 gene phylogeny
including all Brachypodium distachyon homologs. The Tamura
3-parameter method with gamma distributed rate variation and pairwise
deletion was used to calculate evolutionary relatedness. All non-CBF3c/d
and CBF4 genes as classified by the phylogeny are in green and red
colour, respectively, while other CBF-homologs are in black. Species
abbreviations: Os, Oryza sativa; Hv, Hordeum vulgare; Lp, Lolium perenne.

Additional file 4: HPAEC results for carbohydrate contents before
and after low temperature treatment. Detector intensity given as
nano coulomb (nC). Black curve and Blue curve are the cold treated and
none treated Lolium perenne plants carbohydrate extraction elution
separately. Purple curve and brown curve are the cold treated and none
treated Brachypodium distachyon plant carbohydrate extraction elution.
(a) Low degree of polymerization oligosaccharides (DP two to five)
(glucose, fructose, sucrose, kestose, nystose and other unidentified
oligosaccharides) are detected in L. perenne and B. distachyon using
HPAEC. (b) Higher degree of polymerization oligosaccharides are
detected in L. perenne than in B. distachyon using HPAEC.
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