Skip to main content
Fig. 6 | BMC Plant Biology

Fig. 6

From: Comparative transcriptome analysis reveals that chlorophyll metabolism contributes to leaf color changes in wucai (Brassica campestris L.) in response to cold

Fig. 6

Radar plot showing various technical fluorescence parameters (A, B). Each line represents the average of five measurements per treatment. Energy pipeline models of specific energy fluxes (membrane model) (C) and phenomenological energy fluxes (leaf model) (D) under LT and NT. LTA, low temperature after color change; LTB, low temperature before color change; NTA, normal temperature after color change; NTB, normal temperature before color change; Fm, maximum fluorescence; Fv, variable fluorescence; φPo, maximum quantum yield for primary photochemistry; Sm, normalised total complementary area above the O-J-I-P transie; φEo, quantum yield for electron transport; RC, reaction centre; RC/CS, the concentration of active PSII reaction centres per excited cross section; ABS/RC, absorption of flux per RC; DIo/RC, Dissipated energy flux per RC; TRo/RC, Trapped energy flux per RC; ETo/RC, Electron transport flux per RC; ABS/DIo, absorption/ dissipated energy; ABS/CSo, Absorption of flux per CS; DIo/CSo, Dissipated energy flux per CS; TRo/CSo, Trapped energy flux per CS; ETo/CSo, Electron transport flux per CS

Back to article page