Skip to main content

Table 3 S- and M-haplotypes assigned to the apricot accessions analyzed in this study

From: Self-(in)compatibility in apricot germplasm is controlled by two major loci, S and M

  Cultivar SI/SC S-genotd M-genote   Cultivar SI/SC S-genot M-genot
1 Alba SCb S 1/S C M 1–1/M 3 35 Henderson SC? S 3/S 17 M 2–0/M 16
2 ASP sterileb,c S 5/S C M 4–0/M 5–1 36 Katya SC/SCb S 1/S 2 M 3/m 0–0
3 Auroraa SI S 1/S 17 M 3/M 11 37 Kech-pshara ? S 15/S Z M ?/M ?
4 Bebecou SC S 6/S C M 4–0/M 4–2 38 Konservnyi P. a SC S 2/S C M 4–1/M 8–1
5 Bergerona SC S 2/S C M 4–0/M 8–0 39 Lambertin-1a SI S 1/S 2 M 1–0/M 17
6 Budapesta SC S 2/S C M 1–1/M 12 40 Lito SCb S 6 / S C M 6/M 10
7 Búlida SC S 5/S C M 4–1/M 5–1 41 Manrí ? S C / S C m 0–0 / m 0–0
8 Caninoa SC/SCb S 2/S C M 1–0/m 0–0 42 Mari de Cenada SC S C /S 19 M 8–0/M 18
9 Canino 9–7 ? S 2/S C M 1–0/m 0–0 43 Mariem SC?b S 7/S 20 M 1–0/M 8–2
10 Canino 14–4 SCb S 2/S C M 1–0/m 0–0 44 Martinet ? S 2/S 2 m 0–0 / m 0–1
11 Canino 14–6 SCb S 2/S C M 1–0/m 0–0 45 Mitger SCb S C / S C M 5–0/M 5–0
12 Castlebrite SC S 2/S 2 M 3/m 0–0 46 Moniquía SI S 2/S 6 M 4–1/M 14–0
13 Castleton SC S 1/S 2 M 3/m 0–0 47 Ninfa SC S 7/S C M 7–0/M 10
14 Ceglédi óriása SI S 8/S 9 M 12/M 13 48 Orange Red SI S 6/S 17 M 2–0/M 2–1
15 Coloraoa sterile S 5/S C M 4–0/M 4–0 49 Ouardia SI S 2/S 7 M 1–0/M 7–0
16 Corbató SCb S 2/S 5 M 5–0/m 0–0 50 Palabras SC/SCb S C / S C m 0–0 / m 0–0
17 Cow-1 SCb S 1/S 31 M 3/m 0–0 51 Palaua SC/SCb S C / S C m 0–0 / m 0–0
18 Cow-2 SIb S 20/S 31 M 1–0/m 0–0 52 Patterson SC S 1/S C M 1–3/M 3
19 Cristalí SCb S 20/S C M 5–0/m 0–0 53 Perla SIb S 2/S 20 M 1–2/M 15–1
20 Currota SC/SCb S C / S C m 0–0 / m 0–0 54 Portici SC/SCb S 2/S 20 M 1–4/m 0–0
21 Dulcinea SC S 2/S C M 7–3/M 14–1 55 Rojo Carlet SCb S C / S C M 4–0/M 5–0
22 Effecta SC S 8/S C M 8–0/M 12 56 Rózsakajszia,f SC S 2/S C M 1–0/M 12
23 Ezzine SCb S 24/S C M 1–0/M 7–1 57 Sayeba SC S 7/S C M 1–0/M 7–2
24 Fergani ? S V/S X M ?/M ? 58 Shalaha SC S 5 /S 11 M 8–1/M 19
25 GaltaRoja SC/SCb S C / S C M 4–0/M 5–2 59 SEO SI S 6/S 17 M 2–0/M 6
26 GVV ? S 2/S C M 4–0/M 5–2 60 Stella SI S 6/S 20 M 9/M 9
27 Gandía ? S C / S C m 0–0 / m 0–0 61 Szegedi M. SI S 8/S 9 M 12/M 13
28 Gavatxet ? S 20/S C m 0–0 / m 0–0 62 Tadeo SC S 20/S C M 15–0/m 0–0
29 Ginestaa SC/SCb S C / S C m 0–0 / m 0–0 63 Tirynthos SC S C / S C M 10/M 10
30 Goldricha SI/SIb S 1/S 2 M 1–0/M 2–0 64 Trevatt SC S 2/S C M 1–0/m 0–0
31 Gönci Magyara SC S 8/S C M 8–0/M 12 65 Veecot SI/SIb S 2/S 20 M 2–0/M 3
32 Harcota SI/SIb S 1/S 4 M 1–0/M 2–2 66 Velázquez SI S 5/S 20 M 4–0/M 4–1
33 Hargranda SI S 1/S 2 M 1–0/M 2–0 67 Xirivello ? S C / S C M 4–0/M 4–1
34 Harlayne SC S 3/S 20 M 2–0/M 9      
  1. aCultivars previously S-genotyped by Halázs et al. [18]; Vilanova et al. [19]; Halázs et al. [20]; Zuriaga et al. [26]; Halázs et al. [27]; Burgos et al. [42]; Alburquerque et al. [79]
  2. bOwn data on SI/SC phenotype obtained in this work (see Table 2). Additionally, SC had been observed in a set of accessions grown under insect-proof screen house at IVIA (‘Rojo de Carlet’, ‘Mitger’, ‘Palabras’, ‘Palau’, ‘Currot’, ‘Ginesta’, ‘Canino 14–4’ and ‘Canino 14–6’) showing moderate fruit-setting (not quantified) across several years
  3. cMale-sterility in the ASP accession was indicated by shrunken pale anthers
  4. d S-allele nomenclature is proposed according to Vilanova et al. [19]; Halázs et al. [27]; Zhang et al. [29]; Wu et al. [30]; Gu et al. [31] and Halázs et al. [28]. S-haplotype associated with SC (S C) is written in bold
  5. e M-haplotypes were named with two digits. The first one corresponds to the M-haplotype ‘main class’ and the second to the subtype. M-haplotype variants associated with SC (m 0–0 and m 0–1) are written in bold. Haplotypes designated by M ? could not be defined
  6. f S-genotype determined for Rózsakajszi (S 2 S C) was not in agreement with that previously reported by Halázs et al. [18] (S C S C). Reasons for this discrepancy are still unknown