Skip to main content

Table 2 AraCyc pathways that are over-represented for comparisons 6 h vs. 0 h, 24 h vs. 0 h, and 72 h vs. 0 h based on Gene Set Enrichment Analysis

From: Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge

AraCyc pathways

6 h vs. 0 h

24 h vs. 0 h

72 h vs. 0 h

13-LOX and 13-HPL pathway

↑

    

↑

2,4,6 trinitrotoluene degradation

    

↑

 

Abscisic acid glucose ester biosynthesis

    

↑

↓

Ajugose biosynthesis (galactinol-dependent)

    

↑

↓

Ajugose biosynthesis II (galactinol-independent)

    

↑

↓

Beta-alanine biosynthesis I

↑

     

Brassionosteriod biosynthesis II

↑

     

Calvin cycle

  

↑

↓

  

Cellulose biosynthesis

   

↓

  

Chlorophyll a biosynthesis II

   

↓

  

Chlorophyllide a biosynthesis

    

↑

 

choline biosynthesis II

   

↓

  

Chloline biosynthesis III

   

↓

  

Chorismate biosynthesis

   

↓

  

Coumarin biosynthesis (via 2-coumarate)

↑

 

↑

 

↑

 

Cuticular wax biosynthesis

 

↓

   

↓

Cutin biosynthesis

↑

   

↑

 

Cyanate degradation

↑

     

Cysteine biosynthesis

    

↑

 

Cytokinins 7-N-glucoside biosynthesis

    

↑

↓

Cytokinins 9-N-glucoside biosynthesis

    

↑

↓

Cytokinins-O-glucoside biosynthesis

    

↑

↓

Ethylene biosynthesis from methionine

   

↓

 

↓

Fatty acid biosynthesis-initial steps

 

↓

    

Flavonoid biosynthesis

 

↓

 

↓

 

↓

Flavonol biosynthesis

   

↓

  

Galactose degradation I

 

↓

    

Galactose degradation II (III)

↑

     

Galactosylcyclitol biosynthesis

    

↑

↓

Gluconeogenesis

↑

 

↑

↓

↑

 

Glucosinolate biosynthesis from dihomomethionine

 

↓

    

Glucosinolate biosynthesis from hexahomome thionine

 

↓

    

Glucosinolate biosynthesis from pentahomomethionine

 

↓

    

Glucosinolate biosynthesis from phenylalanine

↑

↓

    

Glucosinolate biosynthesis from tetrahomomethionine

 

↓

    

Glucosinolate biosynthesis from trihomomethionine

 

↓

    

Glucosinolate biosynthesis from tryptophan

↑

↓

    

Glycolipid desaturation

 

↓

    

Glycolysis I (plant cytosol)

   

↓

  

Glycolysis II (plant plastids)

   

↓

  

Homogalacturonan biosynthesis

   

↓

  

Homogalacturonan degradation

↑

  

↓

↑

 

Hydroxyjasmonate sulfate biosynthesis

 

↓

    

IAA biosynthesis I

  

↑

   

IAA biosynthesis II

     

↓

IAA biosynthesis VII

 

↓

    

IAA degradation IV

    

↑

↓

Jasmonic acid biosynthesis

↑

  

↓

 

↓

Kaempferol glucoside biosynthesis (Arabidopsis)

    

↑

↓

Leucine degradation

  

↑

   

Leucodelphin biosynthesis

↑

 

↑

↓

  

Methionine biosynthesis

   

↓

  

Methionine salvage pathway

   

↓

  

Methylindole-3-acetate interconversion

 

↓

 

↓

 

↓

Methylquercetin biosynthesis

   

↓

  

Monolignol glucosides biosynthesis

    

↑

↓

Oxidative ethanol degradation I

  

↑

   

Pelargonidin conjugates biosynthesis

    

↑

↓

Phenylalanine degradation III

  

↑

   

Phenylpropanoid biosynthesis

↑

 

↑

   

Phosphatidylcholine biosynthesis IV

   

↓

  

Phospholipases

   

↓

 

↓

Phospholipid desaturation

 

↓

    

Photorespiration

↑

 

↑

   

Photosynthesis

↑

 

↑

↓

↑

 

Photosynthesis, light reaction

↑

 

↑

 

↑

 

Plastoquinone-9 biosynthesis

   

↓

  

Pyridine nucleotide cycling (plants)

  

↑

   

Quercetin glucoside biosynthesis

    

↑

↓

Quercentinsulphates biosynthesis

   

↓

  

Rubisco shunt

   

↓

  

Salicylic acid biosynthesis

↑

↓

    

SAM cycle

   

↓

  

S-methylmethionine cycle

   

↓

  

Sphingolipid biosynthesis (plants)

     

↓

Starch biosynthesis

 

↓

 

↓

 

↓

Starch degradation

 

↓

   

↓

Suberin biosynthesis

 

↓

   

↓

Sucrose degradation to ethanol and lactate (anaerobic)

  

↑

↓

↑

 

Superpathway of acetyl-CoA biosynthesis

   

↓

  

Superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin3-O-glucoside)

 

↓

    

Superpathway of choline biosynthesis

   

↓

 

↓

Superpathway of cytosolic glycolysis (plants),pyruvate dehydrogenase and TCA cycle

  

↑

↓

  

Superpathway of fatty acid biosynthesis

 

↓

    

Superpathway of lysine, threonine, and methionine biosynthesis

   

↓

  

Superpathway of phenylalanine and tyrosine biosynthesis

 

↓

 

↓

  

Superpathway of phenylalanine, tyrosine and tryptophan biosynthesis

   

↓

  

Superpathway of phosphatidylcholine biosynthesis

   

↓

  

Superpathway of plastoquinone biosynthesis

   

↓

  

Superpathway of starch degradation to pyruvate

   

↓

  

Superpathway of sucrose and starch metabolism I (non-photosynthetic tissue)

↑

↓

 

↓

 

↓

Superpathway of sucrose and starch metabolism II (photosynthetic tissue)

 

↓

    

Superpathway of sucrose degradation to pyruvate

   

↓

↑

 

Trehalose biosynthesis

 

↓

 

↓

↑

 

Triacylglycerol biosynthesis

 

↓

    

Triacylglycerol degradation

↑

   

↑

↓

Ubiquinone-9 bipsynthesis (eukaryotic)

   

↓

  

UDP-D-xylose biosynthesis

   

↓

  

UDP-sugars interconversion

   

↓

  

Very long chain fatty acid biosynthesis

 

↓

    

Vitamin E biosynthesis

   

↓

  

Xylan biosynthesis

    

↑

 

Zeaxanthin biosynthesis

 

↓

    
  1. Up and down arrows indicate the direction of regulation in the former part of the comparison (i.e., 6 h vs. 0 h: up means up in 6 h). Genes and additional data within each pathway for each comparison are available in Additional file 5: Table S4