Skip to main content
Fig. 8 | BMC Plant Biology

Fig. 8

From: dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid

Fig. 8

A diagram illustrating various shapes of adaxial epidermal cells in the perianth of D. hybrida. a Adaxial surface of petal divided to 2 domains. D1: domain 1; D2: domain 2. b Adaxial surface of petal domain 1- flattened epidermal cells c Adaxial surface of petal domain 2 - flattened epidermal cells with rectangular bases d Adaxial surface of sepal divided into 2 domains. D1: domain 1; D2: domain 2. e Adaxial surface of sepal domain 1 - flattened epidermal cells f Adaxial surface of sepal domain 2 - flattened epidermal cells with irregular bases g Adaxial surface of labellum divided to 7 domains. D1: domain 1; D2: domain 2; D3: domain 3; D4: domain 4; D5: domain 5: D6: domain 6; D7: domain 7. h Adaxial surface of labellum domain 1 - conical epidermal cells i Adaxial surface of labellum domain 2 - flattened epidermal cells. j Adaxial surface of labellum domain 3 - epidermal cells showed a single, central outgrowth of the outer, cuticularised wall. k Adaxial surface of labellum domain 4 - random cellular outgrowths. l Adaxial surface of labellum domain 5 - regular striations within the epidermal cells. m Adaxial surface of labellum domain 6 - flattened epidermal cells with rectangular bases, random conical cells on the surface. n Adaxial surface of labellum domain 7 - flattened epidermal cells with rectangular bases. Adaxial epidermis cell shapes were captured on fresh samples using variable pressure scanning electron microscopy with 400 × magnification

Back to article page