Skip to main content
Figure 3 | BMC Plant Biology

Figure 3

From: Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays

Figure 3

Curing GVR of the Ti plasmid (pMP90) reduces the severity of effects seen following GVR infiltration. A ‘Stacked’ fluorescence image of the lower epidermis of FNR-GFP transgenic N. benthamiana three days after infiltration with a GVC strain (lacking the Ti plasmid). Cells are outlined in red. Nuclei were labeled via DAPI (labeled ‘n’). Image was converted to gray scale and inverted to better visualize plastids. Scale=20 μm. B, C, D Stromule frequency (SF), stromule length, and PNAI data were collected for three different cured strains, each infiltrated into three different N. benthamiana plants. B Bar graph representing average stromule frequency (SF) in non-infiltrated (NI) tissue, and following infiltration with GVC (GVC4, 5, 7) and GVR (GVR). Rank sum (GVR-NI, GVC5, GVC7): U=0, p<0.001; (GVR-GVC4): U=1, p<0.001; (NI-GVC4): U=5, p=0.002; (NI-GVC5): U=6, p=0.002; (NI-GVC7): U=32, p=0.480). Sample sizes: n(NI, GVR paired with GVC4 and GVC5, GVC4, GVC7)=9, n(GVC5)=10, n(GVR paired with GVC7)=8. Raw data were arcsine transformed and bars represent back-transformed means. Error bars represent back-transformed 95% confidence intervals. C Box plot representing median stromule lengths in non-infiltrated (NI), GVC-infiltrated (GVC4, 5, and 7) and GVR-infiltrated (GVR) tissues. Rank sum (NI-GVC4): U=9837.5, p=0.051; (NI-GVC7): U=8385, p=0.178; (GVC5-NI): U=9685, p<0.001; (GVC4-GVR): U=27315.5, p=0.002; (GVC5-GVR): U=19829, p<0.001; (GVC7-GVR): U=17773.5, p=0.007; (GVR-NI paired with GVC4): U=9366.5, p<0.001; (GVR-NI paired with GVC5): U=5904, p<0.001; (GVR-NI paired with GVC7): U=9512, p<0.001. Sample sizes (consecutively): n(NI)=95, n(GVC4)=240, n(GVR)=270, n(NI)=104, n(GVC5)=245, n(GVR)=270, n(NI)=106, n(GVC7)=175 and n(GVR)=240. D Box plot representing median plastid nuclear association index (PNAI) in non-infiltrated (NI), GVC-infiltrated (GVC4, 5, and 7), and GVR-infiltrated (GVR) tissues. Rank sum (NI-GVC4): U=2260, p=0.357; (NI-GVC7): U=1931.5, p=0.105; (GVC5-NI): U=3344, p=0.031; (GVC4-GVR): U=1446, p<0.001; (GVC5-GVR): U=1421, p<0.001; (GVC7-GVR): U=1010.5, p<0.001; (GVR-NI paired with GVC4): U=1370, p<0.001; (GVR-NI paired with GVC5): U=1272.5, p<0.001; (GVR-NI paired with GVC7): U=608.5, p<0.001). Sample sizes (consecutively): n(NI)=74, n(GVC4)=67, n(GVR)=75, n(NI)=94, n(GVC5)=87, n(GVR)=80, n(NI)=62, n(GVC7)=74, and n(GVR)=56. C, D C,D Boxes contain 50% of data, the median is represented by black line. Error bars represent 90% confidence intervals. E Iodine stained leaf three days after infiltration with GVR, GVC4 (labeled GVC), LBA, and the buffer only control (labeled AIM). Infiltrated areas marked by a black dotted outline. F Infiltrated leaf at the beginning of senescence. Regions infiltrated with GVR remain green as leaf begins to senescence, forming ‘green islands’, while GVC-infiltrated tissue shows accelerated senescence.

Back to article page