Skip to main content
Figure 1 | BMC Plant Biology

Figure 1

From: Intra-seasonal dynamics in metabolic processes of 13C/12C and 18O/16O in components of Scots pine twigs from southern Siberia interpreted with a conceptual framework based on the Carbon Metabolism Oscillatory Model

Figure 1

Simplified diagram of the glycolytic metabolism. According to the OMCM, the glycolytic chain functions in two regimes – the phase of glycolysis and the phase of gluconeogenesis. During glycolysis, the carbon substrate flux goes “down”. This corresponds to the transformation of carbohydrates into lipids and proteins. During gluconeogenesis, the carbon substrate flux goes “up”. This corresponds to the reverse transformation of lipids and proteins into carbohydrates. “Up” and “down” indicate only general direction of transformations, since glycolytic and gluconeogenetic pathways do not coincide. There are two stages of the pyruvate decarboxylase complex in glycolysis: one corresponds to less than twofold pyruvate pool depletion and mainly comprises lipid component synthesis via C2-fragments depleted in 13C relative to carbohydrates, which feed the glycolytic chain. The other corresponds to more than twofold pool depletion and comprises the Krebs cycle operation and the derivation of the protein components. The products of pyruvate decarboxylation used as structural units in the Krebs cycle operation (C2 and C3- fragments and evolved CO2) are enriched in 13C. According to the known Rayleigh equation [15], isotope ratios of initial substrate, reaction product and residual substrate in chemical reactions are linked in the following way: when the extent of the initial substrate pool is depleted less than twofold, the product is enriched in 12C with respect to the initial substrate; when the extent of depletion is more than twofold, the product gets enriched in 13C. Dotted lines denote the enzymatic pyruvate decarboxylase complex where carbon isotope fractionation occurs. Abbreviations: X5P, xylose-5-phosphate; R5P, ribose-5-phophate; RuBP, ribulose-1,5-bisphosphate; 6PG, 6-phosphogluconate; F6P, fructose 6-phosphate; FBP, fructose 1,5-bisphosphate; PGA, phosphoglyceric acid; DHAP, dihydroxyacetone phosphate; PEP, phosphoenolpyruvate

Back to article page