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Abstract 

Background In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response 
of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions 
has not been fully elucidated.

Results This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiologi-
cal mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl 
and  Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metab-
olism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- 
and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b sig-
nificantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 
mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide  (H2O2), malondial-
dehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG),  Na+, and  Cl− under 40- and 80 mM stress 
levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced 
significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased 
compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monode-
hydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those 
of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, 
indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased 
 Na+,  Cl−,  H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients  (K+,  K+/Na+ ratio, 
 Zn2+,  Fe2+,  Mg2+, and  Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxi-
dant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth 
and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability 
to improve their physiological stress response mechanisms and reduce harmful substances.
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Conclusion Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In 
the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates 
salt tolerance in soybeans.

Keywords Climate change, Abiotic stress, Salinity, Physiology, Antioxidant mechanism, Ion homeostasis

Introduction
The salinity of soils is one of the most important abiotic 
stresses that negatively impact agricultural productiv-
ity globally. It is estimated that 3600  million hectares 
(Mha) of arable land are lost to the salinization of soil out 
of 5200 Mha, resulting in a loss of USD 27.5 billion each 
year [1]. Climate change and inefficient agricultural prac-
tices are expected to increase the salinity of soils, mak-
ing them unsuitable for agricultural use. Moreover, the 
world population is expected to reach 10 billion by 2050, 
which will increase the demand for food production by 
70%. Further pressure will be exerted on the declining 
area of arable land [2]. Therefore, rapid salinization nega-
tively affects both ecological and socioeconomic values 
[3]. The excessive accumulation of toxic salt ions, such as 
 Na+ and  Cl−, in plants causes osmotic stress, ionic toxic-
ity, and nutritional deficiencies [4, 5]. Furthermore, soil 
salinity results in a decrease in photosynthetic abilities, 
reduced nutrient uptake, destabilization of membranes, 
impairment of antioxidant defense mechanisms, dis-
rupted metabolism, and leakage of cellular membranes 
[4, 6]. Plants have developed several mechanisms to pro-
tect themselves against salinity-induced damage. Among 
these are the (i) production of osmolytes, (ii) removal of 
the toxic salt ion  Na+ and  Cl− or their compartmentali-
zation into vacuoles, and (iii) upregulation of antioxidant 
mechanisms to eliminate excessive reactive oxygen spe-
cies (ROS) [5, 7–9].

In plants, reactive oxygen species (ROS) are known to 
play a significant role in signaling and stress response. 
The common ROS in plants includes superoxide anion 
 (O2

•−), hydroxyl radicals (•OH), and hydrogen peroxide 
 (H2O2). When their accumulation exceeds the capac-
ity of the plant’s antioxidant defense mechanisms, they 
can cause oxidative stress, resulting in protein, lipid, 
and DNA degradation [7]. Plants have evolved intricate 
antioxidant defense systems to combat the detrimental 
impacts of ROS, which include both antioxidant enzymes 
and antioxidant compounds [4]. The enzymatic anti-
oxidant defense system consists of several enzymes such 
as superoxide dismutase (SOD), catalase (CAT), per-
oxidase (POD), and glutathione peroxidase (GPX). The 
enzyme SOD converts the  O2

•− into  H2O2. Subsequently, 
it is metabolized by the actions of POD, CAT, and GPX 
enzymes. Hence, they play vital roles in antioxidant 
mechanisms to break down  H2O2 into water and oxygen 

or by utilizing it as a substrate to detoxify various organic 
and inorganic compounds, thereby protecting cells from 
stress-induced oxidative damage [9–11]. Additionally, the 
ascorbate-glutathione (AsA-GSH) cycle further elimi-
nates excessive  H2O2 through the coordinated actions 
of enzymes, including ascorbate peroxidase (APX), glu-
tathione reductase (GR), and monodehydroascorbate 
reductase (MDHAR) and dehydroascorbate reductase 
(DHAR). This cycle performs protective roles for cells 
by eliminating excessive  H2O2 and maintaining cellular 
redox balance [12, 13]. Hence, plants possessing robust 
antioxidant defense mechanisms are deemed more resil-
ient to salinity stress [12, 14].

Moreover, plants also utilize osmolytes (proline, glycine 
betaine, soluble sugar, amino acids) to cope with osmotic 
stress, including salinity [15, 16]. They play multiple roles 
in coping with salinity stress. These include maintaining 
osmotic balance, safeguarding photosynthetic pigments, 
stabilizing proteins, scavenging ROS, preventing ionic 
toxicity, and regulating cell division and gene expressions 
[9, 15–17].

The uptake and homeostasis of ions are essential for 
the normal growth of plants. It is important to recognize 
that salt stress can cause ion toxicity and can inhibit the 
absorption of essential mineral ions such as  Mg2+,  Mn2+, 
 Zn2+,  B3+,  K+, and  Fe2+ [18, 19], damaging physiological 
conditions and growth. Several studies have investigated 
how salt stress affects specific types of ions [20–22]. 
As the ionic balance in plants is intricate and integral, 
ionomics must be used to investigate the mechanisms 
responsible for salt tolerance in plants.

Extensive research has been conducted on increasing 
crop tolerance to abiotic stress through breeding pro-
grams. According to recent studies, the application of 
exogenous factors such as proline, polyamines, mela-
tonin, naphthalene acetic acid, and Gamma aminobu-
tyric acid (GABA) has proven to be an effective method 
for improving plant tolerance to salt stress and thereby 
increasing crop yield [9, 23–26]. GABA is a nonpro-
tein amino acid synthesized in mitochondria through 
the GABA shunt. In plants, GABA serves as both a 
metabolite and a signaling molecule, actively partici-
pating in various physiological processes, particularly 
under stressful conditions [27, 28]. This multifunc-
tionality enables plants to develop tolerance to salin-
ity. As reported by previous studies, external GABA 
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application mitigates salinity injury by modulating anti-
oxidant enzymes to maintain low ROS concentration, 
regulating nitrogen metabolism, and osmolyte produc-
tion, resulting in greater tolerance to salinity stress in 
various crops [24, 29–32].

Cultivated soybeans (Glycine max L.) hold significant 
economic importance globally as a crucial crop species. 

Over recent decades, the demand for soybean cultivation 
has shown a consistent rise. Reports indicate that this 
oil-seed legume crop contributes to approximately 80% 
of the total global legume productivity [33]. However, 
cultivated soybean plants generally exhibit higher sen-
sitivity to salt compared to their wild counterparts [34]. 
Given the reduced productivity observed under salinity 
stress, enhancing the salt tolerance of this crop becomes 
imperative to sustain its productivity in soils affected by 
salinity.

Although the effects of salinity on soybeans have been 
extensively studied, the effects of GABA have received 
little attention. Moreover, the knowledge of GABA inter-
actions during saline stress and how GABA modulates 
physiological and biochemical changes under saline 
stress in commercially critical cereal crop species, such 
as soybeans, remains elusive. Based on our hypothesis, 
saline stress is expected to hinder the growth of soy-
bean plants. However, we anticipate that exogenous 
GABA application may mitigate the morphophysiologi-
cal and biochemical damage induced by saline stress. 
To test our hypothesis, the impact of GABA (2 mM) 
application was investigated on growth, ion homeosta-
sis, ROS accumulation, osmolyte accumulation, and 
antioxidant mechanisms in soybean plants subjected to 
saline stress (0, 40, and 80 mM NaCl and  Na2SO4 at a 1:1 
molar ratio). Therefore, we aimed to unravel the impact 
of exogenous GABA on soybean growth and physio-
biochemical processes by considering the changes in (i) 
mineral ion homeostasis through the reduction of  Na+ 
and  Cl− uptake; (ii) growth, photosynthetic pigment, 
and osmolyte production; and (iii) enzymatic and non-
enzymatic defense mechanisms to reduce saline stress-
induced oxidative damage.

Materials and methods
Study area and experimental conditions
The study was conducted at the College of Agriculture 
Sciences. The soybean seeds were sterilized with magne-
sium chloride  (MgCl2, 0.1%) solution for 5 min, followed 
by five washes with distilled water. The seeds were then 
planted in plastic pots (15 cm in diameter) filled with 3 kg 

of soil, and a hole was placed at the bottom for drainage. 
The seedlings were initially watered with tap water every 
three days using a weighing method. The pots were regu-
larly watered and weighed to replenish lost water due 
to evaporation and transpiration. The soil relative water 
content (SRWC) was determined using the following 
formula:

In this situation,  Wsoil is the weight of soil 
(pot + soil + water);  Wpot is the weight of an empty pot; 
and  DWsoil is the weight of dry soil, whereas  WFC is the 
soil weight at field capacity.

Two weeks after sowing, 36 pots containing uniform 
seedlings (n = 1) were selected and divided into six groups 
for the application of saline stress (NaCl and  Na2SO4 at a 
1:1 molar ratio) and GABA treatment. The three groups 
were treated with saline stress at different concentra-
tions, namely, 0 mM, 40 mM, and 80 mM. The plants in 
the three remaining groups were also given saline stress 
but were sprayed with GABA solution (100 ml of 2 mM 
each at 15, 22, and 30 days after sowing). In an initial 
experiment, plants were grown with various GABA con-
centrations (0.5 mM to 2 mM) under 40 mM salinity 
stress (Supplementary Table  1). Moreover, the optimal 
GABA concentration was determined by measuring the 
improvement in soybean seedling growth under 40 mM 
saline stress. Finally, 7-week-old soybean plants were har-
vested to evaluate growth and physiological characteris-
tics. For further laboratory testing, the samples harvested 
for physiological analysis were immediately frozen in liq-
uid nitrogen and stored at − 80 °C.

Measurement of growth indices
The shoot height and root length were measured using 
a manual. After the plants were separated into leaves, 
stems, and roots, their fresh weights were measured 
using an electric balance. In the next step, the leaves 
stems, and roots were oven-dried at 105  °C for 30  min, 
followed by drying at 75  °C until a constant weight was 
achieved. An electric balance was subsequently used to 
determine the dry weight of the plants.

Determination of chlorophyll a, chlorophyll b, 
and carotenoid concentrations
A mixture of 80% acetone and anhydrous ethanol (1:1) 
was used to completely extract the photosynthetic pig-
ments from fresh leaf samples (0.1  g). Using a spec-
trophotometer (Shimadzu UV-1900 Kyoto, Japan), the 

(1)
SRWC = ([(Wsoil − Wpot − DWsoil)/ (WFC − Wpot − DWsoil)] ∗ 100)
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absorbances at 440, 645, and 663  nm were read for the 
determination of carotenoids, chlorophyll a, and chloro-
phyll, respectively [35]. Their concentrations were deter-
mined using the following equations:

Estimation of mineral elements
Dried leaf samples (0.05 g) were treated with 4 ml of deion-
ized water for 40 min at 100 °C and centrifuged for 15 min 
at 3000 × g. In the next step, the supernatant was collected 
in tubes, and used an inductively coupled plasma atomic 
emission spectrometer to determine the concentrations 
of  K+,  Mg2+,  Na+,  Fe2+,  B3+,  Zn2+,  Mn2+, and  Ca2+. Addi-
tionally, ion chromatography was conducted (DX-300 ion 
chromatography system, CDM-II electrical conductiv-
ity detector, AS4A-SC chromatographic column, mobile 
phase:  Na2CO3/NaHCO3 = 1.7/1.8 mM, DIONEX, Sunny-
vale, U.S.A.) to determine the  Cl− concentration.

Determination of oxidative stress indicators 
and antioxidant mechanisms
The concentration of hydrogen peroxide  (H2O2) was esti-
mated using a standard protocol [36]. Fresh samples were 
homogenized in 5.0 ml of 0.1% trichloroacetic acid (TCA) 
and centrifuged for 15 min at 12,000 × g. The absorbance 
was read at 390 nm using a spectrophotometer to deter-
mine the  H2O2 concentration. Moreover, malondialdehyde 
(MDA) was measured using the thiobarbituric acid (TBA) 
test [37]. Fresh leaf samples (0.5 g) were homogenized in 
5% trichloroacetic acid (TCA) solution for 10 min at 4 °C, 
followed by centrifugation at 5,000 × g for 10  min and 
the addition of 20% TCA to the mixture. Afterwards, the 
mixture was heated at 100  °C (15  min) and centrifuged 
at 5,000 × g for 15 min. Afterward, the absorbances were 
read at 450, 532, and 600 nm using a spectrophotometer. 
Moreover, fresh leaf samples were homogenized in 5% sul-
fosalicylic acid to determine the concentrations of ascor-
bate (AsA), dehydroascorbate (DHA), glutathione (GSH), 
and oxidized glutathione (GSSG) [38].

Estimation of antioxidant enzyme activities
Fresh leaf samples were homogenized using phosphate 
buffer (50 mM, pH 7.8) and EDTA-Na2O (0.1 mM) and 

(2)
Chlorophyll a (Chl a) = 9.784A663 − 0.990A645

(3)
Chlorophyll b (Chl b) = 21.426A645 − 4.650A663

(4)
Carotenoids (Car) = 4.695A440 − 0.268Chl t

centrifuged at 10,000 × g at 4  °C for 5  min. The super-
natants were subsequently collected and used to assess 
enzymatic activity. The activity of superoxide dismutase 
(SOD; E.C.1.15.1.1) was determined by measuring its 
absorbance at 560  nm to determine whether enzyme 
extracts can prevent the photochemical degradation of 
nitroblue tetrazolium (NBT) [39]. The peroxidase (POD) 
activity was measured by standard protocol (Wang et al., 
2018), but with a few minor modifications. Two readings 
at 460  nm were taken at intervals of one minute each. 
The enzyme activity was calculated in units of U/g per 
minute [40]. Catalase (CAT) activity was determined as 
described in a previous report by measuring the absorb-
ance at 240 nm. CAT activity was defined as the amount 
of CAT required to decompose  H2O2 (1.0 µM) [41]. The 
activity of ascorbate-glutathione cycle enzymes, includ-
ing ascorbate peroxidase (APX), glutathione reductase 
(GR), monodehydroascorbate reductase (MDHR), and 
dehydroascorbate reductase (DHAR), was estimated 
by measuring the changes in absorbances at 290  nm, 
340 nm, 340 nm, 265 nm, and 340 nm, respectively [36].

Biochemical determination
The proline content was estimated using the method 
of Bates et  al. [42]. Samples of fresh leaves (0.5  g) were 
homogenized in 5 ml (3%) of aqueous sulfosalicylic acid. 
In the following step, the homogenate was centrifuged 
for 12 min at 11,500 × g. The supernatant was then thor-
oughly mixed with acid ninhydrin and glacial acetic acid. 
The reaction mixture was subsequently boiled for one 
hour at 100 °C and cooled. With the addition of 2 ml of 
toluene, the red color was removed from the chromo-
phore, and the absorbance at 520  nm was measured 
using a spectrophotometer (Beckman 640 D, USA). The 
concentration of glycine betaine was determined using 
a standard protocol [43]. The concentration of soluble 
sugar was determined according to a previous method. 
Glucose served as a standard for the calculation [44]. 
Additionally, leaf samples were homogenized in phos-
phate buffer (pH 7.0) with Coomassie brilliant blue 
G-250 at 595 nm to detect soluble proteins via spectro-
photometry. Bovine serum albumin (BSA) solutions were 
used to construct the standard curve [45].

Statistical analysis
Descriptive statistics and one-way analysis of variance 
(ANOVA) were performed using SPSS version 16.0 
(Chicago, IL, USA). Significance was determined at a 
threshold of p < 0.05, and Duncan’s test was employed 
for mean comparisons. GraphPad Prism 8 was used 
to create the graphics. To analyze growth and physi-
ological parameters, a Pearson correlation analysis was 
conducted using OriginPro 2019 software (Origin Lab 
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Corporation Northampton, Northampton, MA, USA). 
OriginPro 2019 software was used to perform a principal 
component analysis (PCA) of the variables. In PCA, rela-
tionships between variables can be observed. As we ana-
lyzed each variable separately in the ANOVAs, we were 
able to observe qualitatively the similarities and differ-
ences between treatments when taking all variables into 
account together in the PCA.

Results
Changes in growth parameters
The growth performance of soybean plants was adversely 
impacted by the imposition of saline stress. compared 
to the control (Table  1). The extent of inhibition varied 
according to the salt concentration, with higher levels 
of inhibition noted at 80 mM, followed by 40 mM. For 
example, both saline stress levels (40- and 80 mM), sig-
nificantly decreased the shoot height, root length, and 
the fresh and dry weight of root, stem, and leaves com-
pared to the control (0 mM). Conversely, the root/shoot 
(R/S) ratio remained nonsignificant under 40 mM SS but 
significantly increased under 80 mM stress (Table 1).

Exogenous GABA application led to improvements in 
various growth parameters under different saline stress 
levels, albeit to varying extents (Table  1). For instance, 
it significantly enhanced the shoot height, root fresh 
weight, and shoot dry weight under 40 mM stress level, 
while exhibiting little improvements under 80 mM stress, 
compared to their untreated GABA peers (Table  1). 
On the other hand, root length, leaf and stem fresh 
weight, as well as leaf and root dry weight significantly 
improved under both 40 mM and 80 mM stress levels 
following GABA supplementation. Under control condi-
tions, GABA application also resulted in improvements 
in shoot height, stem fresh weight, and dry weights of 
leaves, stems, and roots (Table 1).

Changes in photosynthetic pigments
Salinity stress influenced the concentration of photo-
synthetic pigments, resulting in significant inhibition of 
chlorophyll a and b concentrations under both 40- and 
80-mM stress levels, compared to control (Fig.  1a, b). 
The chlorophyll a/chlorophyll b (Chl a/b) ratio demon-
strated little changes under both stress levels, regardless 
of GABA application (Fig.  1c). Carotenoid (Car) con-
centrations increased under 40 mM saline stress while 
exhibited little increase under 80 mM stress (Fig. 1d). In 
comparison to their untreated peers, exogenous GABA 
significantly increased Chl and Chl b under 40 mM stress 
while Car increased under both 40- and 80-mM treated 
soybean seedlings (Fig. 1a, b, d).

Changes in mineral nutrients
Salinity stress also affected mineral nutrient accumu-
lation, notably increasing  Na+ and  Cl− concentrations 
while decreasing  K+,  K+/Na+,  Zn2+,  Fe2+,  Mg2+, and  Ca2+ 
and  B3+ concentrations under both stress levels, com-
pared to control. However,  Mn2+ significantly reduced 
under 80 mM but exhibited little changes under 40 mM 
stress (Figs. 2a-f and 3a-d).

However, GABA treatment alleviated the adverse effects 
of saline stress on nutrient accumulation to varying degrees. 
It significantly reduced  Na+ and  Cl- under both stress lev-
els, compared to their untreated peers. Conversely, GABA 
application improved  K+,  Fe2+,  Mg2+, and  Ca2+, under both 
stress levels whereas  Zn2+,  Mn2+, and  B3+ as well as  K+/
Na+ ratio only under 40 mM saline stress, compared to their 
untreated GABA counterparts (Figs. 2a-f and 3a-d).

Changes in osmolyte production
The concentrations of osmolytes such as proline and 
glycine betaine increased under both 40- and 80-mM 

Table 1 Changes in growth characteristics of soybean seedlings under saline stress and GABA application

The different letters indicate significant differences between the values at P < 0.05 (Duncan method). SL Shoot length, RL Root length, SFW Stem fresh weight, 
RFW Root fresh weight), LFW Leaves fresh weight), SDW Stem dry weight), RDW Root dry weight), and LDW Leaves dry weight. 0 mM, 40 mM, and 80 mM represent 
different concentrations of saline stress

Parameters Control (0-mM saline stress) 40-mM saline stress 80-mM saline stress

-GABA +GABA -GABA +GABA -GABA +GABA

SL (cm) 22.59 ± 1.63 b 29.59 ± 2.21 a 16.23 ± 1.00 d 19.09 ± 0.80 c 12.03 ± 1.21 e 13.51 ± 1.00 e

RL (cm) 14.93 ± 0.59 ab 16.09 ± 0.86 a 11.95 ± 0.44 c 14.53 ± 0.72 b 9.48 ± 0.57 d 11.45 ± 0.97 c

SFW (g) 3.56 ± 0.15 b 4.39 ± 0.17 a 2.57 ± 0.12 c 3.22 ± 0.31 b 1.30 ± 0.23 e 1.70 ± 0.13 d

RFW (g) 1.64 ± 0.08 a 1.80 ± 0.06 a 1.31 ± 0.09 b 1.73 ± 0.16 a 0.73 ± 0.05 c 0.85 ± 0.09 c

LFW (g) 5.74 ± 0.38 b 7.34 ± 0.30 a 3.67 ± 0.39 d 4.79 ± 0.59 c 2.24 ± 0.26 f 2.93 ± 0.49 e

SDW (g) 1.34 ± 0.03 b 1.68 ± 0.09 a 1.07 ± 0.14 c 1.26 ± 0.10 b 0.57 ± 0.07 d 0.73 ± 0.12 d

RDW (g) 0.58 ± 0.06 b 0.66 ± 0.03 a 0.42 ± 0.03 cd 0.47 ± 0.02 c 0.39 ± 0.04 e 0.43 ± 0.06 cd

LDW (g) 3.25 ± 0.16 a 3.34 ± 0.12 a 2.44 ± 0.08 c 2.96 ± 0.20 b 1.32 ± 0.14 e 1.85 ± 0.14 d

RSR 0.13 ± 0.02 c 0.13 ± 0.01 c 0.12 ± 0.02 c 0.12 ± 0.01 c 0.21 ± 0.02 a 0.18 ± 0.03 b
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saline stress, compared to the control (Fig.  4a, b). 
However, soluble sugar and soluble protein contents 
decreased significantly, under either stress, regardless 
of GABA application (Fig.  4c, d). GABA application 
further enhanced the concentrations of osmolytes and 
soluble proteins. However, GABA treatments increased 
the concentrations of proline, glycine betaine, and 
soluble sugar under both stress levels and soluble pro-
teins under 40 mM stress, compared to their untreated 
GABA peers (Fig. 4a, b).

In contrast, these strains exhibited lower soluble sugar 
(16 and 29%) and soluble protein (17 and 43%) con-
tents (Fig. 4c, d). Similarly, compared with the untreated 

GABA counterparts, the GABA treatment improved the 
proline, glycine betaine, and soluble sugar contents by 
20 and 29%, 39 and 17%, and 42 and 17%, respectively. 
Furthermore, soluble proteins increased by 21% under 40 
mM stress (Figure a-d).

Oxidative stress indicators
Oxidative stress indicators, including  H2O2, MDA, DHA, 
and GSSG, increased in soybean seedlings exposed to 
both 40- and 80-mM saline stress levels, compared to con-
trol (Fig. 5a-d). Conversely, AsA and GSH concentrations 
decreased significantly, resulting in lower AsA/DHA and 
GSH/GSSG ratios (Fig. 5e-h). However, GABA treatment 

Fig. 1 Changes in the concentrations of (a) chlorophyll a, (b) chlorophyll b, (c) chlorophyll a/chlorophyll b, and (d) carotenoids under saline stress 
and GABA application. The graphs indicate the mean and standard deviation (mean ± SD) of the data. The different letters above the bars indicate 
significant differences between the values at P < 0.05 (Duncan method). 0 mM, 40 mM, and 80 mM represent different concentrations of saline 
stress
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mitigated oxidative stress by reducing the concentra-
tions of oxidative stress biomarkers. For instance, GABA-
treated seedlings exhibited lower  H2O2, MDA, DHA, and 
GSSG under both saline stress levels, compared to their 
untreated GABA peers (Fig. 5a-d). However, it increased 

AsA under 40 mM and GSH under both 40- and 80-mM 
stress levels, resulting in improved AsA/DHA and GSH/
GSSG ratios (Figure e-h). Under control conditions, 
GABA application had no significant effect on  H2O2, 
MDA, AsA, GSH, and GSH/GSSG ratios (Fig. 5a, b. e, f, 

Fig. 2 Changes in the concentrations of (a)  Na+(b)  Cl−(c)  K+(d)  K+/Na+ratio, (e)  Zn2+,and (f)  Fe2+under saline stress and GABA application. The 
graphs indicate the mean and standard deviation (mean ± SD) of the data. The different letters above the bars indicate significant differences 
between the values at P < 0.05 (Duncan method). 0 mM, 40 mM, and 80 mM represent different concentrations of saline stress
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h). However, it significantly decreased DHA and GSSG 
but improved the GSSG ratio (Fig. 5, c, d, g).

Changes in the activity of antioxidant enzymes
The enzymatic activity of antioxidant enzymes SOD, 
CAT, POD, and DHAR increased under both stress 
levels, compared to the control, regardless of GABA 
application (Fig.  6a-d). Conversely, under both 40- and 
80-mM stress, the activities of APX, MDHAR, GR, and 
GPX decreased, decreased significantly (Fig. 6g-h). How-
ever, GABA treatment enhanced the enzymatic activities 
of antioxidant enzymes, indicating its role in mitigating 

oxidative stress under saline stress. For example, SOD, 
POD, APX, MDHAR, and GR are under both stress lev-
els while CAT and GPX are under 40 mM stress, com-
pared to their untreated peers (Fig.  6a-h). Moreover, it 
also enhanced SOD, CAT, POD, and DHAR under con-
trol conditions.

Pearson correlation and principal component analysis
According to the Pearson correlation analysis, the 
accumulation of  Na+ and  Cl− was negatively correlated 
with the following study growth characteristics: min-
erals  (K+,  K+/Na+,  Ca2+,  Mg2+,  Fe2+,  Mn2+,  B3+, and 
 Zn2+); ascorbate-glutathione metabolites (AsA, GSH, 

Fig. 3 Changes in the concentrations of (A)  Mg2+(B)  Ca2+(C)  Mn2+and (D)  B3+under saline stress and GABA application. The graphs indicate 
the mean and standard deviation (mean ± SD) of the data. The different letters above the bars indicate significant differences between the values 
at P < 0.05 (Duncan method). 0 mM, 40 mM, and 80 mM represent different concentrations of saline stress
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AsA/DHA and GSH/GSSG); enzymes (APX, MDHAR, 
GR and GPX); and osmolytes (soluble proteins and sol-
uble sugars) (Fig. 7).

In contrast, they showed no significant correlation with 
CAT or POD activity and an insignificant negative corre-
lation with Car. Furthermore, there were strong positive 
correlations between the R/S ratio, Chl a/b, oxidative sta-
tus  (H2O2, MDA, DHA, and GSSG), antioxidant enzymes 
(SOD and GR), and osmolytes (Pro and GB) (Fig. 7).

A Principal Component Analysis (PCA) was conducted 
to examine the variability of the collected data and the 
relationships between the different treatments and attrib-
utes. The analysis revealed that PC1 and PC2 together 

explain 93.8% of the total variability in the data result-
ing from diverse treatments. PC1 accounted for 65.7% of 
the variation, while PC2 contributed to 24.5% of the total 
variation. The biplot was divided into clusters. The oxi-
dative stress indicators, such as  H2O2, MDA, GSSG, and 
DHA, as well as  Na+,  Cl−, and Chl-a/b ratio, were clus-
tered together and were proximate to the 40- and 80-mM 
stress treatment. On the other hand, mineral nutrients, 
chlorophyll pigments, AsA, GSH, and their metabolizing 
enzymes, were clustered together. Moreover, osmolytes 
such as proline and GB, and  H2O2 scavenging mecha-
nisms such as SOD, POD CAT, and DHAR, were placed 
amid oxidative stress biomarkers and minerals, pigments, 

Fig. 4 Changes in the concentrations of (a) proline, (b) glycine betaine, (c) soluble sugar, and (d) soluble protein under saline stress and GABA 
application. The graphs indicate the mean and standard deviation (mean ± SD) of the data. The different letters above the bars indicate significant 
differences between the values at P < 0.05 (Duncan method). 0 mM, 40 mM, and 80 mM represent different concentrations of saline stress
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Fig. 5 Changes in the concentrations of a  H2O2, b MDA, c DHA, d GSSG, e AsA, f GSH, g AsA/DHA and h GSH/GSSG under saline stress and GABA 
application. The graphs indicate the mean and standard deviation (mean ± SD) of the data. The different letters above the bars indicate significant 
differences between the values at P < 0.05 (Duncan method). 0 mM, 40 mM, and 80 mM represent different concentrations of saline stress
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Fig. 6 Changes in the enzymatic activity of a SOD, b CAT, c POD, d DHAR, e APX, f MDHAR, g GR, and h GPX under saline stress and GABA 
application. The graphs indicate the mean and standard deviation (mean ± SD) of the data. The different letters above the bars indicate significant 
differences between the values at P < 0.05 (Duncan method). 0 mM, 40 mM, and 80 mM represent different concentrations of saline stress
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and the AsA-GSH cycle. The PCA plot revealed a posi-
tive correlation among the parameters related to the 
 H2O2 elimination mechanism, osmolytes, and the activ-
ity of GPX, GR, MDHAR, and APX enzymes, as well as 
the AsA-GSH metabolites and the content of chlorophyll 
pigments and mineral ions (Fig. 8). Conversely, there was 
an unfavorable correlation observed among plant mineral 
nutrition, the AsA-GSH cycle, pigments, soluble sugars, 
proteins, and oxidative stress biomarkers. Osmolytes 
and ROS-eliminating enzymes were positioned amidst 
these variables, indicating their role in alleviating salinity 
stress. Notably, treatments involving 80 mM and 40 mM 
salinity were associated with oxidative stress biomarkers. 
However, GABA application under salinity conditions 
showed a strong association with antioxidants, suggest-
ing the efficacy of GABA supplementation in mitigating 
salinity stress (Fig. 8).

Discussion
GABA-enhanced growth and pigments under salinity
In our study soybean plants subjected to saline stress 
exhibited a decrease in shoot height, root length, and 
leaf-stem and root fresh and dry weight, compared to the 
control (Table 1). Growth and biomass are negatively cor-
related with high salt ions  (Na+ and  Cl−) and oxidative 

stress biomarkers  (H2O2 and MDA) (Fig.  7). Excessive 
salt ions such as  Na+ and  Cl− interfere with the uptake of 
 K+,  Mg2+, and  Ca2+, causing severe water loss and cellu-
lar necrosis [46, 47]. Furthermore, excessive salt ions alter 
metabolism and enzymatic functions, resulting in the 
production of higher ROS, which causes oxidative stress 
and impairs plant performance [48]. Hence, our results 
revealed that salinity inhibits plant growth by modulating 
several mechanisms. These mechanisms include exces-
sive accumulation of ROS, ionic toxicity [9, 49], osmotic 
stress [50], impaired photosynthesis [51], and lower min-
eral nutrient uptake and cell division [52, 53], resulting in 
reduced growth and biomass production.

Furthermore, salinity significantly reduced the concentra-
tions of chlorophyll a, chlorophyll b, and carotenoid, com-
pared to control (Fig.  1a-d). Photosynthesis requires an 
optimal concentration of chlorophyll. In saline conditions, 
plant growth is typically reduced by a decline in photosyn-
thesis. As a result of a series of stepwise reactions, chloro-
phyll biosynthesis may be disrupted, resulting in reduced 
chlorophyll concentration [30, 54, 55], net photosynthesis, 
and biomass production. The salinity-induced reductions in 
chlorophyll and carotenoids may be attributed to oxidative 
damage-induced membrane breakdown, and chlorophyllase 
which negatively impacts pigment synthesis [56, 57].

Fig. 7 Pearson correlation of the studied morphological and physio-biochemical parameters. Shoot length (SL), root length (RL), shoot dry weight 
(SDW), shoot dry weight (RDW), leaf dry weight (LDW), root/shoot ratio (R/S), chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll a/chlorophyll 
a (Chl a/b), carotenoids (Car), malondialdehyde (MDA), hydrogen peroxide  (H2O2), ascorbate (AsA), dehydroascorbate (DHA), glutathione (GSH), 
oxidized glutathione (GSSG), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), 
glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase 9SOD0, peroxidase (POD), catalase (CAT), proline (Pro), soluble 
sugar (SS), soluble protein (SP), and glycine betaine (GB) were measured
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Endogenous GABA can improve a plant’s ability to 
cope with stress [58]. Exogenous GABA could increase 
the levels of endogenous GABA within plant tissues, 
which could result in an increase in tolerance to salinity 
stress. In our study, GABA improved pigment synthesis 
and growth in soybean seedlings under salinity compared 
to GABA-untreated seedlings. These findings are in 
agreement with those reported by Jin et al. [29] and Ullah 
et al. [24], who reported that exogenous GABA positively 
modulated the physiological mechanisms and growth of 
watermelon and mungbean plants under saline stress, 
respectively. It has been reported that GABA positively 
regulates chlorophyll synthesis, stomata regulation, and 
intercellular  CO2, and reduces oxidative stress damage 
[59], which agrees with our results. Hence, we suggest 
that GABA has the potential to alleviate the detrimental 
impacts of salinity on the growth parameters and chloro-
phyll pigments in soybeans resulting in improved toler-
ance and growth of soybeans [30, 60, 61].

GABA reduced ROS and improved antioxidant potential 
under salinity
As a result of abiotic stress, several biochemical mark-
ers (i.e., ROS,  O2

−, and  H2O2) are released in plants and 

serve as signaling molecules for plant defense mecha-
nisms [62]. Nevertheless, the excessive production of 
these markers has the potential to adversely affect some 
biochemical and physiological processes in plants [63]. 
In our study, increased SS levels significantly elevated 
the concentrations of  H2O2 and MDA, suggesting the 
phenomenon of oxidative stress damage in soybean 
seedlings [30, 47, 61], compared to the control. Exces-
sive ROS levels cause the degradation of lipids, pro-
teins, and DNA, resulting in cellular leakage and death 
[4]. Furthermore, salinity stress can degrade the pho-
tosynthetic apparatus and elevate levels of abscisic 
acid, leading to stomatal closure, decreased net photo-
synthetic rates, and lower biomass production [4, 64]. 
Several antioxidant enzymes such as SOD, APX, POD, 
and CAT, are known to eliminate ROS and protect cells 
from oxidative damage [56, 65, 66]. The enzyme SOD is 
responsible for converting  O2

− to  H2O2, whereas POD, 
CAT, and APX convert  H2O2 to  H2O and  O2 [67]. In our 
study, salinity stress significantly increased the activity 
of SOD, CAT, and POD but decreased GPX, compared 
to the control (Fig. 6a-d), suggesting that soybean seed-
lings were able to reduce the salinity-induced oxida-
tive damage through enhanced antioxidant enzymes, 

Fig. 8 Principal component analysis of the studied morphological and physio-biochemical parameters. Shoot dry weight (SDW), root dry weight 
(RDW), leaf dry weight (LDW), the root/shoot weight ratio (R/S), the chlorophyll a (Chl a), the chlorophyll b (Chl b), the chlorophyll a/chlorophyll 
a (Chl a/b), carotenoids (Car), malondialdehyde (MDA), hydrogen peroxide  (H2O2), ascorbate (AsA), dehydroascorbate (DHA), glutathione (GSH), 
oxidized glutathione (GSSG), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), 
glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase 9SOD0, peroxidase (POD), catalase (CAT), proline (Pro), soluble 
sugar (SS), soluble protein (SP), and glycine betaine (GB) were measured



Page 14 of 18Qian et al. BMC Plant Biology          (2024) 24:365 

for removing  O2
− to  H2O2. However, this response was 

accompanied by a substantial reduction in biomass 
production.

As non-enzymatic molecules, both AsA and GSH play 
a crucial role in the antioxidant mechanism as compo-
nents of the AsA-GSH cycle. The enzyme APX oxidizes 
AsA to MDHA, which is then converted to DHA through 
the removal of  H2O2. In addition, MDHA and DHA can 
be converted back to AsA through the action of MDHAR 
and DHAR respectively. Moreover, the GR enzyme 
regenerates GSH from GSSG [12]. However, the concen-
tration of AsA and GSH may vary under stress, but their 
redox buffering functions can initiate stress acclimation 
processes [68]. AsA and GSH pools are reduced under 
salinity stress [69, 70]. This could be attributed to the 
impaired enzymatic activities related to the AsA-GSH 
cycle. In our study, exposure to salinity stress resulted 
in higher DHAR activity but decreased APX, MDHAR, 
and GR, indicating the susceptibility and limited efficacy 
of the AsA-GSH cycle in neutralizing  H2O2 in soybean 
seedlings.

According to both this study and previous research 
[29, 56], exogenous GABA stimulates antioxidant mecha-
nism in plants to efficiently scavenge  H2O2. For instance, 
GABA additions have been shown to regulate SOD, 
POD, and CAT and the enzymes of the AsA-GSH cycle 
in some crops, including tomatoes [71] and mungbean 
[24], and chufa [30]. Moreover, GABA application also 
increased GPX activity in salinity-stress soybeans, com-
pared to their untreated GABA peers. GPX has a multi-
tude of physiological functions, such as oxidizing toxic 
compounds, synthesizing cell walls, and regulating plant 
growth under stress conditions [72]. Likewise, another 
study on tomato seedlings has also demonstrated sig-
nificantly higher activity of SOD, POD, and CAT, which 
has been shown to result in lower ROS production and 
lower oxidative stress under salinity [73]. In our study, 
we observed a similar scenario, where the application 
of exogenous GABA enhanced antioxidant activity and 
maintained ROS metabolism balance. Moreover, our 
results indicate that exogenous GABA also mitigates ion 
toxicity and minimizes oxidative damage, both linked to 
increased antioxidant enzyme activity, thereby restoring 
plant growth.

GABA application positively regulated ions in soybeans 
under salinity
In plants subjected to salinity stress, excessive  Na+, 
and  Cl− accumulation leads to a decrease in the uptake 
of essential nutrients [51, 74] and the modulation of 
essential physiological mechanisms. For example, 
increasing  Na+ decreases  K+, which may degrade chlo-
rophyll, disrupt thylakoids [75], and ultimately impair 

photosynthetic activity and other enzymatic functions. 
Hence, the ability of plants to tolerate salinity is reflected 
in their ability to reduce the uptake of  Na+ ions in cells 
[76]. Our results indicate that increased salinity stress 
resulted in significantly greater concentrations of  Na+ 
and  Cl− but decreased concentrations of  K+,  Mg2+,  Ca2+, 
 Zn2+, and  Fe2+ compared to control. Furthermore, salin-
ity-induced decreases in  K+ ions are associated with low 
 K+/Na+ ratios (Fig.  3c, d). High salinity in the rhizos-
phere results in high pH, which reduces the availability 
of mineral ions and hence negatively impacts physiologi-
cal mechanisms and growth [51]. The repression of  K+ 
absorption by stress may also contribute to low  K+ con-
centration. Therefore,  K+ and  Na+ might compete for 
binding sites for cellular functions due to the low  K+/
Na+ ratio [77]. We suggest that the decrease in beneficial 
mineral nutrients in soybeans could be explained by cel-
lular membrane damage caused by ionic toxicity, osmotic 
imbalance, and pH-induced damage because of the high 
accumulation of  Na+ and  Cl− ions [56, 78, 79]. Therefore, 
we suggest that increased salt ions and decreased benefi-
cial nutrients resulting from salinity may result in nutri-
ent imbalances in soybean seedlings, resulting in reduced 
dry matter accumulation and reduced growth, as dem-
onstrated by previous research findings on soybean [51], 
canola [80], barley [81], and maize [56].

Compared to untreated plants, GABA application sig-
nificantly suppressed  Na+ and  Cl- ions while enhancing 
the concentrations of beneficial ions such as  K+,  Fe2+, 
 Mg2+,  Ca2+, and the  K+/Na+ ratio under both stress 
conditions. Additionally,  Zn2+ improved only under 
40 mM stress. The effect of GABA on plant  Na+ and Cl 
concentrations has been extensively studied; however, it 
is unclear whether GABA can directly reduce the accu-
mulation of toxic salt ions. GABA may reduce toxic 
salts under saline conditions due to its osmotic regula-
tory mechanism, which mitigates stress damage, result-
ing in the normalization of essential ion uptake [82]. It 
has been demonstrated that GABA regulates SOS genes 
responsible for  Na+ efflux and  Na+/H+ antiporters, 
which are involved in sequestering excess  Na+ into vacu-
oles [83]. Several other studies have also indicated that 
GABA under stress reduces salt ions accumulation and 
ROS production, activates the  H+ ATPase and inhibits 
 K+ depletion [30, 59, 61, 84, 85], which agrees with our 
results. GABA has also been demonstrated to interact 
with a variety of transporters and channels, including 
aluminum-activated malate transporters (ALMTs) and 
guard cell outward rectifying  K+ channels (GORKs). In 
plants, these interactions contribute to the regulation 
of ion homeostasis and the enhancement of stress tol-
erance [86]. Thus, we propose that applying GABA to 
salt-stressed plants reduces the adverse effects of salinity 
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on soybean seedlings by modulating mineral nutrient 
uptake and appears beneficial to plants under stress-
ful conditions in terms of optimizing cellular metabolic 
processes [24, 57, 87]. Moreover, GABA influences ion 
membrane potential differences to enhance ion trans-
port, thus improving plant salt tolerance [88]. As a result, 
we suggest that a decrease in the GABA-induced salt ion 
concentration is beneficial for salinity adaptation, as it is 
associated with a decrease in oxidative stress.

Effect of GABA application on biochemical changes 
under salinity
The increased SS levels significantly enhanced pro-
line and glycine betaine but reduced soluble sugar and 
soluble proteins under either stress; however, exoge-
nous GABA enhanced their concentrations, compared 
to their GABA untreated peers. In plants, sugar is an 
important osmolyte because it regulates cell division, 
controls water loss, prevents chlorophyll degradation, 
scavenges free radicals, stabilizes membranes and pro-
teins, and regulates gene expression [15, 89]. Proline 
and glycine protect the photosynthetic machinery, limit 
the production of excessive ROS, and stabilize enzymes, 
proteins, and membranes against salinity-induced dam-
age [17, 90]. It has been reported that GABA treatment 

increases proline and glycine betaine under SS condi-
tions in black pepper [91] maize [92], chufa [30], and 
strawberries [93], resulting in their improved tolerance. 
In addition, GABA-treated salinity stresses soybean 
seedlings exhibited improved soluble proteins, which 
are crucial for osmotic adjustment and can provide N 
when stress conditions subside [94, 95]. Consequently, 
our results demonstrate that GABA can enhance soy-
bean seedlings’ ability to tolerate saline stress by 
enhancing the accumulation of osmolytes to mitigate 
the adverse effects of salt stress [24].

Conclusion
In the present study, GABA was demonstrated to miti-
gate salt stress in soybean plants by modulating physio-
biochemical attributes, resulting in improved growth and 
biomass production (Fig. 9). As a result of the increased 
salinity stress, soybean plants experienced adverse effects 
on biomass and physiological metabolism. Exogenous 
GABA significantly decreased soybean seedling damage 
caused by salt stress by (i) reducing  Na+ and  Cl− accu-
mulation, (ii) improving the accumulation of mineral ions 
such as  Mg2+,  Ca2+,  Fe2+,  Zn2+, and  K+ and increasing 
 K+/Na+ ratios, (iii) increasing osmolyte production, (iv) 
enhancing photosynthetic pigments (Chl a, Chl b, and 

Fig. 9 Diagram illustrating how GABA treatment affects the morpho-physiochemical attributes of soybean plants under saline stress
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Car), (v) reducing  H2O2 and MDA concentrations and 
(vi) upregulating antioxidant enzyme activity. Hence, the 
findings of our study suggest that GABA application is 
capable of mitigating salinity-induced alterations in the 
morphophysiological and biochemical features of soybean 
plants under saline conditions. In the future, the molecu-
lar mechanisms that govern salinity tolerance mediated 
by GABA soybean plants should be examined further. 
The effects of exogenous GABA on soybean nutrition 
on a deeper molecular level should also be considered 
to resolve the low productivity of soybeans under saline 
conditions.
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