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Abstract
Background and aims The escalating issue of soil saline-alkalization poses a growing global challenge. Leymus 
chinensis is a perennial grass species commonly used in the establishment and renewal of artificial grasslands that 
is relatively tolerant of saline, alkaline, and drought conditions. Nonetheless, reduced seed setting rates limit its 
propagation, especially on alkali-degraded grassland. Inter-annual variations have an important effect on seed 
yield and germination under abiotic stress, and we therefore examined the effect of planting year on seed yield 
components of L. chinensis.

Methods We grew transplanted L. chinensis seedlings in pots for two (Y2), three (Y3), or four (Y4) years and collected 
spikes for measurement of seed yield components, including spike length, seed setting rate, grain number per spike, 
and thousand seed weight. We then collected seeds produced by plants from different planting years and subjected 
them to alkaline stress (25 mM Na2CO3) for measurement of germination percentage and seedling growth.

Results The seed setting rate of L. chinensis decreased with an increasing number of years in pot cultivation, but seed 
weight increased. Y2 plants had a higher seed setting rate and more grains per spike, whereas Y4 plants had a higher 
thousand seed weight. The effects of alkaline stress (25 mM Na2CO3) on seed germination were less pronounced for 
the heavier seeds produced by Y4 plants. Na2CO3 caused a 9.2% reduction in shoot length for seedlings derived from 
Y4 seeds but a 22.3% increase in shoot length for seedlings derived from Y3 seeds.

Conclusions Our findings demonstrate significant differences in seed yield components among three planting 
years of L. chinensis under pot cultivation in a finite space. Inter-annual variation in seed set may provide advantages 
to plants. Increased alkalinity tolerance of seed germination was observed for seeds produced in successive planting 
years.
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Introduction
Grasslands, which cover over 40% of the earth’s sur-
face, provide crucial ecosystem services [1, 2]. Approxi-
mately 49.3% of the world’s grasslands face degradation 
problems, which pose significant threats to animal hus-
bandry, ecological security, and sustainable development 
[3–6]. Saline-alkaline soils are representative of degraded 
regions throughout the world [7, 8]. Soil salinization and 
alkalization have been recognized as major environmen-
tal threats to agricultural systems, significantly affecting 
plant growth, physiology, and metabolism [9]. Alkaliza-
tion reduces community stability in grasslands by reduc-
ing species asynchrony and soil nutrient levels, thereby 
accelerating grassland degradation [10, 11]. To date, 
research on plant responses to salinity stress induced by 
NaCl has focused primarily on maintenance of osmotic 
and ion homeostasis through rapid perception of osmotic 
and ionic signals and corresponding physiological adjust-
ment [12–14]. However, fewer studies have specially 
addressed the effects of alkaline stress. Alkaline stress, 
characterized by high pH and the presence of alkaline 
salts, has more complex and destructive effects on plants 
than salinization caused by neutral salts [8, 15–17].

The Songnen grassland, situated in northeast China 
(121°27′–128°12′ E, 43°36′–49°45′ N), is currently 
experiencing degradation [18]. Saline-alkalization is 
leading to significant soil degradation in this region, 
posing a serious environmental threat with negative 
effects on sustainable development [19]. Leymus chi-
nensis (Trin.) Tzvel, a clonal wild ryegrass with vigorous 
belowground rhizomes, is the dominant perennial grass 
species in the Songnen grassland [20]. Because it devel-
ops strong rhizomes and adapts well to saline, alkaline, 
and drought conditions, this species plays an impor-
tant role in the establishment and renewal of artificial 
grasslands and in environmental protection [21–25]. L. 
chinensis initiates its inflorescence in the autumn of the 
year before bloom, this is followed by regrowth in April, 
heading in May, flowering in June, and seed maturation 
in July and August. L. chinensis experiences the early-
vegetative and mid-vegetative stages in August and 
September, and its growing season ends in late Octo-
ber [22, 26]. L. chinensis in the Songnen grassland faces 
challenges associated with low germination percentage, 
heading rate and seed setting rate, which hamper its 
propagation and severely exacerbate the degradation of 
grassland vegetation. In natural grasslands, L. chinen-
sis relies heavily on vegetative propagation for spatial 
expansion and population renewal [27]. However, rhi-
zomes of L. chinensis have a maximum lifespan of four 
years, and their numbers gradually decrease over suc-
cessive years. This reduction in rhizome numbers has a 
significant effect on seed yield [28].

Plants exhibit significant variability in seed produc-
tion and germination behaviors that can be attributed 
to various factors, including plant age, growth habitat, 
and variation among individuals [29, 30]. Thirty-three 
years of data from Dacrydium cupressinum in New Zea-
land did not support a strong relationship between seed 
production and variation in environmental factors [31]. 
Witkowski and Wilson [32] reported that seed produc-
tion of Chromolaena odorata increased over the first 10 
years but declined markedly after 15 years. Hampton 
et al. [28] found that tiller production of perennial rye-
grass was optimal at 18–24℃ but that higher tempera-
tures depressed tiller production and seed yield. Pol et al. 
[33] suggested that perenniality could enable perennial 
grasses to make large reproductive investments despite 
harsh environmental conditions. However, little is known 
about the year-to-year variation in seed yield of L. chi-
nensis growing in a finite space within the same habitat 
[34, 35].

Seed germination and the seedling stage are two criti-
cal developmental periods in the plant life cycle during 
which plants exhibit heightened sensitivity to environ-
mental stresses [36]. Numerous studies have focused 
on the tolerance of seed germination to saline-alkaline 
stress [37–39]. Soil salinization delays seed germina-
tion process because high soil salt concentrations exceed 
the critical limit of plant osmotic tolerance, suppressing 
imbibition and germination [40, 41]. Likewise, alkalinity 
stress not only triggers the same osmotic stress but also 
increases the pH, leading to more severe osmotic dam-
age [42]. Giménez-Benavides et al. [43] reported that ger-
mination of high-mountain Mediterranean species was 
highly variable among altitudes, populations, and years, 
but the results differed among species. However, there is 
little detailed information on the effects of alkaline stress 
on germination of L. chinensis seeds from different plant-
ing years.

In the present study, we measured the seed yield com-
ponents of L. chinensis cultivated in pots for 2–4 years 
and examined differences in germination, shoot length, 
and root length of seeds/seedling, with and without 
alkaline stress. We hypothesized that (1) the seed yield 
components of the 2nd year plants would be higher 
than those of the 4th year; and that (2) alkaline tolerance 
would vary among seeds derived from different planting 
years. Our results have implications for the effective utili-
zation of L. chinensis and the development of appropriate 
management practices.

Materials and methods
Experimental design and sampling
The pot experiment was performed in Changchun, Jilin 
Province (124°18′-127°02′E, 43°05′-45°15′N) from 2016 
to 2019 to study the effect of planting year on seed yield 
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components of L. chinensis. This region has a temperate 
continental climate with a mean annual temperature of 
4.9℃ and average annual precipitation of 498 mm.

Plastic pots (diameter and height, 30  cm) were filled 
with 10  kg of sieved soil that had a pH of 7.12, electri-
cal conductivity of 0.73 dS/m, and concentrations of 
soil organic carbon, nitrogen, and phosphorus at 2.83%, 
1.37  g/kg, and 0.67  g/kg, respectively [44]. L. chinensis 
‘Dongdi 4’ seedlings of uniform size without offspring 
ramets were excavated to a depth of 15 cm from the same 
field site (Figure S1) and transplanted into the plastic pots 
on 15 May 2016, 15 May 2017, and 15 May 2018 (Fig. 1). 
Fifteen seedlings were transplanted into each pot, with 
eight replicates pots per planting year, for a total of 24 
pots. Regular watering and weeding were carried out to 
ensure the normal growth of L. chinensis. All plants were 
grown in the field beneath a transparent polyvinylchlo-
ride roof. Belowground irrigation was applied once every 
two days at 193  ml·pot− 1, which was calculated on the 
basis of 498 mm mean annual precipitation [44]. Concen-
trations of N, P, and K in the irrigation water were below 
the limits of detection. Temperature data from Changc-
hun City during the experimental period are provided in 
Table S2.

Seed yield components were measured for all plants 
in 2019. At this time, plants transplanted in 2016 were 
4 years old (Y4), those from 2017 were 3 years old (Y3), 
and those from 2018 were 2 years old (Y2) (Table S1). At 
the stage of seed maturity on 16 August 2019, two spikes 
were randomly selected from each plot, placed into sep-
arate bags, and air-dried in the lab for 3 weeks. Spike 
length (SL), grain number per spike (GN), and deflated 
grain number per spike (DN) were measured. Dried 
plump seeds with glumes from each treatment were 
divided into 5 groups, each containing 100 grains. Each 

group was weighed on an electronic, semi-analytical bal-
ance (Sartorious AG, Goettingen, Germany). Thousand 
seed weight (TSW) was calculated as the average weight 
of the ten groups multiplied by 10. The seed setting rate 
(SSR) was calculated using the equation [44]:

 
SSR =

GN

GN +DN
× 100%

where GN is the grain number per spike and DN is the 
deflated grain number per spike.

Na2CO3 treatment and seed germination
In late August 2019, mature seeds of L. chinensis were 
collected from plants of each planting year, air-dried at 
room temperature, and stored in paper bags at 4℃. The 
seeds were surface sterilized using 0.1% HgCl2 for 10 min 
and rinses multiple times with distilled water before 
use. Groups of 20 seeds were sown in 9-cm Petri dishes 
containing 0.7% (w/v) water agar supplemented with or 
without (control) 25 mM Na2CO3; there were three rep-
licate dishes per planting year and treatment. The dishes 
were incubated in a growth chamber with a 12-h dark, 
16℃/12-h light, 28℃ cycle; fluorescent and incandes-
cent white light were provided at 54 µmol⋅m− 2s− 1. Seed 
germination was monitored until no new germination 
occurred over a span of five days. After the germina-
tion experiments, five seedlings were randomly selected 
from each Petri dish for measurements of root and shoot 
length.

The germination percentage was calculated using the 
equation:

 
Germination percentage =

n

N
×100%

Fig. 1 Diagram illustrates the experimental design. Y2: transplanted in 2018, 2nd year; Y3: transplanted in 2017, 3rd year; Y4: transplanted in 2016, 4th year
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where n is the number of germinated seeds at the end of 
the test and N is the total number of seeds tested.

Statistical analyses
All data were analyzed using R statistical software 
(R4.2.2). Principal component analysis (PCA) was per-
formed on all traits measured at harvest using the fac-
toextra and factoMinR packages to visualize overall 
differences in trait variation among the three planting 
years. From the PCA results, we extracted the explained 
variance and loadings for each component, which pro-
vided insights into the contribution of each variable 
to its respective component. We repeated the PCA on 
bootstrapped datasets and then computed the standard 
deviation from the bootstrapped outputs to obtain the 
bootstrap standard errors for explained variance, contri-
butions, and loadings. The bootstrapping was performed 
to estimate the uncertainty of explained variances, load-
ings, and contributions in the PCA output.

We also used (generalized) linear models to examine the 
variation in each seed yield component across planting 
years and to evaluate the effect of planting years on the alka-
line tolerance of seed germination. We used (generalized) 
linear models with a binomial distribution for germination 
percentage and seed setting rate; a normal distribution for 
spike length, thousand seed weight, shoot length and root 
length; and a Poisson distribution for grain number per 
spike. ANOVA followed by Tukey’s honestly significant 
difference (HSD) post hoc test was used for pairwise mul-
tiple comparisons of mean values among planting years and 
between alkaline stress conditions (R package emmeans).

Results
Effect of planting year on seed yield components of L. 
chinensis
Together, the first two retained principal components 
(PCs) explained 79.5% of the variance in the seed yield 
component dataset (Fig. 2). The first principal component 
(PC1), explained 55.1% of the variance; it exhibited high 

Fig. 2 Principal component analysis of seed yield components in different planting years. (a) PCA biplot; different colors represent different planting 
years (Y2, transplanted in 2018, 2nd year; Y3, transplanted in 2017, 3rd year; Y4, transplanted in 2016, 4th year). SL, spike length; GN, grain numbers per 
spike; TSW, thousand seed weight; SSR, seed setting rate. The three larger points represent the centroids of the distribution for each planting year. (b) 
Percentage of variance explained by the retained principal components (PCs). (c-d) Bar plot of the loadings (c), and d contributions (d) of each variable to 
PC1 and PC2. The circular symbols in b and the bars in (c) and (d) show the pertinent estimates based on the full dataset. In (b-d) error bars are centered 
on the estimates and represent the standard error estimated with the bootstrap procedure (n = 500 bootstrap iterations); the small gray diamonds show 
the estimates of each bootstrap iteration, and the large gray diamonds represent the median of all bootstrap iterations
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positive loadings for GN and SSR and a substantial nega-
tive loading for TSW. The second principal component 
(PC2) explained 24.4% of the variance and had a high neg-
ative loading for SL. As shown in Fig. 2a, Y2 and Y4 plants 
were clearly separated along the first principal component. 
The Y2 plants had positive values of PC1 associated with 
higher SSR and GN. By contrast, the Y4 plants tended to 
have negative values of PC1 association with higher TSW.

Spike length was significantly shorter in Y4 plants than 
in Y2 and Y3 plants (Fig. 3a; Table S3). Grain number per 
spike was significantly lower in Y3 and Y4 plants than in 
Y2 plants, with reductions of 82.6% and 75.1%, respec-
tively (Fig.  3b). Y4 plants had significantly higher thou-
sand seed weight, 17.9% higher than that of Y2 plants 
(Fig.  3c). Seed setting rates were significantly lower in 
the Y3 plants and Y4 plants by 72.9% and 52.9%, respec-
tively, compared with the Y2 plants (Fig. 3d). Tillers per 
pot were significantly higher (44.1%) in the Y2 plants than 
in the Y3 plants (Figure S2).

Effects of planting year and alkaline stress on germination 
and seedling growth of L. chinensis
Seeds were harvested from Y2, Y3, and Y4 plants for 
measurement of germination and seedling growth. Both 
planting year and alkaline stress treatment (25 mM 
Na2CO3) had significant effects on the germination per-
centage of L. chinensis seeds (Fig.  4). In the absence of 
Na2CO3 stress, the germination percentage was 32.1% 
lower for seeds from Y2 plants than for those from Y4 
plants. Germination percentage was lower in the pres-
ence of Na2CO3 across all three planting years. Under 
Na2CO3 stress, germination percentage was again highest 
for Y4 seeds (88.3%), followed by Y3 seeds (73.3%) and Y2 
seeds (55.0%).

Shoot lengths of L. chinensis seedlings were signifi-
cantly affected by both planting year and the plant-
ing year × alkaline stress interaction (Fig. 5a). Shoots of 
seedlings derived from Y4 seeds were longer than those 
of seedlings derived from Y2 seeds at the same Na2CO3 

Fig. 3 Inter-annual variations in seed yield components of L. chinensis. (a) Spike length; (b) Grain number per spike; (c) Thousand seed weight; (d) Seed 
setting rate. Y2: transplanted in 2018, 2nd year; Y3: transplanted in 2017, 3rd year; Y4: transplanted in 2016, 4th year. Asterisks indicate significant differences 
determined by Tukey’s test (* P < 0.05, ** P < 0.01, *** P < 0.001)
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concentration. The effects of alkaline stress differed 
among planting years. Alkaline stress caused a 9.2% 
reduction in shoot length of the Y4-derived seedlings. By 
contrast, alkaline stress caused a 22.3% increase in the 
shoot length of Y3-derived seedlings but had little effect 
on that of Y2-derived seedlings (6.3 cm vs. 6.5 cm). Plant-
ing year, alkali stress, and their interaction all had sig-
nificant effects on seedling root length (Fig. 5b). Alkaline 
stress reduced root length of seedlings derived from Y2, 
Y3 and Y4 seeds by 84.1%, 9.5%, and 71.9%, respectively.

Discussion
Thousand seed weight of L. chinensis increased as the 
number of years after transplant increased from 2 to 4, 
although the number of grains per spike decreased. The 
heavier seeds produced by the Y4 plants also showed less 
pronounced inhibition of germination in the presence 

of 25 mM Na2CO3, suggesting that prolonging the dura-
tion of pot cultivation had a mitigating effect on alka-
line stress in the resulting seeds. These findings align 
with previous research in which heavier seeds tended to 
exhibit higher germination percentages than lighter seeds 
[45]. Our results provide further evidence in support of 
this notion, as the lighter Y2 and Y3 seeds tended to have 
lower germination and reduced shoot and root lengths. 
However, our findings contrast with those of Fernández-
Pascual et al. [46], who found no significant differences 
in germination between heavy and light seeds of alpine 
plants. These discrepancies could be attributed to varia-
tions in experimental conditions that influence germina-
tion behavior. Consistent with previous studies [47, 48], 
our results demonstrated that seedlings derived from 
heavier seeds had greater biomass than those derived 
from lighter seeds, likely due to the presence of greater 

Fig. 4 Mean values (± SE) of germination percentages of L. chinensis seeds from plants of three planting years (Y2, Y3, Y4) in the presence and absence of 
25 mM Na2CO3. Asterisks indicate that the main effects of both model terms (PY, planting year; AS, alkali stress) were significant at P < 0.05. Y2: transplanted 
in 2018, 2nd year; Y3: transplanted in 2017, 3rd year; Y4: transplanted in 2016, 4th year
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seed reserves in their cotyledons [49, 50]. Intuitively, 
heavier seeds would seem to be advantageous because 
seed mineral reserves should increase as a function of 
total seed mass [51, 52].

The Y2 and Y4 plants were clearly separated along the 
first principal component in Fig.  2. Spike length, grain 
number per spike, and seed setting rate were all lower 
in Y4 plants than in Y2 plants. This result may reflect 
changes in resource allocation caused by increased plant 
density and decreased soil nutrient content over multiple 
years in a limited space [53, 54]. For example, Lou et al. 
[55] found that seed production gradually decreased in 
or after the second year of plant growth in the perennial 
herb Saussurea nigrescens. As a plant grows, its demands 
for nutrients and energy increases, and seed yield declines 
when supplied nutrients and energy can no longer meet 
these demands [56, 57]. The planting year of the mother 
plant has been shown to influence various aspects of seed 
development and seedling growth in perennial plants 
species [58]. Here, we observed high inter-annual varia-
tion in seed setting rate of L. chinensis, consistent with an 
adaptive seed production strategy. Previous research has 
suggested that L. chinensis exhibits strong plasticity in its 
reproductive characteristics, particularly in response to 
inter-annual variations in resource availability [59]. This 
plasticity enables clonal plants to regulate population sta-
bility and promote ecological balance through quantita-
tive adjustments [60, 61].

We observed a decline in the germination percentage of 
L. chinensis under alkaline stress, consistent with previ-
ous foundings [62, 63]. The detrimental effects of alkaline 
stress on germination can be attributed to the effect of 
osmotic pressure and ion toxicity. The presence of added 
chlorine ions exacerbates the osmotic stress experienced 
by the seeds. Moreover, uptake of Na+ during seed ger-
mination can result in cell Na+ toxicity, further inhibiting 
or delaying the germination process [62–64]. Although 
alkaline stress inhibited L. chinensis seedling growth in 
the present study, this inhibition was generally less severe 
for the heavier seeds produced by Y4 and Y3 plants. The 
reduced shoot and root lengths under Na2CO3 stress can 
be explained by the detrimental effects of high Na+ con-
centrations and high pH stress. Elevated pH levels, par-
ticularly in the presence of high sodic salt concentrations, 
interfere with ion uptake, disrupt intracellular ion bal-
ance, damage root cell structure, and ultimately reduce 
seedling elongation [65, 66]. Variability in germination 
characteristics has been suggested to be one of the most 
important survival strategies for species growing under 
unpredictable environmental conditions [67, 68] and 
can reduce the risk of seedlings being subjected to poor 
growing conditions due to the establishment of intense 
competition hierarchies [69]. This variability helps to 
reduce the risk of seedlings being subjected to unfavor-
able growth conditions as a result of intense competition 
hierarchies.

Fig. 5 Mean values (± SE) of shoot length (a) and root length (b) of L. chinensis seedlings derived from seeds produced by plants from three planting years 
(Y2, Y3, Y4), in the presence and absence of 25 mM Na2CO3. Asterisks indicate main effects and interactions that were significant at P < 0.05. Y2: transplanted 
in 2018, 2nd year; Y3: transplanted in 2017, 3rd year; Y4: transplanted in 2016, 4th year
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Conclusion
Our study revealed clear differences in seed yield compo-
nents between plants grown for two years after transplant 
and those grown for four years. The Y2 plants had higher 
seed setting rate and grain number per spike, but the Y4 
plants had higher thousand seed weight. Seeds obtained 
from plants grown for four years after transplant showed 
somewhat less inhibition of seed germination under alka-
line stress (25 mM Na2CO3). A substantial proportion of 
the inter-annual variation in seed yield components and 
germination of L. chinensis might be due to changes in 
plant density and/or soil nutrient availability. Further 
investigations will be required to fully clarify the physi-
ological and molecular mechanisms of the inter-annual 
variations in germination under alkaline stress.
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