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Introduction
Glycosylation refers to a post-translational modifica-
tion process that alters the chemical property, subcellu-
lar location, and biological activity of various biological 
molecules [1]. It plays a crucial role in the biosynthesis 
of plant natural secondary metabolites, and also serves 
as a fundamental mechanism for maintaining intracel-
lular stability. Glycosyltransferases (GTs) constitute a 
diverse and complex multigene family that facilitates gly-
cosylation by catalyzing the transfer of activated sugar 
molecules from donor molecules to specific receptor 
molecules [2–5]. The GTs are divided into 115 families 
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Abstract
Background  Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing 
attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary 
metabolites to control many metabolic processes during plant growth and development. However, there have been 
no systematic reports of UGT superfamily in F. tataricum.

Results  We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis 
of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar 
gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem 
repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that 
FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The 
gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to 
drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their 
further study to better understand their function.

Conclusions  Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs 
and for understanding the growth, development, and metabolic model in F. tataricum.
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(CAZy, http://www.cazy.org), with GT family 1 (GT1) 
being the most abundant and widely distributed in plants 
[6].

GT1, also known as UDP glycosyltransferases (UGTs), 
facilitate the transfer of the glycosyl group from UDP 
sugar to various receptors, such as flavonoids, terpenoids, 
auxin, cytokinins, and salicylic acid [7, 8]. UGTs are ubiq-
uitously present in diverse life forms, ranging from plants 
and animals to fungi, bacteria, and viruses [9]. UGTs typ-
ically utilize UGT sugars such as UDP rhamnose, UDP 
arabinose, UDP glucose, UDP xylose, and UDP galac-
tose as donor molecules during the glycosylation process 
[10–13]. The overall plant UGTs included the conserved 
domain UDPGT domain (PF00201). The majority of 
plant UGTs share recognition specificity for the same 
or similar UGT sugar donors at their C-terminal region. 
This region contains a highly conserved motif referred to 
as plant secondary product glycosyltransferase (PSPG), 
which is composed of 44 amino acids (WAPQ–VL-H-
AVG-FLTHCGWNSTLES—GVP—WPM–DQ) [14, 15]. 
The N-terminal region of UGTs exhibits high variability 
and is capable of recognizing to specific receptors [16]. 
As a result, the C-terminal region of UGTs is generally 
considered more conserved than the N-terminal region 
[17]. .

The UGT family has been identified in several plant 
species [10, 18–26]. The glycosylation process medi-
ated by UGTs is a critical mechanism that maintains the 
diversity of metabolites in plants. It performs essential 
functions related to numerous aspects of plant growth 
and development, including seed germination, growth, 
flowering, seed setting, and stress resistance [27–37]. 
Bronze1, the initial gene identified in UGT superfamily 
of plants, is capable of synthesizing flavonoid glycosides 
and regulating the melanin accumulation in maize grains 
[38, 39]. In grape, VvGT7 is involved in the biosynthe-
sis of geranyl and neryl glucoside during fruit develop-
ment [34]. In strawberry, FaGT2 and FaGT5 promote 
the production of β-glucogallin [35]. In wheat, TaUG-
T3and TaUGT12887 are closely related to scab resistance 
[28, 32]. UGT85K4 and UGT85K5 are also involved in 
the biosynthesis of linolenin and thymosides in cassava, 
which may contribute to defense response [30]. Overex-
pression of AtUGT85A5 enhances plant tolerance to salt 
stress [33]. AtUGT73b3 and AtUGT73b5 show resistance 
to Pseudomonas syringae [27]. Knockout of Arabidopsis 
UGT76B1 can lead to increased resistance to Pseudomo-
nas syringae and accelerated senescence [31].

UGT family are named following the conventions of the 
UGT Nomenclature Committee. This involves the use 
of the root symbol UGT, followed by a numerical value 
representing a specific family. The range of families varies 
among different organisms. In animals, the family names 
range from 1 to 50, in yeast it ranges from 51 to 70, in 

plants it ranges from 71 to 100, and in bacteria the range 
is from 101 to 200 [40, 41].

Tartary buckwheat (Fagopyrum tataricum) belongs to 
the Polygonaceae family and is a gluten-free crop that 
provides not only energy but also a variety of beneficial 
bioactive compounds [42]. Previous research has indi-
cated that Tartary buckwheat possesses a significant 
quantity of antioxidants, especially flavonoids and poly-
phenols [43, 44]. These bioactive compounds have been 
linked to numerous health benefits, including cholesterol 
reduction, neuroprotection, anti-inflammatory, anti-dia-
betic, anti-hypertensive, and anti-cancer effects [45–47]. 
As a result, Tartary buckwheat has been recognized as 
a functional food [48]. The glycosylation process plays a 
crucial role in the biosynthesis of these bioactive compo-
nents [49, 50].

To date, there have been no comprehensive explora-
tions of the UGT superfamily in F. tataricum. Conse-
quently, this study aimed to undertake a genome-wide 
investigation into the evolutionary characteristics and 
biological functions of F. tataricum UGTs (FtUGTs). To 
this end, we performed whole genome identification, 
phylogenetic relationships, conserved motifs, gene struc-
ture, cis-acting elements, gene duplication, gene expres-
sion, and response to different abiotic stresses of FtUGTs. 
This study will provide a theoretical basis for the further 
in-depth mining of UGT functions in F. tataricum.

Results
Identification of UGT genes in F. Tataricum
In the present study, The conserved UDPGT domain and 
44 aa length PSPG motif was used to identify the pres-
ence of UGTs in the F. tataricum genome. Ultimately, a 
total of 173 FtUGT genes were identified and labeled as 
FtUGT1 to FtUGT173 based on their position in chro-
mosomes (Additional File 1: Table S1). The fundamental 
characteristics of the 173 FtUGT proteins, such as pro-
tein length, protein molecular mass, isoelectric point 
(pI), domain information and predicted subcellular local-
ization, were thoroughly investigated (Additional file 
1: Table S1). The smallest proteins were FtUGT62 and 
FtUGT87, which consisted of 123 amino acids. Mean-
while, the largest protein was FtUGT35 containing 
645 amino acids. The majority of FtUGT proteins had 
a size range of 400 to 500 amino acids, with only a few 
exceeding 500 amino acids. The molecular weights of the 
FtUGTs ranged from 13.52 kDa (FtUGT62) to 71.05 kDa 
(FtUGT35), while their isoelectric points varied from 
4.46 (FtUGT62) to 9.36 (FtUGT162). Based on the results 
from the predicted subcellular localization analysis, out 
of the 173 identified FtUGTs, 81 (46.8%) were predicted 
to be located in the chloroplast region, 64 (37%) in the 
cytoplasm, 18 (10.4%) in the nucleus, three (1.7%) in 
the extracellular region, three (1.7%) in the vacuole, two 
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(1.2%) in the mitochondria, one (0.6%) in the cytoskel-
eton, and one (0.6%) in the peroxisome (Additional File 1: 
Table S1). The subcellular localization pattern of FtUGTs 
is consistent with the glycosylation function.

Phylogenetic analysis of FtUGTs
To analyze the evolutionary relationships between 173 
identified FtUGTs and 73 AtUGTs, a phylogenetic tree 
was constructed using the neighbor-joining (NJ) method 
with a bootstrap value of 1000, based on their amino acid 

sequences. (Fig. 1, Additional file 1: Table S1). Based on 
the classification method proposed by Mackenzie and 
Yonekura-Sakakibara [39, 40], 246 UGT proteins in the 
phylogenetic tree were divided into 21 branches (fami-
lies) and each family was greater than 40% sequence 
identity. Among the 21 UGT families, 15 UGT families 
were shared by A. thaliana, 6 families (UGT80, UGT82, 
UGT92, UGT93, UGT94 and UGT95) were additional 
and 2 families (UGT83 and UGT87) were lacking. The 
number of FtUGTs in each family varied, as UGT71, the 

Fig. 1  Unrooted phylogenetic tree representing relationships among UGTs of F. tataricum and A. thaliana. The tree was generated using the NJ method 
in MEGA11.0, and UGT proteins from A. thaliana were prefixed with ‘At’
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largest of the families, contained 18 UGT members, while 
UGT88, the smallest of the families, had only one mem-
ber. There were 17, 17, 16, 15, 13, 12, 11, 11, 9, 7, 4, 3, 3, 2, 
2, 2, 2, 2, and 2 FtUGTs in the UGT85, UGT89, UGT76, 
UGT73, UGT86, UGT72, UGT78, UGT91, UGT84, 
UGT74, UGT79, UGT82, UGT95, UGT75, UGT80, 
UGT90, UGT92, UGT93, and UGT94, respectively 
(Fig.  1, Additional file 1: Table S1). The phylogenetic 
tree including both F. tataricum and A. thaliana UGTs 
revealed that FtUGTs clustered closely with AtUGTs. 
This supports the notion that these proteins likely share 
similar physiological functions.

Gene structure, conserved motifs and cis-elements analysis 
of FtUGTs
As multigene families evolve, newly generated cop-
ies often acquire novel gene functions, which can be 
observed through the diversification of gene structures 
in the FtUGT superfamily. To gain a more comprehen-
sive understanding of the structural divergence among 
various FtUGT genes, their exon and intron structures 
were examined by analyzing their genome locations. 
(Fig. 2, Additional files 1: Tables S1). We found that they 
had different numbers of introns, ranging from 0 to 13 
(Fig. 2). 70 FtUGT genes (40.5%) did not contain introns; 
72 FtUGT genes (41.6%) contained one intron; 23 FtUGT 
genes (13.3%) contained two introns; and 8 FtUGT genes 
(4.6%) contained more than two introns. These results 
indicated that most members of the FtUGT superfamily 
had simple gene structures and less than three introns, 
which may be one of the reasons for the high activity and 
rapid transcription of the UGT superfamily. Generally, 
FtUGTs belonging to the same family exhibited similar 
gene structures and intron compositions. For example, 
UGT72, UGT73, UGT74, UGT75, UGT82, UGT84, 
UGT88, UGT90 UGT91, UGT93, UGT94, and UGT95 
family members contained 0 or 1 intron, and UGT80 
contained 13 introns. As an illustration, members of 
UGT72, UGT73, UGT74, UGT75, UGT82, UGT84, 
UGT88, UGT90, UGT91, UGT93, UGT94, and UGT95 
families exhibited either zero or one intron, while UGT80 
family members contained 13 introns.

An analysis of the characteristic amino acid regions of 
FtUGTs involved the investigation of their motifs through 
the use of the MEME online software. This resulted in the 
identification of ten conserved motifs, labeled as motifs 
1–10. (Fig.  2C, Additional file 2: Table S2). As shown 
in Fig.  2C, motif 3 was commonly found in FtUGTs, 
except for FtUGT117 and FtUGT122, and was typically 
located in close proximity to motif 1. Certain motifs were 
observed to occur exclusively in specific positions. For 
example, Motifs 4 and 7 were consistently found at the 
N-terminus of FtUGTs, while motif 9 was almost always 
located at the C-terminus. Members of the same FtUGT 

family typically exhibited similar motif compositions. 
For instance, UGT75 contained motifs 7, 2, 5, 1, 3, and 
9; UGT82 contained motifs 2, 5, 8, 1, and 3; and UGT79, 
UGT92, and UGT95 all shared motifs 4, 7, 2, 5, 8, 1, 3, 
and 6.

As promoter cis-elements are closely associated with 
gene function, this study aimed to investigate the regu-
latory mechanisms of FtUGTs by analyzing the cis-ele-
ments within their promoter regions (up to 2000  bp). 
Using this approach, a total of 120 cis-regulatory ele-
ments were identified in 173 FtUGTs and were divided 
into eight categories—light-responsive, development-
related, site binding-related, hormone-responsive, pro-
moter-related, environmental stress-related, and other 
elements (Additional file 3: Table S3). Promoter-related 
elements CAAT-box and TATA-box, light-response ele-
ments TCT motif, GT1 motif, Box 4, G-box and I-box 
and drought-responsive elements MYB and MYC were 
identified in nearly all FtUGTs. Moreover, a total of 13 
hormone-responsive cis-elements were detected amongst 
FtUGTs, encompassing a broad range of plant hormones, 
including auxin-responsive elements (AuxRR-core, 
TGA-element, AuxRE, TGA-box), gibberellin-respon-
sive elements (P-box, GARE-motif, P-box, TATC-box), 
abscisic acid-responsive elements (ABRE), jasmonic acid-
responsive elements (TGACG-motif, CGTCA-motif ), 
and salicylic acid-responsive elements (TCA-element, 
SARE). Almost 96% of the FtUGTs contained hormone-
responsive elements. Specifically, 80 FtUGTs contained 
IAA-responsive elements, 94 contained GA-responsive 
elements, 141 contained ABA-responsive elements, 140 
contained JA-responsive elements, and 68 contained SA-
responsive elements. Significantly, 16 FtUGTs possessed 
all five hormone-responsive elements. In addition, the 
identified cis-elements within the promoter regions of 
FtUGTs included those associated with environmental 
stress response, such as drought, salt, low-temperature, 
anaerobic, and wound stress. These observations collec-
tively indicate that FtUGTs participate in the regulation 
of diverse biological processes in F. tataricum, such as 
plant growth and development, light response, hormone 
signaling, and abiotic stress adaptation.

Distribution and duplication of FtUGTs
Utilizing the F. tataricum genome database, a physi-
cal map was generated to display the positions of the 
FtUGTs across the genome (Fig.  3, Additional files S1 
and S4: Tables S1 and S4). Overall, the 173 FtUGTs 
were observed to be non-uniformly dispersed through-
out the eight chromosomes of F. tataricum. Amongst 
the chromosomes, Chr5 had the highest gene count (34 
genes), followed by Chr4 (26 genes), whereas Chr3 had 
the lowest gene count (7 genes). Additionally, the analy-
sis revealed a total of 39 tandem duplication events 
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involving 70 FtUGTs (Fig.  3). Intriguingly, eight genes 
were found to be associated with two tandem repeat 
events (FtUGT27 and FtUGT26/FtUGT28, FtUGT33 and 
FtUGT32/FtUGT34, FtUGT38 and FtUGT37/FtUGT39, 
etc.). The presence of these duplications suggested that 

certain chromosomal regions might have concentrated 
tandem duplication events. Moreover, it was observed 
that tandem duplication pairs were usually members of 
the same UGT family. Notably, the UGT71 and UGT89 
families in particular exhibited a higher frequency of 

Fig. 2  Conserved motifs and gene structure analysis of UGTs in F. tataricum.A. Phylogenetic tree was constructed by the NJ method. B. Gene structure 
of FtUGTs. Exons and introns are indicated by yellow rectangles and gray lines, respectively. C. Amino acid motifs in the FtUGT proteins are represented 
by colored boxes
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tandem duplication events, indicating that they may have 
played a significant role in driving the expansion of the 
UGT superfamily in F. tataricum.

Furthermore, there were eight pairs of segmental dupli-
cations, which were found to be heterogeneously dis-
tributed across the eight chromosomes. Similar to the 
tandem duplications, segmental duplication pairs were 
also typically members of the same UGT family (Figs. 3 
and 4, Additional file 5: Table S5). It was worth noting 
that FtUGT54 was involved in two distinct segmental 
duplication events (FtUGT54 with FtUGT2/FtUGT113). 
Additionally, several FtUGTs were determined to be 
products of both tandem and segmental duplication 
events. In general, gene duplication may have served as a 
primary driving force in the evolution of FtUGTs.

Evolution collinearity of FtUGTs between F. Tataricum and 
other plant species
To investigate the evolutionary relationship of FtUGTs 
with other plant species, we conducted a thorough 
analysis of collinearity involving Arabidopsis and rice, 
which are widely recognized as monocotyledonous and 
dicotyledonous model plants, respectively (Fig.  5, Addi-
tional file 6: Table S6). As anticipated, a greater num-
ber of homologous genes (16 UGTs) were observed 
between F. tataricum and A. thaliana, whereas only one 
pair of homologous genes was found to exist between 

F. tataricum and O. sativa. It was also observed that 
some of the homologous genes were situated within the 
expansion blocks of the chromosomes. For instance, 
FtUGT32, FtUGT99, FtUGT102, FtUGT134, FtUGT136, 
and FtUGT159 were all found to belong to the tandem 
repeat blocks. To acquire a better comprehension of the 
evolutionary constraints governing the FtUGT superfam-
ily, Tajima’s D-neutral test was applied to the FtUGTs [54, 
55]. The outcome of the test yielded a D = 2.19, with the 
deviation from zero suggesting that the FtUGT super-
family may have undergone selective pressure for purifi-
cation during the course of its evolution. (Additional file 
7: Table S7).

Evolutionary analysis of UGTs among different plant 
species
The evolutionary relationships among UGTs in F. tatari-
cum, A. thaliana, and O. sativa were analyzed by con-
structing an unrooted tree based on a total of identified 
173 FtUGTs, 73 AtUGTs, and 201 OsUGTs, which was 
generated using the NJ method of Geneious R11 (Fig. 6, 
Additional file 2: Table S2). Through the use of the 
MEME web server, a total of ten conserved motifs were 
identified in the UGTs of F. tataricum, A. thaliana, and 
O. sativa. The majority of UGTs were found to harbor 
motifs 1, 3, and 4, further highlighting their functional 
significance across different plant species. From the 

Fig. 3  Chromosome mapping and duplication of FtUGTs in F. tataricum. The chromosome number is indicated on the left side of the chromosome and 
on the right is the gene ID. Tandem duplication gene pairs are marked with red font and segmental duplication gene pairs are marked with red stars
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perspective of motif structure across different UGT fam-
ilies, it was observed that the families UGT71, UGT78, 
and UGT86 exhibited greater diversity, while the families 
UGT76, UGT79, UGT85, and UGT95 showed greater 
conservation across various plant species suggesting a 
possible functional similarity amongst the UGTs. Based 
on the distribution of motifs across the UGT proteins, 
it was observed that certain motifs were found only at 
specific positions. For instance, Motif 7 was located 
between motifs 10 and 2, while Motif 5 was consistently 
positioned at the N-terminus of the protein. In contrast, 

Motifs 8 and 9 were predominantly located at the C-ter-
minus of the protein.

Expression analysis of FtUGTs in various tissues
To gain insight into the potential biological functions of 
FtUGTs, an investigation was conducted into the expres-
sion patterns of 36 FtUGTs belonging to different fami-
lies. To ensure a representative sample, we randomly 
selected genes from each family, making sure that every 
family is represented by at least one gene. For families 
with more members, we selected 2–3 genes to provide 
a more comprehensive analysis. The expression levels of 

Fig. 4  Chromosome localization of duplicated FtUGTs in F. tataricum. The red lines represent the segmentally duplicated genes and the colored bands 
represent the collinear block in the genome of F. tataricum
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Fig. 6  Phylogenetic relationships and motifs composition of UGTs in F. tataricum, A. thaliana, and O. sativa. Outer panel: Unrooted phylogenetic tree 
constructed using Geneious R11. Inner panel: Distribution of the conserved motifs in UGTs. The different color boxes represent different motifs 

 

Fig. 5  Collinearity analyses of UGTs between F. tataricum and two representative plant species (Arabidopsis thaliana, Oryza sativa subsp. indica). Gray lines 
indicate the collinear blocks within F. tataricum and other plant species and red lines highlight homologous UGT gene pairs
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these genes in various organs of F. tataricum, including 
roots, stems, leaves, flowers and fruits, were determined 
through qRT-PCR analysis (Fig.  7A). The data revealed 
that the expression patterns of the 36 FtUGTs varied 
across different organs of F. tataricum. 19 genes dis-
played the highest expression levels in roots, while nine 
genes exhibited the highest expression in fruits. Addi-
tionally, eight genes were found to be highly expressed 
in flowers, six genes showed highest expression levels in 
leaves, and four genes were highly expressed in stems. 
The diverse expression patterns observed amongst 
FtUGTs suggest that they are likely to participate in mul-
tiple roles throughout plant development. Correlations 
between expression patterns of FtUGTs were evaluated 
using a heat map, which revealed that significant correla-
tions were established between the expression patterns of 
certain FtUGTs, implying that they might exert potential 
synergistic effects (Fig.  7B). Most of the FtUGTs tested 
displayed a significant positive correlation. For instance, 
genes including FtUGT29, FtUGT93, and FtUGT159 
exhibited high expression levels in both flowers and 
leaves. Additionally, genes such as FtUGT10, FtUGT12, 
FtUGT54, and FtUGT102 exhibited high expression in 
fruits. Moreover, the expression patterns of genes like 
FtUGT23, FtUGT27, FtUGT37, FtUGT45, FtUGT111, 
FtUGT123, FtUGT124, FtUGT131, FtUGT142, 
FtUGT144, and FtUGT173 were highly expressed in 
roots.

Expression analysis of FtUGTs at different developmental 
stages of fruits in F. Tataricum
In order to understand the roles of FtUGTs in fruits 
development of F. tataricum, we further performed qRT-
PCR to evaluate the expression levels of FtUGTs at dif-
ferent developmental stages of fruits (i.e., 14, 21, and 
28 days after pollination) of F. tataricum. The results 
showed that the expression patterns of FtUGT genes 
were inconsistent in fruits at 14, 21, and 28 days (Fig. 8A). 
FtUGT2, FtUGT8, FtUGT10, FtUGT111, and FtUGT128 
were highly expressed at the initial filling stage (14 d). 
FtUGT15, FtUGT19, and FtUGT27 expression reached 
the highest levels at the middle-filling stage (21 d), and 
most FtUGTs (18 genes) were highly expressed at the 
post-filling stage (28 d). It is speculated that the glyco-
sylation of a wide range of bioactive compounds (such 
as flavonoids and polyphenols) may be carried out at 
the post-filling stage. To confirm these findings, we per-
formed a combined analysis of FtUGTs gene expression 
and the biosynthetic pathways of secondary metabolites 
(such as flavonoids) present in the fruits. Recent studies 
have shown that the fruits of F. tataricum contain flavo-
noids such as rutin, isoquercitrin, quercetin, kaempferin, 
dihydrokaempferol, naringenin, and naringenin chalcone 
[51]. we mapped out the biosynthetic pathways of these 
metabolites through the use of the KEGG online software 
and discovered that UGTs is involved in the glycosyl-
ation reactions during the synthesis of rutin, isoquerci-
trin, and kaempferin (Fig. 9). Through homology analysis, 
we identified potential UGTs (FtUGT2, FtUGT54, and 
FtUGT59) in F. tataricum. We analyzed the expres-
sion patterns of these genes in roots, stems, fruits at the 

Fig. 7  Expression analysis of FtUGTs in different tissues and the correlation between their expression patterns. A. Expression patterns of 36 FtUGTs in flow-
ers, leaves, roots, stems, and fruits were examined by qRT-PCR. Different letters above columns indicate statistically significant differences between tissues 
(LSD test, P < 0.05). Error bars represent SE (n = 3). B. Positive number: positively correlated; negative number: negatively correlated
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early-filling stage, and fruits at the post-filling stage. It is 
found that FtUGT2, FtUGT54, and FtUGT59 were highly 
expressed in fruits at the post-filling stage and the con-
tent of downstream metabolites kaempferin, isoquerci-
trin, and rutin were high in fruits at the post-filling stage 
(Fig. 9). In other words, the gene expression levels were 
closely linked with the content of metabolites found in 
the fruits. To determine the potential regulatory relation-
ship among FtUGTs in different fruit-filling stages, a heat 
map of their expression patterns was constructed based 
on the level of expression in different fruit development 
processes (Fig.  8B). A total of 17 FtUGTs (FtUGT12, 
FtUGT23, FtUGT29, FtUGT37, FtUGT45, FtUGT54, 
FtUGT80, FtUGT99, FtUGT102, FtUGT119, FtUGT121, 
FtUGT134, FtUGT138, FtUGT142, FtUGT143, 
FtUGT144, and FtUGT173) were identified to exhibit sig-
nificant positive correlation matrix, indicating that their 
expression may act synergistically and contribute to the 
formation of a complex regulatory network during the 
filling process of F. tataricum.

Expression analysis of FtUGTs in response to drought and 
cadmium stress in F. Tataricum
To further explore the involvement of FtUGTs in the 
response of F. tataricum to drought and cadmium stress, 
we conducted qRT-PCR assays to examine the expres-
sion levels of these genes under PEG stress and CdCl2 
stress (Figs.  10 and 11). Our findings revealed that cer-
tain FtUGTs were significantly modulated in response to 

different stress conditions, displaying either upregulation 
or downregulation in expression levels.

In response to drought stress, a total of 14 FtUGTs were 
observed to be significantly upregulated at both 7 days 
and 11 days of the stress condition. These genes included 
FtUGT2, FtUGT8, FtUGT12, FtUGT15, FtUGT19, 
FtUGT102, FtUGT121, FtUGT128, FtUGT131, 
FtUGT142, FtUGT143, FtUGT144, FtUGT159, and 
FtUGT173. Of the remaining genes, three FtUGTs 
(FtUGT29, FtUGT138, and FtUGT158) were significantly 
downregulated at both 7 days and 11 days. 15 FtUGTs 
demonstrated altered expression levels over time. In con-
trast, only three FtUGTs exhibited no change in expres-
sion levels under drought stress.

Upon exposure to cadmium stress, 12 FtUGTs were 
found to be significantly upregulated at both 7 days and 
11 days. Conversely, five genes were notably downregu-
lated at both time points. Furthermore, the expression 
levels of 11 FtUGTs were observed to fluctuate over 
time, whereas the expression of eight genes remained 
unchanged. Collectively, these observations suggest 
that certain FtUGTs play a critical role in the response 
of F. tataricum to both drought and cadmium stress 
conditions.

Discussion
Within plants, glycosylation is recognized as an essen-
tial modification of secondary metabolites that is critical 
to numerous cellular processes and maintaining proper 
cellular homeostasis. This process is mediated by GTs, 

Fig. 8  Expression analysis of FtUGTs at different developmental stages of fruits and the correlation between their expression patterns. A. Expression pat-
terns of FtUGTs at different developmental stages of fruits (i.e., 14, 21, and 28 days after pollination). Different letters above columns indicate statistically 
significant differences between tissues (LSD test, P < 0.05). Error bars represent SE (n = 3). B. Positive number: positively correlated; negative number: 
negatively correlated
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which can be classified into 115 different families. The 
largest of these GT families is family 1, which is com-
monly referred to as UGTs. UGTs represent a large mul-
tigene superfamily that plays a key role in glycosylation 
across the plant kingdom. Functional studies of UGTs 
within plants have revealed their involvement in regulat-
ing growth and development, as well as their response to 
environmental stresses. Due to advancements in genome 
sequencing, the UGT gene superfamily has been identi-
fied in numerous plant species [10, 18–26]. Despite its 
growing popularity as a minor crop due to its potential 
health benefits, F. tataricum has yet to be thoroughly 
examined in regards to its UGT gene superfamily.

To better understand the UGT gene superfamily within 
F. tataricum, we searched the predicted peptide data-
bases using the conserved UDPGT domain and the PSPG 
motif consisting of 44 amino acids as our query. This 
comprehensive analysis allowed us to examine phyloge-
netic relationships, conserved motifs, gene structure, cis-
acting elements, gene duplication. Our findings revealed 

that the FtUGT gene superfamily is considerably large 
and diverse.

UGT is a large multigene family
A total of 173 FtUGT genes were identified. The number 
of FtUGTs in F. tataricum was higher than that of Zea 
mays (147) [22], Brassica rapa (147) [52], A. thaliana 
(107) [10], and Cicer arietinum (96) [53]. However, it was 
lower than that of Oryza sativa (200) [54], Gossypium 
hirsutum (196) [23], and Triticum aestivum (179) [55]. 
The ratio of FtUGTs to the total genes of F. tataricum was 
0.47%, which exceeded that of Z. mays (0.46%) [22], (A) 
thaliana (0.39%) [10], G. hirsutum (0.38%) [23], and (B) 
rapa (0.33%) [52], but lower than that in O. sativa (0.53%) 
[54].

Phylogeny: structure–function relatedness of FtUGTs
All FtUGTs showed significant structural differences, 
indicating that gene functions are highly diverse. The 
length of the FtUGTs varied from 123 to 645 amino acids 
and the majority of FtUGT proteins had a size range of 

Fig. 9  Combined analysis of the expression level of FtUGTs and the content of flavonoids in different tissues at different developmental stages. The ex-
pression level of genes and the content of metabolites are represented using the color scale. The color scale sequence is as follows: R, roots; S, shoots; E, 
fruits at the early-filling stage; P, fruits at the post-filling stage
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400 to 500 amino acids, which account for the length sta-
bility of FtUGTs. The majority of FtUGTs had a pI range 
of 5 to 6, indicating that pI of FtUGTs is relatively stable.

Through our phylogenetic analysis, we were able to 
identify 21 distinct families within FtUGT gene super-
family. Notably, at least one FtUGT belonging to each 
A. thaliana family was identified, indicating that these 
UGT families have been preserved throughout the course 
of long-term evolution and likely play fundamental bio-
logical roles. Furthermore, our findings provide support 
for the hypothesis that the separation of UGT families 
may have occurred before the differentiation between F. 
tataricum and A. thaliana. Interestingly, some new fam-
ily (UGT93, UGT94, and UGT95) and genes (FtUGT35, 
FtUGT73, and FtUGT74) have been generated with 

evolution. Among them, UGT93 may come from the 
separation of UGT71, UGT72, and UGT88. F. tatari-
cum have abundant secondary metabolites [56], such as 
flavonoid glycosides (rutin, nicotilorin, kaempferol-3-O-
glucoside, and quercetin-3-O-glucoside). The new fami-
lies may be related to the formation of these secondary 
metabolites, requiring further validation experiments.

Among the 21 families, UGT71 had the highest num-
ber of members (18, 10.4%) also with the most tandem 
duplication events. UGT88 had the fewest members. As 
observed in other plant species [10, 18–26], the diverse 
UGT families within F. tataricum may possess distinct 
differentiation abilities throughout the course of long-
term evolutionary processes. Furthermore, variations 

Fig. 10  Expression analysis of FtUGTs under drought at the seedling stage. Different letters above columns indicate statistically significant differences 
between tissues (LSD test, P < 0.05). Error bars represent SE (n = 3)
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within these genes are likely to play a pivotal role in their 
diverse functions across different species.

Our examination of the conserved amino acid 
sequence of FtUGTs has identified ten distinct conserved 
motifs, among which Motif 1 was the PSPG motif ensur-
ing the conservation of the C-terminal which is is consis-
tent with the function of recognizing similar or identical 
UDP-sugar donors in most FtUGTs. Notably, the N-ter-
minal region of FtUGTs is highly diverse, resulting from 
a rich variety of receptor. Furthermore, we observed that 
several FtUGTs undergo motif loss events, indicating 
potential structural modifications over time that could 
result in functional differences among these genes.

Our analysis revealed that a majority of FtUGTs (142, 
or 82.1%) either lacked introns or contained only one 

intron (Fig. 2A). Notably, the proportion of FtUGTs with-
out introns (70, 40.5%) was found to be similar to that 
observed in other plant species, such as Linum usitatis-
simum (40.1%) [20], Petunia (44.2%) [57], and cassava 
(47.1%) [58]. Given that genes lacking introns do not 
require extensive post-transcriptional and post-trans-
lational modification [59, 60], they can rapidly and con-
tinuously produce functional proteins, resulting in their 
quick response to stress. This could help explain why 
UGTs are highly active during plant growth, develop-
ment, and in response to environmental stress.

The process of gene amplification has played a piv-
otal role as the evolutionary engine of plant genomes, 
contributing to adaptability to different environmental 
conditions and differentiation among various species 

Fig. 11  Expression analysis of FtUGTs under cadmium stress at the seedling stage. Different letters above columns indicate statistically significant differ-
ences between tissues (LSD test, P < 0.05). Error bars represent SE (n = 3)
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[61]. Within our study, we observed 39 tandem duplica-
tion events, involving 70 FtUGTs (approximately 40.5%). 
Notably, the majority of these events occurred specifi-
cally within certain families (UGT71, UGT85, UGT73, 
UGT76, and UGT89), indicating that these families 
exhibit a strong bias toward tandem duplication events. 
Of particular interest is the identification of a narrow 
region on Chr5, spanning just 60.9 kb, which contained 
four pairs of tandem duplications (FtUGT99, FtUGT100, 
FtUGT101, FtUGT102, FtUGT103, FtUGT104, 
FtUGT106, and FtUGT107), all of which belonged to 
UGT76 family. This observation suggests that chromo-
some recombination within this region is highly active, 
fueling the duplication of genes within this region and 
contributing to the expansion of UGT76 family genes 
within F. tataricum (Fig.  3). All genes with tandem 
repeats belonged to the same family, suggesting a lack of 
gene exchange between different UGT families. Further-
more, we found that tandem duplications played a more 
significant role in the amplification of FtUGTs, account-
ing for 70 genes, as compared to segmental duplications, 
which were responsible for only 15 genes. Notably, seg-
mental duplication events were also found to have a pref-
erence for specific families (UGT78 and UGT89).

Expression patterns and functional prediction of FtUGTs
One approach to predicting the physiological functions 
of genes involves analyzing gene expression patterns, 
which can provide valuable insights into their roles in 
plant growth and development. Consistent with previous 
research showing the widespread involvement of UGTs in 
these processes, our findings suggest that the expression 
of FtUGTs is often correlated with specific physiological 
functions. For instance, the expression of FtUGT59 was 
found to be particularly high in flowers, a pattern that is 
similar to its homologous gene, UGT79B31, in Petunia 
hybrida. UGT79B31 has been identified as being respon-
sible for the terminal modification of pollen-specific 
flavonols, a crucial process for regulating pollen fertil-
ity [62]. FtUGT52, a member of the UGT74 family, was 
found to be highly expressed in roots, stems, and fruits, a 
pattern that is similar to OsUGT74J1 in rice. OsUGT74J1 
controls salicylic acid homeostasis to alter resistance 
to rice blast [63]. Similarly, we found that FtUGT159 
was highly expressed in flowers and leaves, consistent 
with the expression pattern of its homologous gene 
AT2G15480. Research suggests that AT2G15480 may play 
crucial roles in response to drought and high-tempera-
ture stresses [64]. It is observed that both FtUGT23 and 
its homologous gene AT2G36750 are expressed at high 
levels in roots, with research indicating that AT2G36750 
in particular can regulate the growth of roots in Arabi-
dopsis through auxin signal transduction processes in 
response to environmental signals [65]. Similarly, the 

expression of FtUGT102 was found to be elevated in 
fruits, a pattern similar to that observed in its homolo-
gous gene, AT5G05900. Both FtUGT102 and AT5G05900 
belong to the UGT76 family, with AT5G05900 being 
specifically expressed in siliques during the filling stage 
and responded to heat stress in Arabidopsis [66]. These 
findings can serve as a valuable starting point to further 
explore the functions of these genes and their potential 
roles in stress response and growth regulation within F. 
tataricum and other plant species.

As F. tataricum fruit is a source of various bioactive 
compounds with established health benefits, our study 
evaluated the expression levels of FtUGTs at different 
fruit developmental stages and associated gene expres-
sion pattern with biosynthetic pathways of flavonoids 
present in fruits (Figs.  8 and 9). This provides insights 
into the molecular mechanisms underlying the produc-
tion of these compounds within fruits. By identifying 
specific FtUGTs that are expressed at high levels during 
specific developmental stages, our findings may facilitate 
the development of new F. tataricum varieties that con-
tain high levels of beneficial bioactive compounds in their 
fruits. This could have a significant impact on the func-
tional food industry and contribute to improved human 
health.

To better understand the role of FtUGTs in aiding F. 
tataricum’s adaptation to different environmental con-
ditions, we conducted a comprehensive analysis of the 
expression patterns of 36 FtUGTs during seedling stage 
under various stressors (Figs.  10 and 11). Notably, our 
findings revealed that the expression of 33 FtUGTs was 
significantly regulated in response to drought stress, con-
sistent with F. tataricum’s reputation as a drought-toler-
ant crop. FtUGT128, a member of the UGT74 family, was 
significantly upregulated in response to drought stress 
at both 7 and 11 days. Similarly, a homologous gene to 
FtUGT128, UGT74E2 (AT2G23250), has been found to 
regulate Arabidopsis architecture and water stress toler-
ance by perturbating indole-3-butyric acid (IBA). Trans-
genic UGT74E2OE plants have been shown to exhibit 
increased tolerance to both salinity and drought stress 
compared with wild-type plants [67]. We also observed 
that FtUGT159 was significantly upregulated in response 
to drought stress at both 7 and 11 days, consistent with 
the response pattern of its homologous gene AT2G15480. 
Research has suggested that AT2G15480 plays a crucial 
role in response to drought stress [64, 68]. In addition to 
their response to drought stress, we also found that 28 
out of 36 FtUGTs were regulated in response to cadmium 
stress. These observations suggest that FtUGTs may play 
a crucial role in helping F. tataricum adapt to cadmium 
stress, a problem that stems from heavy metal pollution 
and can have detrimental effects on the growth and sur-
vival of plants. Our study thus provides valuable insights 
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into the physiological role of FtUGTs in environmental 
adaptation, which could help inform future research into 
developing crop varieties that are more resistant to vari-
ous environmental stressors.

Conclusions
Our study of the UGT superfamily in F. tataricum 
revealed the presence of 173 members, all of which pos-
sess the characteristic PSPG domain region. In addition 
to characterizing their physical features, we conducted 
a comprehensive analysis of FtUGTs evolutionary rela-
tionships, gene structure, conserved motifs, and gene 
replication events. Our findings demonstrated that 
FtUGTs within the same family typically share a similar 
gene structure and motif composition, with the major-
ity of these genes lacking introns or containing no more 
than one intron. We also found that tandem repeats 
were more important than segmental duplications in the 
amplification of FtUGTs.

To better understand the functional characteristics of 
members of the UGT superfamily within F. tataricum, 
we employed quantitative reverse transcription PCR 
to analyze the expression patterns of 36 representative 
FtUGTs across different tissues and fruit development 
stages, as well as their response to two abiotic stressors. 
Our study revealed that FtUGTs are widely involved in 
various physiological processes including growth, grain 
development, and response to environmental stresses. As 
such, Our results provide a theoretical basis for further 
exploration of the functional characteristics of members 
of UGT superfamily and for understanding the growth, 
development, and metabolic model of this important 
crop species.

Materials and methods
Plant materials and growth conditions
The F. tataricum variety “Pinku1” materials used in the 
experiment were supplied by Prof. Dongao Huo of Tai-
yuan Normal University. “Pinku1” has been grown in the 
greenhouse at Taiyuan Normal University since 2022. F. 
tataricum plants were grown in pots filled with soil and 
vermiculite (1:1) in a growth room with a 12 h/26℃ day 
and 12  h/22℃ night regime, and relative humidity of 
80%. We collected the roots, stems, leaves, flowers, and 
grains separately from five plants with good growth and 
similar growth conditions, and quickly placed them in 
liquid nitrogen for storage at -80 °C for further use. Grain 
samples were collected at 14D, 21D, and 28D respectively.

F. tataricum seedlings with 7–8 leaves were treated in 
the 400 mg/L PEG solution and 10 mg/L CdCl2 solution, 
respectively. After a 7-day or 11-day treatment, leaves 
were taken up for RNA extraction.

Total RNA extraction, cDNA reverse transcription, and qRT-
PCR analysis
To generate cDNA for our analyses, we utilized RNAprep 
Pure Polysaccharide Polyphenol Plant Total RNA Extrac-
tion Kit (DP441) and FastKing one-step reverse tran-
scription fluorescence quantitative kit (probe method) 
(FP314). The gene expression of FtUGTs was analyzed by 
qRT-PCR, and the primer designed by Primer 5.0 (Addi-
tional File 8: Table S8). The FtH3 gene is selected as an 
internal control, which is stably expressed in almost 
all tissues at each growth stage [69]. Correlation of 
expressed data according to 2−(ΔΔCT) method.

Gene identification
We downloaded the F. tataricum whole genome sequence 
information from the Molecular Breeding Knowledge-
base (MBKbase) (http://mbkbase.org/Pinku1/). Con-
cerning the UGT protein sequence of Arabidopsis, the 
BLASTp program was used to identify candidate target 
proteins (score value ≥ 100 and e-value ≤ 1e − 10). Then, 
the Hidden Markov Model (HMM) files corresponding to 
the UDPGT domain (PF00201) and PSPG motif from the 
PFAM protein family database(http://pfam.xfam.org/) 
was downloaded [70]. We have used two HMMER3.0 
(default parameter) with a cutoff of 0.01 (http://plants.
ensembl.org/hmmer/index.html) [70], and SMART 
(http://smart.embl-heidelberg.de/) to determine the exis-
tence of the UDPGT domain and PSPG motif [71, 72]. 
The sequence length, molecular weight, pI, and subcel-
lular localization of 173 FtUGT proteins were obtained 
using the tools on the ExPASy website (https://web.
expasy.org/compute_pi/).

UGT gene structures
To understand the structural differences between 
FtUGTs, the conserved motifs in 173 FtUGT proteins 
were further observed [73]. Based on CDS length and 
corresponding full-length sequence, a gene structure dis-
play server (GSDS: http://gsds.cbi.pku.edu.cn) was used 
to analyze the exon-intron structure of all FtUGTs. An 
online MEME program (http:/meme.nbcr.net/meme/
intro.html) was used to analyze protein sequences, with 
the following parameters: the optimal motif width is 
6 ~ 200, and the maximum motif number is 10.

Chromosomal distribution and gene duplication
Based on the physical location information of the genome 
database, all FtUGT genes are mapped to the F. tataricum 
genome. Multiple collinear scanning toolkits (MCScanX) 
were used to analyze FtUGT gene’s segmental replica-
tion events based on default parameters [74]. We used 
the Dual Synteny plotter (https://github.com/CJ-Chen/
TBtools) to analyze the UGT gene homology between 
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F. tataricum and two model plants (A. thaliana and O. 
sativa subsp. indica).

Phylogenetic analysis and classification of the FtUGT gene 
family
These FtUGT proteins were grouped according to the 
classification of the AtUGTs [75–78]. The phylogenetic 
trees were built using the NJ method of MEGA 11.0 via 
Geneious R11, with the following parameters: Jukes-
Cantor model, global alignment with free end gaps, and 
a bootstrap value of 1000. The full-length amino acid 
sequences of the UGT proteins derived from A. thaliana, 
O. sativa subsp. indica, combined with the newly identi-
fied FtUGTs were used for phylogenetic analysis.
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