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Abstract

Background: The complex process of formation of storage roots (SRs) from adventitious roots affects sweetpotato
yield. Identifying the genes that are uniquely expressed in the SR forming cultivated species, [pomoea batatas (Ib),
and its immediate ancestral species, lpomoea trifida (It), which does not form SRs, may provide insights into the
molecular mechanisms underlying SR formation in sweetpotato.

Results: lllumina paired-end sequencing generated ~208 and ~200 million reads for /b and It, respectively. Trinity
assembly of the reads resulted in 98,317 transcripts for /b and 275,044 for It, after post-assembly removal of trans-
chimeras. From these sequences, we identified 4,865 orthologous genes in both /b and /t, 60 paralogous genes in
Ib and 2,286 paralogous genes in /t. Among paralogous gene sets, transcripts encoding the transcription factor RKD,
which may have a role in nitrogen regulation and starch formation, and rhamnogalacturonate lyase (RGL) family
proteins, which produce the precursors of cell wall polysaccharides, were found only in /b. In addition, transcripts
encoding a K" efflux antiporter (KEA5) and the ERECTA protein kinase, which function in phytohormonal regulation
and root proliferation, respectively, were also found only in /b. qRT-PCR indicated that starch and sucrose
metabolism genes, such as those encoding ADP-glucose pyrophosphorylase and beta-amylase, showed lower
expression in [t than /b, whereas lignin genes such as caffeoyl-CoA O-methyltransferase (CoMT) and cinnamyl
alcohol dehydrogenase (CAD) showed higher expression in It than /b. A total of 7,067 and 9,650 unique
microsatellite markers, 1,037,396 and 495,931 single nucleotide polymorphisms (SNPs) and 103,439 and 69,194
InDels in /b and It, respectively, were also identified from this study.

Conclusion: The detection of genes involved in the biosynthesis of RGL family proteins, the transcription factor
RKD, and genes encoding a K" efflux antiporter (KEA5) and the ERECTA protein kinase only in /. batatas indicate
that these genes may have important functions in SR formation in sweetpotato. Potential molecular markers (SNPs,
simple sequence repeats and InDels) and sequences identified in this study may represent a valuable resource for
sweetpotato gene annotation and may serve as important tools for improving SR formation in sweetpotato
through breeding.
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Background

Sweetpotato (I[pomoea batatas [L.] Lam.) is a key food
crop worldwide, with high levels of vitamin A and other
essential nutrients; sweetpotatoes also produce large
quantities of biomass suitable for conversion to bioetha-
nol [1]. Sweetpotato storage roots (SRs) function in
carbohydrate storage and vegetative propagation [2, 3]
and form from adventitious roots. Adventitious roots de-
velop from nodal primordia and cut ends or wounds of
stem (slips) at 5-15 days after transplanting. These ad-
ventitious roots can then form SRs by a process that in-
volves thickening of the vascular tissue, followed by the
accumulation of starch and proteins [4]. Adventitious
roots can also form fibrous roots (FRs), which undergo
lignification of the stele; in contrast to FRs, SRs do not
undergo stele lignification [4—6]. The conversion of
adventitious roots to SRs involves the formation of new
cambial cells, followed by the development of secondary
cambium and thin-walled parenchyma cells. Despite its
importance, key factors in SR development remain to be
discovered.

Although the molecular mechanism underlying the
transition from adventitious roots to SRs in sweetpotato
is not yet clear, substantial prior work has implicated the
plant hormones cytokinin, auxin, and abscisic acid
(ABA) in the formation and thickening of SRs [7-11].
For example, ABA functions in the secondary thickening
of vascular cambium during SR formation in sweetpo-
tato [10]. Transcription factors from various families
have also been implicated in SR formation. For example,
the transcription factor gene IbMADSI (Ipomoea bata-
tas MADS-box 1) is expressed during the early stages of
SR initiation [12]; also, cytokinins and jasmonic acid in-
duce the expression of IbMADSI. Noh et al. [11] iso-
lated a ¢cDNA encoding the MADS-box protein SRDI,
which plays an important role in the formation of SRs
by activating the proliferation of cambium and metaxy-
lem cells to induce the initial thickening of SRs. The
expression of SRDI is regulated by the auxin indole-3-
acetic acid. Also, overexpression of the class I knotted1-
like homeobox (KNOX1) genes, Ibknl and Ibkn2, results
in increased cytokinin activity in sweetpotato, indicating
that KNOXI functions in controlling cytokinin levels in
SRs [13].

Expression analysis during SR formation also identified
a number of candidate genes [14—16]. For example, You
et al. [14] identified 22 differentially expressed genes by
comparing early SRs and fibrous roots. Several NAC
family transcription factor genes are downregulated in
SRs, and two NAM-like genes, as well as sporamin genes
and genes involved in starch biosynthesis, are upregu-
lated in SRs (compared to FRs) at six weeks after plant-
ing [15]. Noh et al. [16] used antisense RNA interference
to demonstrate the negative role of an expansin gene
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(IbEXPI) in SR development; IbDEXPI suppresses the
proliferation of metaxylem and cambium cells, and thus
inhibits the initial thickening of SRs.

Recent work used microarray and next-generation se-
quencing technologies to examine the molecular mech-
anism of SR formation in sweetpotato. Wang et al. [17]
used microarray analysis to identify transcription factors
involved in SR development, such as DAl-related pro-
teins, SHORT-ROOT, and BELI1-like proteins. Using
[llumina sequencing, Tao et al. [18] identified genes that
are differentially expressed at different stages of sweet-
potato root formation. In particular, they found that a
gene encoding sucrose phosphate synthase, which
functions in sucrose metabolism, is highly expressed
in SRs than in fibrous roots. Firon et al. [2] analyzed
the root transcriptomes of sweetpotato SRs and non-
storage/fibrous roots and demonstrated that phenylpro-
panoid pathway genes, such as those encoding coumaroyl
CoA-synthase and phenylalanine ammonia lyase, are
downregulated during the conversion of FRs to SRs,
whereas starch metabolism genes, such as those encoding
ADP-glucose pyrophosphorylase and starch synthase, are
upregulated in SRs.

The cultivated sweetpotato likely evolved from the
wild tetraploid I trifida and diploid I trifida/I. tabas-
cana species [19-22]; these wild relatives do not form
SRs. Previous transcriptome analyses investigating SR
formation examined only the hexaploid cultivated spe-
cies [2, 23, 24]. Therefore, comparative transcriptome
analysis of the wild and cultivated species of sweetpotato
may advance our knowledge on the mechanism under-
lying SR formation in this important crop. In this study,
we performed transcriptome analysis of the roots from
cultivated sweetpotato (Ib; Ipomoea batatas [L.] Lam)
and its non-tuber forming relative (It; Ipomoea trifida
[Kunth] G. Don) to elucidate possible pathways and
candidate genes involved in SR formation.

Results and discussion

De novo assembly of root transcriptomes using lllumina
sequencing

High-throughput sequencing of the root transcriptomes
of cultivated Ipomoea batatas (Ib) and its wild ancestor
Ipomoea trifida (It) generated 416 and 400 million
reads, respectively. All reads were assembled using
Trinity (Version r2012—10-15) with default parameters.
The maximum contig length was 14,381 bp for Ib and
15,897 bp for It (Table 1). The contigs were grouped
based on sequence length at an interval of 200 base
pairs (bp). The majority of contigs were ranged from
200-399 bp in length (59.0% for Ib and 66.7% for It),
followed by 400-599 bp (14.7% for Ib and 14.1% for Iz).
In addition, 25.0 and 18.6% of the contigs were 600—
3000 bp in length for Ib and It respectively, and only
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Table 1 Summary of RNA-seq reads from /b and /t
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Genotype No. of reads (PE, 2x100)  No. of contigs  Nsq contig length  Min. length of contigs ~ Max. length of contigs ~ Filtered transcripts®
I batatas (Ib) 208,213,047 240915 1,791 201 14,381 98,317
. trifida (It) 200,191,376 366,513 1,217 201 15,897 275,044

Selected highly covered isoforms using RSEM and post-assembly trans-chimera cleanup using BLASTX results against the non-redundant protein database

1.3% of the contigs in Ib and 0.6% of the contigs in It
were >3000 bp long (Figs. 1 and 2).

Functional annotation by sequence comparison with
public databases

To perform functional annotation of the b and It
contigs, we used BLASTX [25] with a cutoff e-value of
1.0E-3 to search public databases, such as the non-
redundant (nr), Arabidopsis, cassava, and potato data-
bases, and the sweetpotato gene index. This analysis
showed that 44.1% of Ib transcripts and 63.8% of It tran-
scripts matched the non-redundant (nr) database, but
only 33.0% of Ib and 32.7% of It transcripts matched the
Arabidopsis database. Similarity searches of the sweetpo-
tato gene index revealed matches of only 25.7% and
8.7% of transcripts for Ib and It, respectively. The low
percentage of Ib and It transcripts with sequence simi-
larity to sweetpotato gene index may be attributed to the
limited number of annotated genes in the database.
Searches of the potato and cassava databases also
showed the same degree of similarity as found for
searches of the Arabidopsis database (Table 2). Overall,
51.7% of the transcripts from Ib and 66.4% of the tran-
scripts from It showed homology with at least one data-
base. The detailed functional annotation for each species
is presented in Additional files 1 and 2.

Comparative analysis of gene sets between /b and It

To allow direct comparison of loci between Ib and Iz, we
used the annotated transcripts to identify orthologous and
paralogous genes in /b and If. Among the 60 paralogous
gene sets with 148 contigs identified in /b, 18 contigs had
no match in the Arabidopsis database, whereas the
remaining 130 transcripts that matched with the Arabi-
dopsis database were found to be involved in cellular
organization, membrane transport, glucose metabolic ac-
tivity, and carbohydrate metabolism. However, none of the
60 paralogous gene sets identified in /b had matches in
the sweetpotato gene index, most likely due to the small
number of annotated genes available in this database
(Additional file 3). In Iz, we identified 2,286 paralogous
gene sets with 9,585 contigs. Among 9,585 contigs, 4,890
contigs had no match in the Arabidopsis database; the
remaining 4,695 transcripts, which matched with the Ara-
bidopsis database, were involved in transporter activity,
stress-related functions, and ribosomal proteins involved
in translation. In contrast, only 72 transcripts, which
matched with sweetpotato gene index, showed annotated
gene functions (Additional file 4). We also identified 5,695
and 6,289 transcripts in /b and Iz, respectively, from 4,865
orthologous gene sets. Examples of orthologous genes in-
clude calcium-dependent lipid binding (CaLB) domain
and the porcino tubulin-binding cofactor, which are
involved in stress and defense responses. CaLB-domain
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Fig. 1 Length distribution of /. batatas contigs. Total reads were assembled using Trinity and grouped based on sequence length at 200-bp intervals
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Fig. 2 Length distribution of /. trifida contigs. Total reads were assembled using Trinity and grouped based on sequence length at 200-bp intervals
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genes are upregulated in drought-stressed sweetpotato
[26]. The transcription factors observed among the
orthologs include KNOX, BEL-1 like homeodomain,
and NAC domain-containing proteins that are involved
in DNA binding and transcription activities. In sweet-
potato, KNOX1 is involved in secondary thickening of
the SRs through enhanced cytokinin activity [13] and
BEL-1 like homeodomain involved in SR development
[17]. The NAC domain-containing proteins are upregu-
lated in sweetpotato SRs compared to fibrous roots
[15]. Overall, the orthologous genes and transcription
factors in both /b and It are involved in activities such
as nucleic acid binding, defense responses, cell division
and differentiation, transport, root gravitropism, hormonal
control, and glucose metabolism (Additional file 5).
Among paralogous gene sets, genes encoding the rham-
nogalacturonate lyase (RGL) family proteins, K efflux
antiporter (KEAS), and ERECTA protein kinases were
found only in Ib. RGL proteins comprise the major com-
ponents of pectin polysaccharides in the cell wall [27].
RGL proteins also serve as signaling molecules for pectin
polysaccharides [28], and are involved in cell wall modifi-
cations such as cell wall expansion, porosity, and textural
changes during fruit ripening [29-32]. In Arabidopsis, the

Table 2 BLAST annotation of /b and /t transcripts

Number of transcripts with matches in: b It
Sweetpotato gene index 25258 23,909
NCBI nr database 43,369 175,495
Arabidopsis database 32,427 89,972
Cassava database 33,006 90,308
Potato database 33,335 87,150
At least one database 50,860 182,692
No matches in any database 47457 92,352
Information in Trinotate 11,237 25,068

expression of RGL genes, which are involved in lateral
root and root hair formation, is altered in response to the
inhibition of primary root growth [33]. Also, in potato
(Solanum tuberosum), overexpression of RGL genes leads
to distinct morphological changes in the cortex and peri-
derm [34]. The expression of RGL genes (with FPKM
(Fragments per Kilobase of Exon per Million Fragments
Mapped) value of 181.1) only in Ib suggests that pectin
polysaccharides may play a role in cell expansion leading
to the accumulation of storage proteins in developing SRs
and that RGL proteins may have important roles in the
secondary thickening of cell walls.

K" (KEAS) transporter genes (with FPKM value of
14.9) are another group of genes that are expressed
specifically in Ib. These transporters are involved in sto-
matal activity, leaf movements, ion transport, and the
regulation of phytohormones such as auxin, ethylene,
and jasmonic acid [35, 36]. K" transporters also play an
important role in cell expansion associated with turgor
pressure in Arabidopsis [37, 38]. The expression of
KEAS transporter genes in Ib suggests that they may
play a role in SR formation through the regulation of
phytohormones such as auxin. In plant roots, auxin reg-
ulates lateral root development and gravitropism [39]. In
sweetpotato, auxin regulates the expression of the tran-
scription factor SRDI, which is involved in SR formation
[11]. Therefore, the coordinated regulation of transporter
genes such as KEAS5 and transcription factors such as
SRD1 in auxin regulation may be a possibility during SR
formation in sweetpotato. In the present study, in addition
to RGL family genes and KEAS, ERECTA protein kinase
(with FPKM value of 2.2) was also identified in the paralo-
gous genes of /b but not in It. ERECTA protein kinase is a
leucine-rich repeat receptor-like kinase (LRR-RLK) in-
volved in the proliferation of organelles. ERECTA protein
kinases regulate organ shape and inflorescence develop-
ment in Arabidopsis [40, 41]. Interestingly, receptor-like
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kinases are involved in lateral root development in Arabi-
dopsis [42] and cell wall-bound kinases are associated with
pectin binding in Arabidopsis [43]. ERECTA, along with
RGL family proteins, might represent an important link
between the regulation of cell wall structure and SR devel-
opment in sweetpotato. Among the transcription factors
in paralogous genes, RKD (RWP-RK domain) belongs to
the RWP-RK domain-containing proteins, which are in-
volved in DNA binding and regulation of transcription ac-
tivity, were expressed in Ib but not in [t. The RWP-RK
protein domain is required for embryonic pattern forma-
tion [44] and plays a key role in regulating responses to ni-
trogen availability [45]. Recent work reported that NIT2, a
member of the RWP-RK family, influences starch and
lipid storage in Chlamydomonas [46]. In Arabidopsis
thaliana, NLP7, another member of the RWP-RK family,
is an early regulator of cellular response to nitrogen as-
similation [47]. The unique expression of RWP-RK pro-
teins (with FPKM value of 18.4) only in /b indicate that
these proteins may have a role in nitrogen regulation and
starch formation during the development of sweetpotato
SRs.

Expression of genes involved in SR formation

We compared the expression of genes in Ib versus It
based on their respective FPKM values (Table 3).
Although two species were compared to estimate up—
or down-regulation of gene expression, a clear limitation
in our study is the lack of biological replications. There-
fore, conclusions reached in this study, may change in
future experiments with biological replications. While
hundreds or thousands of mapped reads of differentially
expressed genes are likely to be reliable, careful reading
is required for the contigs/transcripts with few mapped
hits. Some evidence for this differential gene expression
is supported by the qRT-PCR results (Fig. 3). In the
present study, the class-I knotted1-like homeobox gene
KNOX1 was highly expressed in /b (136.9) compared to

Table 3 Comparison of annotated genes involved in storage
root formation between /b and It using FPKM values

Annotation 1b It Ratio
Sporamin 56,838.3 15.2 37394
Expansin 70.5 109 6.5
Glucose-1-phosphate adenylyltransferase ~ 1745.2 1787 98
Alpha-1,4 glucan phosphorylase 1305.1 0.5 2610.2
Beta-amylase 381.7 286 133
Phosphoglucomutase 170.2 76.7 22
Class-I knotted1-like homeobox protein 136.9 503 2.7
IBKN2 (KNOX)

ADP-glucose pyrophosphorylase 17526 1787 98
Starch synthase 110.0 159 6.9
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It (50.3). Similarly, Firon et al. [2] observed the in-
creased expression of KNOXI in developing sweetpo-
tato SRs versus FRs. KNOXI is also associated with
higher cytokinin levels, in addition to secondary thick-
ening, in sweetpotato SRs [13, 14]. The cell wall loosen-
ing protein expansin was highly represented in Ib (70.5)
compared to It (10.9). Firon et al. [2] demonstrated the
involvement of this expansin gene in the initiating SRs
of sweetpotato. Also, the gene encoding the sporamin
was highly expressed in Ib (56,838.3) than in It (15.2)
(Table 3). Sporamin, a key storage protein in sweetpotato
SRs [15], forms in the endoplasmic reticulum, and the
mature sporamin moves to the vacuoles of SRs [48]. In
sweetpotato, sporamin was accounted for over 80% of the
total protein in the SRs [49] and highly expressed in SRs
than in FRs [2]. The high expression of sporamin in Ib
confirmed its role in the synthesis of storage proteins.
In the present study, starch and sucrose metabolic
genes, such as B-amylase (381.7), glucose-1-phosphate
adenylyltransferase (1745.2), phosphoglucomutase (170.2),
starch synthase (110.0), ADP-glucose pyrophosphorylase
(1752.6), and alpha 1-4 glucan phosphorylase (1305.1)
were highly expressed in Ib. Similar to our study, the high
expression of the gene encoding -amylase is observed in
the initiating SRs compared to fibrous roots in sweetpo-
tato [2]. Also, the increased expression of ADP-glucose
pyrophosphorylase is associated with starch accumulation
in sweetpotato SRs [18]. Clearly, the high expression of
both B-amylase, the second most abundant storage pro-
tein in sweetpotato after sporamin [48], and ADP-glucose
pyrophosphorylase is positively correlated to their role in
starch biosynthesis in sweetpotato [50]. In the present
study, we observed higher expression of the gene encod-
ing phosphoglucomutase in /b than in I, indicating that
the enhanced activity of this enzyme may provide abun-
dant substrate for ADP-glucose pyrophosphorylase, the
first step in starch biosynthesis pathway. Indeed, en-
hanced expression of phosphoglucomutase was previ-
ously observed in the SRs of sweetpotato [2]. Another
highly expressed gene in Ib encodes alpha 1-4 glucan
phosphorylase, an enzyme involved in starch phosphor-
ylation in Arabidopsis [51]. The phosphorylation of
starch promotes the accumulation of starch granules in
the SRs of sweetpotato [18]. The high expression of
genes encoding phosphoglucomutase and alpha 1-4
glucan phosphorylase in /b reflects the high activity of
starch metabolic genes in SRs.

Expression of genes involved in non-storage/fibrous root
formation

We compared the expression of genes in It versus Ib
based on their respective FPKM values (Table 4). The
results indicate that genes encoding cysteine protease
(1709.6), cysteine proteinase (744.9), ethylene responsive
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Fig. 3 Validation of relative expression levels of selected genes (qRT-PCR). Expression levels were compared between [. batatas (Ib; indicated in
blue) and |. trifida (It; indicated in red). Quantitative RT-PCR was performed with three biological replicates and two technical replicates for both /b
and /t. The sweetpotato B-tubulin gene was used as an endogenous control and the gene expression levels were determined using the AACt
method. Genes are shown with respective TAIR locus IDs: B-amylase (AT4G15210); ADP-glucose pyrophosphorylase (AT4G39210); Starch synthase
(AT4G18240); KNOX: class | Knotted-like homeobox (AT4G08150); Expansin (AT2G39700); EPSP: 5- enolpyruvylshikimate-3-phosphate synthase
(AT2G45300); ERF: Ethylene-responsive transcription factor (AT1G50640); CoMT: caffeoyl-CoA O-methyltransferase (AT4G34050); CAD: cinnamyl

alcohol dehydrogenase (AT1G72680)
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transcription factor (ERF) (211.8), osmotin-like proteins
(787.7), and peroxidase (689.3) were highly expressed in
It. Cysteine protease is involved in the degradation of
sporamin in sprouting sweetpotato SRs [52]. In addition,
the cysteine protease gene is downregulated in sweetpo-
tato SRs [2]. In our study, a cysteine protease gene was
highly expressed in Iz, indicating that this enzyme may
prevent the accumulation of sporamin in the roots and
helps them remain as fibrous roots. Cysteine proteinases

Table 4 Comparison of annotated genes involved in fibrous
root formation between /b and It using FPKM values

Annotation 1b It Ratio
Cysteine protease 449 17096 381
Cysteine proteinase 1454 7449 5.1
Osmotin-like protein 204 787.7 386
Succinate dehydrogenase 419 490 1.2
Caffeoyl-CoA O-methyltransferase (CoMT) 4107 9752 24
Phenylalanine ammonia-lyase (PAL) 873 4430 5.1
Peroxidase 1055 6893 6.5
4-coumarate—CoA ligase (4-CL) 30.3 198.7 6.6
Cinnamyl alcoholdehydrogenase (CAD) 67.7 7629 13
5-enolpyruvylshikimate-3-phosphate 29.1 144.3 50
synthase (EPSP)

Ethylene responsive transcription factor (ERF) 779 2118 27

also exhibit protein degradation activity [53]. The cyst-
eine proteinase gene is upregulated in FRs compared to
the SRs in sweetpotato [2]. We observed similar high
expression of the cysteine proteinase gene in ¢, indicat-
ing that this enzyme may be involved in proteolytic ac-
tivity and promotes the development of FRs. Genes
encoding osmotin-like protein were highly expressed in
It compared to Ib (Table 4). The osmotin-like proteins
are plant defense proteins [54] that regulate the pro-
duction of jasmonic acid and ethylene in Arabidopsis
[55]. In sweetpotato, the osmotic-like stress response
genes are downregulated in the SRs compared to FRs
[2]. The ethylene responsive transcription factor (ERF)
was highly expressed in ¢ than Ib, indicating the activ-
ity of this stress-responsive gene in the fibrous roots.
Likewise, genes encoding peroxidase showed decreased
expression in [b versus Iz, indicating that peroxidase
genes may be involved in phenylpropanoid and lignin
(polymerization) biosynthesis pathways [2]. Another
stress-response gene, which encodes succinate dehydro-
genase, was minimally increased in It versus Ib; succinate
dehydrogenase functions in the production of reactive-
oxygen species during stress-related activities [56]. Over-
all, the higher expression of proteolytic enzymes such as
cysteine protease and cysteine proteinase in It indicates
that these genes may prevent the accumulation of storage
proteins in the developing FRs. Moreover, the higher
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expression of stress-response genes such as those encod-
ing peroxidases promotes the expression of phenylpropa-
noid pathway genes and the accumulation of lignin in FRs
in sweetpotato [2].

In addition, lignification helps roots remain as non-
storage/fibrous roots and prevents the conversion of
fibrous roots to SRs. In the current study, we ob-
served higher expression of genes encoding phenyl-
propanoid and lignin biosynthetic enzymes, such as
5-enolpyruvylshikimate-3 phosphate (EPSP) synthase
(144.3), phenylalanine ammonia-lyase (PAL) (443.0),
4-coumarate-CoA ligase (4-CL) (198.7), cinnamyl alcohol
dehydrogenase (CAD) (762.9), peroxidase (689.3), and
caffeoyl-CoA O-methyltransferase (CoMT) (975.2) in It
(Table 4). The enzyme EPSP synthase produces an import-
ant precursor in the shikimate pathway, promotes the
synthesis of lignin and phenylalanine [57]. Consistent with
our observations, other studies showed that in sweetpo-
tato, genes encoding cinnamyl alcohol dehydrogenase,
coumaroyl-CoA  synthase, and caffeoyl-CoA O-
methyltransferase are downregulated during SR initiation
[2]. Moreover, lignin biosynthesis genes are upregulated in
the early stages of fibrous root formation in sweetpotato
[17]. The increased expression of the phenylpropanoid
and lignin genes in It provides evidence for the accumula-
tion of lignins during FR development.

Validation of gene expression through quantitative
reverse-transcription PCR (qRT-PCR)

We profiled different genes, based on FPKM values, for
expression in Ib and It with the RNA samples used for
[lumina sequencing. Genes involved in starch and su-
crose metabolism, and lignin biosynthesis, such as those
encoding ADP-glucose pyrophosphorylase, [(-amylase,
starch synthase, cinnamyl alcohol dehydrogenase (CAD),
and caffeoyl-CoA O-methyltransferase (CoMT) were se-
lected for qRT-PCR. The genes and their respective
primers are presented in Additional file 6. The qRT-PCR
results indicated the starch metabolic genes such as ADP-
glucose pyrophosphorylase, beta-amylase, and starch
synthase were highly expressed in b than in It (Fig. 3).
The high expression of starch metabolism genes in Ib re-
flects the movement of storage proteins during SR devel-
opment. A similar finding for starch metabolism genes
was previously reported in sweetpotato [2]. The qRT-PCR
results showed that the gene encoding expansin was
more highly expressed in Ib than in It. By contrast,
Noh et al. [16] found that the expression of the expan-
sin gene is inhibited during SR formation in sweetpo-
tato. However, Firon et al. [2] demonstrated that the
expansin gene is involved in SR formation in sweetpo-
tato. In the present study, the meristematic regulatory
gene KNOX1 was highly expressed in /b, which was previ-
ously demonstrated in the development of sweetpotato
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SRs [13]. The qRT-PCR results showed that the gene
ethylene response factor (ERF) was expressed at higher
levels in I¢ than in Ib. By contrast, Firon et al. [2] showed
high expression of ERF in sweetpotato SRs compared to
FRs of the cultivar Georgia Jet. The shikimate pathway
gene encoding EPSP synthase was highly expressed in It.
This enzyme forms an important precursor in the shi-
kimate pathway and promotes the biosynthesis of lignin
[57]. The qRT-PCR results showed that the lignin biosyn-
thetic genes CAD and CoMT were highly expressed in It
compared to /b. In summary, the high expression of starch
and sucrose metabolism genes in /b promotes SR forma-
tion, whereas the high expression of lignin biosynthetic
genes in It promotes the development of FRs/non-storage
roots.

Functional classification of transcripts using Gene Ontology
(GO) and pathway analysis

The Ib and It annotated transcripts were grouped into
three biological functions such as biological process, mo-
lecular function, and cellular component using the GO
Slim database [58]. The majority of GO annotations
(47.7% in Ib and 46.6% in It) were grouped into the bio-
logical process category, followed by molecular function
(27.8% in Ib and 25.6% in If). In addition, 24.5% of Ib and
27.8% of It transcripts were grouped in the cellular com-
ponent category (Fig. 4; Additional files 1 and 2). Most
transcripts in the biological process category are involved
in oxidation-reduction processes, protein phosphorylation,
regulation of transcription, metabolic processes, salt
stress, and signal transduction and translation. The tran-
scripts in the molecular function category are involved in
ATP binding, protein binding, DNA binding, phosphorus
transferase, and catalytic activity. The transcripts grouped
within the cellular component category were based on
their predicted sub-cellular locations in the nucleus,
plasma membrane, chloroplast, cytoplasm, extracellular
space, and vacuole. Similar groupings of annotated genes
have been reported in previous sweetpotato root tran-
scriptome studies [2, 24].

The annotated transcripts between [b and It were
assigned to various biological pathways using DAVID
[59, 60]. A total of 32,427 (33.0%) and 89,972 (32.7%)
transcripts were assigned to 365 and 371 pathways in
Ib and It respectively. Further, we also examined the
pathways that are differentially enriched in /b and It
The enriched transcripts in /b and It (percentage of
expressed transcripts) showed 16 major pathways that
are involved in storage/fibrous roots (Fig. 5). The list of
transcripts and KEGG-enriched pathways from DAVID
are presented in Additional files 7 and 8. In Ib, we
observed a higher percentage of differentially expressed
transcripts in the starch (77 transcripts, 0.002% of the
expressed transcripts) and sucrose biosynthetic pathways
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(10 transcripts, 0.001%) compared to It (177 transcripts,
0.001% in starch, and 24 transcripts, 0.0002% in sucrose
biosynthetic pathways). The increased expression of su-
crose and starch metabolic genes indicated the synthesis
of sucrose and starch in the storage roots [2]. We also de-
tected a large percentage of transcripts in Ib (13 tran-
scripts, 0.0004%) than in ¢ (20 transcripts, 0.0002%) for
UDP-glucose biosynthesis, which is involved in the syn-
thesis of UDP glucose. The increased expression of tran-
scripts for UDP-glucose biosynthesis in /b indicates the
increased activity of UDP sugars in the storage roots. In
Ib, enrichment of transcripts involved in the homogalac-
turonan pathway (33 transcripts, 0.001%) was observed
in comparison with It (28 transcripts, 0.0003%), which
indicates the accumulation of pectins in the storage
roots. The pectin in the primary cell walls forms from
homogalacturonans, rhamnogalacturonan-I, and
rhamnogalacturonan-II [28], and strengthens the cell wall
of the developing SRs.

The percentage of transcripts of secondary metabolic
pathways such as the anthocyanin (26 transcripts,
0.0008%) and flavonoid biosynthetic pathways (9 tran-
scripts, 0.0003%) were more represented in Ib than It
(18 transcripts, 0.0002%, and 12 transcripts, 0.0001%).
This is in contrast to the results of Firon et al. [2] who
reported higher expression of anthocyanin and flavo-
noids in FRs than in SRs of sweetpotato. The more rep-
resentation of anthocyanin and flavonoids in our study
could be due to the use of orange-fleshed Beauregard
variety. Earlier transcriptome studies showed that genes
related to production of anthocyanin and flavonoid
compounds were highly expressed in purple and yellow-
colored sweetpotato SRs [61].

The transcripts representing the phenylpropanoid
pathway (123 transcripts, 0.001%) and phenylalanine
biosynthesis (29 transcripts, 0.0003%) were more repre-
sented in It than b (29 transcripts in I, 0.0008%, and 9
transcripts in /b, 0.0002%) indicating the synthesis of
lignin in the fibrous/non-storage roots. Similar results
of higher phenylalanine biosynthesis were observed in
the FRs of sweetpotato [2]. Transcripts of the pyruvate
decarboxylation pathway were also more represented in
It (114 transcripts, 0.001%) than Ib (23 transcripts,
0.0007%). The pyruvate decarboxylation pathway partici-
pates in carbohydrate metabolism and down-regulates the
synthesis of glucose. In sweetpotato, Firon et al. [2] dem-
onstrated the downregulation of pyruvate decarboxylase
in the SRs in comparison with the FRs. We also ob-
served more representation of transcripts related to
biosynthesis of glucosinolate (92 transcripts, 0.001%) and
cysteine (69 transcripts, 0.0007%), which are involved in
stress and defense responses, in It compared to Ib (30
transcripts, 0.0009%, and 16 transcripts, 0.0004%). In
Arabidopsis, the expression of glucosinolate occurs in the
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antifungal defense response [62]. In sweetpotato, Firon
et al. [2] showed the high representation of cysteine
biosynthesis genes, consistent with the results of our
study, in the non-storage/fibrous roots. In addition,
transcripts of purine and pyrimidine metabolism, which
are involved in the synthesis of nucleic acids and energy
carriers in the cell [63], were more represented in It (99
transcripts, 0.001%, and 158 transcripts, 0.002%) than Ib
(8 transcripts, 0.0002%, and 42 transcripts, 0.001%).

Identification of Simple Sequence Repeat (SSR) markers
We predicted potential microsatellite markers based on
the assembled transcripts generated from Ib and It using
SSRfinder [64] and MISA (Version 1.0) [65]. We mined
for new microsatellite markers in /b and It using 98,317
and 275,044 transcripts, respectively. A total of 20,065
and 26,158 microsatellite markers were identified in b
and It, respectively (Table 5). The list of identified SSRs,
along with the associated forward and reverse primers
are presented in Additional file 9 (/b) and Additional file
10 (It). Overall, the results indicate that di-nucleotide re-
peats (GA/TA) were most abundant in both /b and It.
The percentage difference in the number of SSRs identi-
fied with di-, tri-, and tetra-nucleotide repeats was
higher in It than in Ib (30.8%, 43.2%, and 52.5% higher,
respectively). Functional genetic markers such as SSRs
are useful in understanding the genetic variation in
plants [66, 67].

Prediction of Single Nucleotide Polymorphisms (SNPs)

and insertions and deletions (InDels) between /b and It

The reads of Ib were mapped to the transcripts of It to
identify the unique SNPs for Ib and vice versa for It. A
total of 1,037,396 (Ib) and 495,931 (It) unique SNPs were
identified for each species (Table 6). Within orthologous
genes, 254,120 and 89,809 SNPs were identified in /b and
It, respectively. Also, 5,669 (Ib) and 883 (If) SNPs were
identified within paralogous genes. A list of SNPs is pro-
vided in Additional file 11 for /b and Additional file 12 for
It. SNPs and InDels, the most abundant genetic variations
in the genome, are often exploited for high-throughput
genotyping and marker-assisted selection in plants [68].
Recently, Hirakawa et al. [69] reported a list of SNPs in
the It genome. In the current study, we identified 103,439
and 69,194 InDels between b and Iz. In addition, 18,655
and 11,559 InDels were identified within orthologs be-
tween [b and Iz, respectively. Within paralogs, 197 and 32
InDels were identified in /b and Iz, respectively (Table 6).

Table 5 Number of SSRs predicted in /b and It

Number of SSRs b It
SSRs predicted by MISA 20,065 26,158
7,067 9,650

SSRs with unique sets of designed primers
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Table 6 Number of SNPs and InDels predicted between /b and /t

Number of SNPs and InDels Ib It

Total SNPs 1,037,396 495,931
SNPs within orthologs 254,120 89,809
SNPs within paralogs 5,669 883
Total InDels 103,439 69,194
InDels within orthologs 18,655 11,559
InDels within paralogs 197 32

A list of InDels is provided in Additional file 13 for I and
Additional file 14 for It.

Conclusion

We compared the root transcriptomes of SR forming
cultivated 1. batatas with its non-tuber-forming wild
ancestor, I trifida. Among paralogous gene sets, genes
encoding RGL proteins were identified only in Ib; we
speculate that RGL family proteins may play a role in
SR formation in sweetpotato. In addition to the expres-
sion of the transcription factor RWP-RK domain-
containing protein in /b, other genes that are expressed
in Ib, such as those encoding K' transporters and
ERECTA protein kinases, may also play a role in SR for-
mation. qRT-PCR indicated that starch and sucrose
metabolism genes such as those encoding ADP-glucose
pyrophosphorylase, beta-amylase, and starch synthase,
showed enhanced expression in /b. By contrast, lignin
biosynthetic genes, such as CAD and CoMT, were
highly expressed in It than Ib. The root transcriptome
data obtained in this study may serve as a resource for
the development of molecular markers in sweetpotato and
may facilitate annotation of the sweetpotato genome.

Methods

Plant materials and growth conditions

Five different I batatas (L.) Lam cv. Beauregard (Ib)
plants were grown in pots under greenhouse conditions
at the University of Arkansas at Pine Bluff (UAPB), Pine
Bluff, AR. Seeds from the non-tuber-forming ancestor 1.
trifida (Kunth) G. Don (Iz) (PI 540715) were obtained
from the USDA-GRIN germplasm center (Plant Genetic
Resources Conservation Unit, Griffin, GA). It seeds were
scarified using 50% sulfuric acid and rinsed for five mi-
nutes in sterile water. The scarified seeds were germi-
nated on sterile paper and the plants were transplanted
in pots and grown under greenhouse conditions. Total
roots were collected from 100-day-old plants of /b and
It. The FRs and SRs from five Ib plants were cleaned,
pooled and frozen in liquid nitrogen. Similarly, the total
roots of five It plants were cleaned, pooled and frozen
for RNA isolation.
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RNA extraction

Total RNA was extracted from roots of Ib (designated as
Spl) and It (designated as Sp2) using Qiagen RNeasy kit
(Qiagen, Valencia, CA). RNA samples were subjected to
DNase I (1 U/pl) treatment for 15 min., followed by heat
inactivation at 65 °C for 10 min. The extracted RNA was
quantified using NanoDrop 2000c (Thermo Fisher
Scientific, Wilmington, DE), and the quality was checked
by RNA gel electrophoresis (Additional file 15).

cDNA library construction and transcriptome sequencing
The ¢cDNA library construction and sequencing of RNA
from Ib and It (without biological controls) were carried
out at the UC Davis Genome Center, San Diego, CA.
The cDNA libraries were constructed following the
manufacturer’s protocol (Illumina, Inc., San Diego, CA).
Transcriptome sequencing was carried out using the
HiSeq 2500 platform (Illumina, Inc., San Diego, CA).

Processing of RNA-seq reads

The quality of reads was assessed using FastQC (Version
0.10.0). All reads, after removing the adapter, were used
for assembly without quality filtering, since at least 90%
of reads passed the minimum quality score of Q30.
Reads from Ib (SpI) and It (Sp2) were assembled separ-
ately with Trinity (Version r2012— 10— 15) using default
parameters [70]. Trinity assembly of Ib reads resulted in
240,915 contigs while It reads resulted in 366,513 con-
tigs. The reads were mapped back to the assembled tran-
scripts and isoform percentage was calculated using
Trinity-RNA-seq by Expectation Maximization (RSEM)
[70]. Redundant contigs were filtered from b and It
using an optimized assembly method [71] in two steps:
i) selecting a highly covered isoform for each unique
component-subcomponent from Trinity output based
on the RSEM results and ii) post-assembly trans-
chimera cleanup using the BLASTX results against non-
redundant (nr) protein database. These steps reduced
the number of contigs from 240,915 to 98,317 tran-
scripts for Ib and from 366,513 contigs to 275,044 tran-
scripts for It. The percentage of redundant contigs was
40.8% and 75.0% for Ib and It, respectively. The filtered
transcripts were used for further analysis. Likely coding
sequences (ORFs) were predicted from filtered Trinity
transcripts using TransDecoder located within trinity-
plugins. This helped to predict longest putative ORFs
from set of transcripts, out of which best scoring ORFs
were selected based on Markov model (log likelihood ra-
tio based on coding/non-coding) in each of six possible
reading frames. Thus, ORFs were predicted from the
filtered transcripts of both Ib and It. We also extracted
FPKM values generated by RSEM for the genes of
interest.
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Identification of paralogous and orthologous groups

The best coding ORFs were used for identification of
orthologs using OrthoMCL [72]. All proteins derived from
best coding ORFs were first compared against each other
by all-vs-all BLASTP search. BLAST was performed using
BLOSUMG62 matrix, e-value cutoff of 1.0E-5, and masked
for low complexity regions. For all matching pairs of
sequences “percent match length” score was calculated
and all pairs with less than 50% scores were eliminated. A
network of such sequence pairs across and within species
was used to determine orthologous (similar set of se-
quences between Ib and It) and paralogous (similar set of
sequences within b or If) sequences. All ortholog, paralog
pairs identified were then clustered using Markov Cluster-
ing (MCL) program (orthoMCL). Cluster group IDs for
both paralogs and orthologs are shown in Additional files
3,4 and 5.

Functional annotation of transcripts

The filtered transcripts were classified into functional
categories using different databases and tools. BLASTX
was carried out of /b and It transcripts against non-
redundant database (nr), Arabidopsis protein database
(The Arabidopsis Information Resource, TAIR10), Cassava
protein database (ftp://ftp.jgi-psf.org/pub/compgen/phyto
zome/v9.0/Mesculenta) and potato protein database (ftp://
ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/Stuberosum);
and BLASTN against the sweet potato gene index data-
base (https://research.cip.cgiar.org/confluence/display/
SPGI/Home). Both BLASTX and BLASTN were carried
out with e-value cutoff of 10-3 and other default pa-
rameters. Transcripts with the best coding ORFs were
predicted and additional annotation from trinotate was
generated using databases such as Swissprot, PFAM,
Protein signal prediction as well as EMBL Uniprot egg-
NOG and gene ontology (GO). Protein related informa-
tion was added from PANTHER database based on
BLAST hits to the Arabidopsis database. GO classification
analysis was carried out using the GO Slim database [58]
again based on Arabidopsis database. Based on level 3
category of GO classification, the transcripts were grouped
into biological process, molecular function, and cellular
component. The percentage of transcripts involved in
each category was calculated based on the number of
transcripts observed for individual functions versus the
total number of transcripts (Fig. 4). Pathway information
was added using information from TAIR10 database and
DAVID (Fig. 5) [59, 60].

Quantitative Reverse-transcriptase PCR (qRT-PCR)

qRT-PCR analysis was conducted using StepOnePlus
(Applied Biosystems, Carlsbad, CA); cDNA was synthe-
sized from the total RNA used for sequencing analysis.
Two-step cDNA conversion was carried out using a
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high-capacity cDNA reverse transcription kit according
to the manufacturer’s instructions (Life Technologies,
Foster City, CA). First-strand cDNA was synthesized
using 10x reverse transcription buffer (2.0 ul), 100 mM
dNTP mix (0.8 pl), 10x RT random primers (2.0 pl),
MultiScribe reverse transcriptase-50 U/pl (1.0 pl), and
RNA (500 ng). The reaction was carried out at 25 °C
for 10 min., followed by 37 °C for 120 min. and 85 °C
for 5 min. Subsequently, second-strand cDNA synthesis
was carried out in a 10-ul reaction mixture consisting
of 1.0 pl 1:1 diluted first-strand cDNA, 2x Fast SYBR
Green mix (5.0 pl), 900 nM of each primer (0.8 pl), and
2.4 ul of nuclease-free water using MicroAmp optical
96-well reaction plates. The experiment was conducted
with three biological replicates and two technical repli-
cates for both Ib and It. The sweetpotato S-tubulin
gene was used as an endogenous control, and gene ex-
pression levels were determined using the AACt
method [73]; AACt was calculated by comparing the
ACt values of b and Iz.

Simple sequence repeats discovery

SSRs were predicted from filtered transcripts of Ib (Sp1)
and It (Sp2) using MISA software (Version 1.0) with de-
fault parameters (Table 5). Primers were designed for
the predicted SSRs using Primer3 [74]. The forward and
reverse primers were parsed using custom Perl script
followed by filtering low-complexity primer sequences
using SSRfinder to obtain a unique set of primers for
predicted SSRs. A custom Perl script was used to extract
repeat information such as SSR type, SSR size, and SSR
start and end positions for the predicted SSRs with unique
sets of primers and associated annotation information for
Ib (Additional file 9) and It (Additional file 10).

Discovery of single nucleotide polymorphisms and InDels
Ib and It reads were mapped against both It and Ib genes
using Burrows-Wheeler Aligner (BWA) [75]. As the read
coverage was very high and SNP calling programs failed to
call SNPs for very high density, Picard (Version 1.107)
‘MarkDuplicates’ was used to remove the duplicate reads.
About 60% of reads were marked as duplicate by Picard
and were not considered for SNP calling. SNP and InDel
calling was carried out with GATK (Version 3.1.1) [76] and
Samtools (Version 0.1.18) [77] with all default parameters
except for the following options (—-baq, —mbq=20,
mmq=10, stand_call_conf=50, stand_emit_conf=30 for
GATK and -Q=20, -q=10 and —C=50 for Samtools). Cus-
tom perl scripts were used for further processing to denote
specifically unique and common SNPs predicted by GATK
and Samtools. Additional filtering of GATK predicted
SNPs were filtered with GATK filters such as FisherStrand
(>60), Mapping Quality (MQ <40), HaplotypeScore (>13),
MQRankSum (<-12.5) and ReadPosRankSum (<-8). InDels
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were filtered with additional filters such as ReadPosRank-
Sum < -20.0 and FS >200.0. Filtered SNPs and InDels
were not removed from final set, however SNPs and
InDels which passed the filters were labelled as
“PASS” in “FILTER” columns while SNPs and InDels
that failed to pass filters have blank “FILTER” column.
Annotation and ortholog/paralog information were
also added to the SNPs (Additional file 11 for Ib and
Additional file 12 for I£) and InDels (Additional file 13 for
Ib and Additional file 14 for Iz).
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