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Abstract

Background: Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the
most important environmental stress factor affecting large areas of common bean via plant death or reduced
global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors
(TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean
have not been characterized.

Results: In the present study, 86 putative NAC TF proteins were identified from the common bean genome database
and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct
subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily.
These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns
of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial
expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and
drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns
of the 20 drought-related NAC genes.

Conclusions: Based on the common bean genome sequence, we analyzed the structural characteristics, genome
distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes.
Our results provide useful information for the functional characterization of common bean NAC genes and rich
resources and opportunities for understanding common bean drought stress tolerance mechanisms.
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Background
Common bean (Phaseolus vulgaris L.) is one of the most
important crops worldwide and plays important roles in
resolving food shortages in Africa and adjusting diet
structure in developed countries. However, the growth
and productivity of common bean are severely affected
by abiotic stress, particularly drought stress. Drought
affects large areas of common bean in China by causing
plant death or reducing production. Preventing loss over
the next few decades is already a challenge in China,
particularly in the provinces of Xinjiang and Shanxi.
Thus, it is very important to identify drought-associated
genes in the common bean germplasm.
Transcription factors (TFs) are pivotal regulators in-

volved in the response to abiotic stresses such as drought,
salt, and cold [1–5]. A total of 129,288 TFs belonging to
58 different families from 83 species have been identified
in the plant TF database (PlantTFDB, version 3.0) [6]. The
TF family includes AP2 (1,776), ARF (1,914), and C3H
(4,019), among others. The largest TF family is the
bHLH family, which comprises 11,428 TFs, followed by
MYB (8,746) and ERF (8,688). The species in this data-
base represent Chlorophyta, Bryophyta, Lycopodiophyta,
Coniferopsida, basal Magnoliophyta, Monocot and Eudicot.
The genome of the monocot maize has the largest number
of TFs, 3,316 (2,231 loci), which are classified into 55
families. Approximately 10.9 % of the genome of the
eudicot Glycine max encodes more than 5,069 TFs
(3,714 loci) classified into 57 families [7].
The NAM, ATAF1/2 and CUC2 (NAC) genes are plant-

specific TFs that constitute one of the largest families of
plant transcription factors. NAC family genes are charac-
terized by a conserved NAC domain at the N-terminus
consisting of nearly 160 amino acid residues. The NAC
domain is divided into five subdomains (A-E), and the
C-terminal regions of NAC proteins are not conserved
[8–15]. PlantTFDB (V3.0) contains 8,133 NAC genes
from 74 species. The plant species with the most NAC
genes are Populus trichocarpa (289), Gossypium raimondii
(266), Malus domestica (253), Glycine max (247), and
Eucalyptus grandis (202). By contrast, 15 plant species, in-
cluding Vigna unguiculata (20), Brassica oleracea (39),
and Helianthus annuus (21), have fewer than 50 reported
NAC loci in PlantTFDB. Interestingly, there are few TFs
from food legumes in PlantTFDB. Furthermore, NAC pro-
teins have recently been reported in algae, where they may
play a role in the stress response [16]. In recent years, the
whole genome sequences of several food legumes have
been completed, including those of pigeonpea [17],
chickpea [18, 19], common bean [20, 21], mung bean
[22], and adzuki bean [23]. These genome sequences
provide a wonderful opportunity for a comparative gen-
ome survey of new TFs from food legumes. In plants,
NAC genes regulate a variety of plant developmental

processes, including floral morphogenesis [24], root
development [25], leaf senescence [26, 27], stress-
inducible flowering induction [28], seed development
[29] and fiber development [30]. NAC domain proteins
have also been implicated in plant abiotic stresses and
defense responses, such as salt [31, 32], wounding [33],
cold [34], and particularly drought [31, 32, 35]. For
example, ANAC019, ANAC055, ANAC072 and ATAF1
regulate the expression of stress-responsive genes
under drought stress in Arabidopsis [36, 37]. The
wheat TaNAC29, TaNAC47, TaNAC67 and TaNAC2
genes respond to drought stress [1, 38–40]. Similarly,
transgenic rice overexpressing OsNAC045, OsNAC6,
and OsNAC10 exhibits enhanced resistance to drought
stress [41–43]. Recently, the roles of a stress-related NAC
transcription factor (MlNAC9) were reported in Mis-
canthus lutarioriparius and in improved drought-tolerant
transgenic cultivars [32]. Although a large number of
NAC TFs have been functionally characterized in Arabi-
dopsis, wheat, rice, and other plants, the functions of the
majority of NAC members remain unknown in legumes.
For common bean, a model legume species, there are very
limited reports on the functional characterization of NAC
TFs. Recently, chickpea CarNAC3 and CarNAC5 were
reported as transcriptional activators involved in the
drought stress response [44, 45]. Tran et al. analyzed 31
full-length NAC genes from soybean and determined
that nine were induced by drought [46]. GmNAC043,
GmNAC085 and GmNAC101 were identified in
drought-tolerant soybean cultivars by genetic engin-
eering [47]. However, there have been no reports
about drought-tolerant related NAC TFs from com-
mon bean.
In our study, we performed genome-wide identification

of NAC domain TFs in common bean and detailed analyses
of the genome distribution, gene structure, conserved mo-
tifs and expression patterns under drought stress. Our
results provide a subset of potential candidate drought-
tolerant related NAC genes for future analyses of gene
function in common bean.

Results
Identification of NAC transcription factors in
common bean
In this study, the Hidden Markov Model (HMM) pro-
file of the Pfam NAC domain (PF02365) was used as a
query to identify NAC genes in the common bean
genome (release 1.0, https://phytozome.jgi.doe.gov/pz/
portal.html#!info?alias=Org_Pvulgaris). A total of 106
non-redundant putative NAC genes were obtained, of
which 86 full-length protein sequences were used for
further analyses, such as gene structure and phylo-
genetic tree analyses. First, we analyzed the genome,
CDS and protein lengths; MW; pI; and subcellular
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localization of these NAC genes (Additional file 1:
Table S1). The genome length (from the start to stop
codons) of these NAC genes ranged from 741 bp (Phvul.
007G140300) to 5,751 bp (Phvul.001G161700). The CDS
length ranged from 537 bp (Phvul.007G140300) to
2,016 bp (Phvul.006G087000), protein length from 179
AA (Phvul.007G140300) to 672 AA (Phvul.006G087000),
MW from 20.20 kDa (Phvul.007G140300) to 76.38 kDa
(Phvul.006G087000) and pI from 4.59 (Phvul.007G140500)
to 9.81 (Phvul.007G140300). Subcellular localization
prediction indicated that 74 genes were located in the
nucleus and 12 genes were potentially extracellular.

Genome distribution of common bean genes
Figure 1 shows that the 84 common bean NAC genes
are distributed across all 11 chromosomes (Ch1-Ch11);
however, in the most recently released sequences,

Phvul.L010000 remained on as-of-yet unmapped scaf-
folds. The distributions of common bean NAC genes
across the chromosome appeared to be non-random
(Fig. 1). Only two NAC genes are distributed on Ch10,
the lowest number of genes on a chromosome; on Ch2,
14 NAC genes were identified, the highest number of
genes. A number of clusters of NAC genes are evident
on the chromosomes, particularly on those with high
densities of NAC genes. For example, NAC-Ch9.6 and
NAC-Ch9.7 were cluster localized on a 14-kb segment on
Ch9, and NAC-Ch5.10 and NAC-Ch5.11, NAC-Ch5.7 and
NAC-Ch5.8 are in a cluster on 50-kb and 54-kb fragments
of Ch5, respectively. However, NAC-Ch7.3 and NAC-
Ch7.4 are arranged in a cluster localized to a 67-kb
segment on Ch7 (Fig. 1). In addition, NAC-Ch2.8 and
NAC-Ch2.9 are organized in another cluster within a
103-kb fragment on Ch2, whereas NAC-Ch1.5 and

Fig. 1 Chromosomal location of common bean NAC genes. A total of 85 NAC genes were mapped to the 11 chromosomes (Ch1-Ch11), whereas
the NAC-sc gene was located on unassembled scaffold_229. The arrows represent the direction of transcription. The position of each gene can
be estimated using the scale on the left
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NAC-Ch1.6 are arranged in a cluster localized to a 110-kb
segment on Ch1 (Fig. 1).

Putative promoter region analysis of the NAC gene family
TFs bind to the DNA on specific cis-acting regulatory ele-
ments (CAREs), which determine the initiation of tran-
scription and are among the most important gene
structures [48]. CAREs are short conserved motifs of 5 to
20 nucleotides usually found within the 1500 bp upstream
of genes, known as the promoter region [48]. To further
investigate transcriptional regulation and the potential
functions of NAC subfamily genes in common bean, the
promoter regions of the NAC genes (1500-bp sequences
upstream of the translational start site) were analyzed
using the PlantCARE database to identify putative CAREs.
A total of 83 similar CAREs associated with developmen-
tal processes, light responsiveness, biotic stress, hormones
and other functions were identified in the promoter re-
gions of these NAC genes (Additional file 2: Table S2). All
promoters of common bean NAC genes were predicted to
contain an essential element, such as a TATA box and
a CAAT box. Of these CAREs, several cis-elements
related to tissue-specific expression, such as root-
specific (AS1 and Motif I), seed-specific (RY element),
endosperm-specific (GCN4 and Skn-1 motif ), and
meristem-specific (dOCT and CCGTACC box) cis-
elements, were present in NAC gene promoters. We
also observed numerous light-responsive cis-elements
widely distributed in the promoter regions of NACs in
common bean, such as as-2 box, AE-box, G-box, and
GAG-motif. CAREs involved in plant hormones, such
as gibberellin-responsive elements (GARE motif and P
box), an ethylene-responsive element (ERE), auxin-
responsive elements (TGA element and AuxRR core),
MeJA-responsive elements (TGACG motif and CGTCA
motif ) and ABA-responsive elements (ABRE and CE3),
were also identified. In particular, important elements
in abiotic stress, including heat stress-responsive elem-
ent (HSE), drought-responsive element (MBS), wound-
responsive element (WUN motif ), low-temperature
element (LTR), cold and dehydration-responsive elem-
ent (C repeat/DRE) and defense and stress-responsive
element (TC-rich repeats) were detected. These results
clearly suggest that NAC TFs might respond to abiotic
stresses and have potential functions in enhancing abi-
otic stress resistance. For instance, Phvul.004G029900
and Phvul.005G121800 had up to five types of abiotic
stress CAREs. Furthermore, HSE, MBS, WUN-motif, LTR
and TC-rich repeats were identified in Phvul.004G029900.
HSE, MBS, WUN-motif, C-repeat/DRE and TC-rich re-
peats were identified in Phvul.005G121800. In addition,
Phvul.001G192000, Phvul.002G061000, Phvul.004G075500,
Phvul.005G084600, Phvul.007G085600, Phvul.008G189100,

Phvul.009G008000 and Phvul.009G039000 had four types
of abiotic stress CAREs.

Phylogenetic relationships, conserved motifs and gene
structure analysis of the NAC gene
To determine the phylogenetic relationships between
NAC genes in common bean, an unrooted phylogenetic
tree with 86 complete NAC protein sequences was con-
structed (Fig. 2a). The phylogenetic tree revealed that
NAC family proteins can be classified into eight major
groups: I, II, III, IV, V, VI, VII and VIII (Fig. 2a), consist-
ent with previous reports [8, 49]. Group I is the largest
clade, with 29 members, and accounts for 33.7 % of all
NAC TFs, and groups II and IV contain the same num-
ber of members (17). Group VII contains only one mem-
ber, Phvul.001G023400, and groups I, II, III and IV each
contain two subgroups.
The N-termini of NAC TFs contain five subdomains

(A-E) [8]. Thus, we analyzed the conserved motifs of
NAC TFs from common bean using the MEME pro-
gram [50] (Figs. 2b, and 3 and Additional file 3: Table S3).
The motif distribution analyses of the NAC proteins re-
vealed that 56 of 86 (65.1 %) common bean NAC proteins
contain all five domains, domains A, B, C, D and E (Fig. 2b
and Additional file 3: Table S3). Nine (10.5 %) NAC pro-
teins lack one domain (A, B or C); nine (10.5 %) NAC pro-
teins lack domains B and C; eleven (12.8 %) NAC proteins
lack B and D; and only one protein, Phvul.008 g159200,
lacks three domains (A, B and C). All common bean
NAC domains (86) contain motif E, the most highly
conserved motif in common bean NACs. Domain A is
also relatively highly conserved; only Phvul.002G085700
and Phvul.008 g159200 lack motif A. However, motif B
is the least conserved motif in common bean NACs. For
instance, all members of groups I and III contain all five
motifs (A-E), whereas the members of group VIII (expect
for Phvul.008 g159200) contain motifs A, D and E. By
contrast, the conserved motif appears to be more variable
in groups II, IV, V and VI.
To analyze the structural diversity of NAC genes, we

compared the exon/intron organization in the coding se-
quences of individual NAC genes in common bean using
GSDS 2.0. The detailed gene structures are shown in
Fig. 2c. Based on the results of gene structure prediction,
the number of introns ranges from one to five in the
common bean NAC gene family. Among these NAC
genes, most NAC genes have two introns, whereas two
members have one intron. Overall, genes with highly
similar gene structures were clustered in the same
phylogenetic group of common bean NAC genes.

Expression pattern of NAC TFs in common bean
The coding sequences of all NAC domains of common
bean were used to search the expression database using
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Phytozome. Expression data are not available for
Phvul.L010000.1, and the expression profiles of 85
NAC genes in 9 common bean tissues, including young
trifoliates, leaves, flower buds, flowers, green mature
pods, young pods, roots, stems, and nodules, were
obtained. No tissue expressed all 85 NAC genes
(Additional file 4: Table S4), but the majority of the TFs
coexisted in all tissues (62 genes, 72.94 %). NAC TFs
were expressed in some tissues but not others. NAC TFs
were most abundant in nodules (84 genes, 98.82 %),
followed by young pods and roots (80 genes, 94.12 %),
flowers (79 genes, 92.94 %), and stems (78 genes, 91.67 %).

Few NAC TFs were expressed in the leaves (71 genes,
93.53 %). We constructed an expression profile heat map
based on expression data in different organs of NAC
TFs (Fig. 4). All NAC TFs with expression profiles were
clustered into 6 groups based on their expression pat-
terns. Moreover, five NAC TFs (Phvul.002G271700,
Phvul.007G140500, Phvul.007G085600, Phvul.007G140300
and Phvul.008G001000) were highly expressed in all
common bean organs. No gene was specifically expressed
in only one tissue. Phvul.002G085700 was specifically
expressed in nodules and roots, whereas Phvul.005G122500
was specifically expressed in nodules and green mature

Motif A Motif B Motif C Motif D Motif E
0Kb 1Kb 2Kb 3Kb 4Kb 5Kb

Fig. 2 Phylogenetic relationships, gene structure and motif composition of NAC genes in common bean. a The phylogenetic tree of NAC genes
from common bean was constructed in MEGA4.0 using the Neighbor-Joining (NJ) method with 1,000 bootstrap replicates. b The conserved motifs of
common bean NAC genes were elucidated by MEME. The conserved motifs are represented by the different colored boxes. The black lines represent
the non-conserved sequences. c Exon/intron structures of NAC genes from common bean. Exons and introns are represented by green boxes and
black lines, respectively. The sizes of exons and introns can be estimated using the scale below
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pods. The other NAC genes were expressed in at least three
tissues.

Expression profiles of NAC TFs under drought stresses
Numerous NAC domain proteins have been implicated
in plant drought stress [1–3]. To determine the expres-
sion profiles of NAC TFs under drought stress, 86 NAC
genes were analyzed using transcriptome and qRT-PCR
data. The transcriptome data obtained from our previous
report described the expression profiling of the geno-
types Long 22-0579 (drought tolerant) and Naihua
(drought sensitive) in response to drought stress [51].
We detected 13 differentially expressed NAC genes

(DENs) between samples LOI and LTD and 18 genes
between NOI and NTD. In this study, ‘up-regulated’ and
‘down-regulated’ were denoted in accordance with the
results from a previous study (Table 1). Between samples
LOI and LTD, more DENs were up-regulated (9) than
down-regulated (4). Similarly, more DENs were up-
regulated (10) than down-regulated (8) between NOI and
NTD. Among these DENs, eleven NAC genes shared a
common expression pattern in Long 22-0579 or Naihua
under drought stress. Two genes (Phvul.004G028300 and
Phvul.009G163200) were up- or down-regulated under
drought stress only in the drought-tolerant genotype,
whereas five genes were differentially expressed under
drought stress only in the drought-sensitive genotype. In

addition, four genes (Phvul.002G3616500, Phvul.004G
028300, Phvul.005G05900 and Phvul.005G084600) exhibi-
ted differential expression under drought stress between
different cultivars (Long 22-0579 or Naihua). However,
Phvul.002G316500 and Phvul004G028300 were also dif-
ferentially expressed under drought stress in the drought-
sensitive and drought-tolerant genotypes, respectively. All
candidate DENs obtained by RNA-seq analysis were
further validated by RT-PCR (Fig. 5 and Additional file 5:
Table S5). The expression profiles of 20 candidates, ex-
cluding Phvul.008G159200 and Phvul.009G008000, were
generally in agreement with the predictions from the
RNA-seq results (Additional file 6: Table S6). These results
suggest that these DENs are related to drought stress.
In general, orthologous genes of different plants usu-

ally have similar functions [52]. Thus, common bean
NAC genes may have functions similar to those of genes
in the same subgroup with known functions. We built a
phylogenetic tree based on the amino acid sequences of
NAC proteins from common bean and known drought-
related NAC proteins from other species, including rice,
Arabidopsis, soybean, chickpea, and wheat (Additional
file 7: Figure S1). A total of 20 DENs belonged to different
subgroups including drought-related NAC genes. These
results indicate that orthologs such as Phvul.009G15280,
Phvul.005G 084500 and other DENs may have similar
functions and that these DENs may be associated with

Fig. 3 The conserved motifs of common bean NAC genes. The bit score indicates the information content for each position in the sequence
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Fig. 4 Heat map of expression profiles for NAC genes across different tissues. The expression data were generated from the Phytozome database
and viewed in MeV software. Hierarchical clustering was performed for the transcript ratios from all conditions. The color scale shown below
represents expression values, with green indicating low levels and red indicating high levels of transcript abundance
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Table 1 Selected differentially expressed NAC proteins between different treatment and cultivars

Expression pattern Genes Fold change (LOI to LTD) Fold change (NOI to NTD) Fold change (LOI to NOI)

Up-regulated LOI/LTD Phvul.004G028300 3.41 3.80

LOI/NOI and NOI/NTD Phvul.003G045600 2.78 2.74

Phvul.009G152900 3.16 3.04

Phvul.009G152800 3.53 3.13

Phvul.011G147800 4.28 4.46

Phvul.009G156300 5.03 5.11

Phvul.005G084500 5.56 5.52

Phvul.002G170200 3.13 5.58

Phvul.006G188900 5.44 5.86

NOI/NTD Phvul.001G072200 2.37

Phvul.004G077400 3.31

Down-regulated LOI/LTD Phvul.009G163200 −3.69

LOI/NOI and NOI/NTD Phvul.007G089600 −2.72 −5.45

Phvul.008G159200 −2.67 −4.86

Phvul.010G118700 −2.38 −2.98

NOI/NTD Phvul.002G316500 −4.18 3.14

Phvul.002G206300 −4.11

Phvul.005G007900 −3.74

Phvul.009G008000 −3.39

Phvul.008G241200 −2.38

LOI/NOI Phvul.005G059000 −3.52

Phvul.005G084600 −2.15
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Fig. 5 qRT-PCR validation of drought-related NAC proteins from common bean
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drought stress. However, we also observed that Phvul.
005G059000 and Phvul.004G028300 belonged to the same
subgroup without any known-function NAC genes. Fur-
thermore, MBS is a cis-acting regulatory element that is
predicted to serve as an MYB binding site involved in
drought inducibility. TsApx6 (Thellungiella salsuginea) is
involved in the response to drought stress and contains an
MBS element in its promoter [53]. Among these related
NAC genes of common bean, 16 genes contain MBS cis-
elements (e.g., Phvul.003G045600, Phvul.011G147800 and
Phvul.009G156300). These results support the involvement
of these NAC genes in drought resistance. We also com-
pared the cis-acting regulatory elements and the promoters
of DENs and orthologues from different plants (soybean,
rice, and Arabidopsis) (Additional file 8: Table S7). Among
these CAREs, in addition to essential elements and en-
hancers, we found 18 conservative CAREs (more than half
of the genes) in drought-responsive genes (e.g., ARE, circa-
dian, HSE, MBS, Skn-1_motif, CGTCA, and TGACG).
Among these CAREs, MBS involves in drought inducibility,
and CGTCA and TGACG involve in MeJA responsiveness.
These conservative CAREs maybe play an important role
in regulating drought resistance.

Discussion
Common bean is a food legume. The seeds of common
bean are an important food source, and common bean
plants also contribute to soil fertility. Whole-genome se-
quences of many food legumes, including pigeonpea
[17], chickpea [18, 19], mung bean [22], and adzuki bean
[23], have recently been released. The genome of common
bean was completed with two P. vulgaris accessions: an
Andean genotype (Phaseolus vulgaris L., G19833) and a
Mesoamerican genotype (Phaseolus vulgaris L., BAT93)
[20, 21]. These sequence data provide rich resources for
comparative genomic analyses and genome and gene evo-
lution studies. The NAC protein family is one of the lar-
gest families of TFs and is involved in plant development
and response to abiotic and biotic stresses. NAC proteins
have been studied in many plants, including maize, soy-
bean, Oryza sativa, Arabidopsis thaliana, and Opulous
trichocarpa [8, 54–56], but this study is the first to identify
and characterize NAC proteins encoded in the common
bean genome.
In this study, we analyzed 86 non-redundant NAC

genes from common bean, fewer NAC genes than in
other grasses, for example, 163 in Populus [54], 105 in
Arabidopsis [8], 140 in rice [55], and 101 in soybean
[56]. We also analyzed the gene structures and con-
served motifs of the NAC TFs. The common bean NAC
genes contained one to five introns. The exon/intron
numbers of common bean NAC genes differ from those
of other plants, such as Populus, which has a range of
zero to eight. However, the number of conserved motifs

in common bean NAC genes was similar to that of other
species, including Populus, rice, soybean and Arabidopsis.
However, the diversity of gene structures and conserved
motifs may also indicate that common bean NACs are
functionally diversified, with roles in shoot apical meri-
stem development, floral morphogenesis, lateral root
development, leaf senescence, embryo development,
cell cycle control, hormone signaling, abiotic stresses
and defense responses. In general, proteins with similar
sequences have similar functions, and we therefore ana-
lyzed the functions of common bean NAC TFs based on
the phylogenetic tree of NAC proteins. Phvul.005G074500
and Phvul.011G160400 may be involved in shoot apical
meristem formation and development because they clus-
tered into one subgroup with CUC1 and CUC2 [57, 58].
Moreover, ATAF1, ATAF2, Phvul.009G125900, Phvul.
001G072200, Phvul.002G275000, Phvul.009G152800 and
Phvul.009G152900 clustered into one group and may be
involved in wounding [59, 60]. Phvul.007G089600 and
VND 7 clustered into one subgroup and have been pro-
posed as regulators of vascular vessel formation [14].
Some genes may participate in responses to abiotic stress,
such as Phvul.011G147800, GmNAC3, GmNAC4, ANA
C019, ANAC055 and ANAC072 under salt stress [61, 62].
Some genes (ANAC053 and Phvul.007G140500) have
been reported to be mostly involved in heat response
[63] but may have more functions; for example,
Phvul.001G072200, Phvul.009G125900 and OsNAC6
are involved in the response to abiotic stresses, such as
high salinity, ABA treatment and cold [64]. The functions
of many NAC family genes remain unknown. Future
studies will focus on discovering novel functions of NAC
genes, particularly of genes specific to common bean.
In this paper, we focused on the function of NAC genes

under drought stress. In the present study, we identified 22
common bean NAC TFs that were induced by drought
stresses based on transcriptome data; these genes were
of two types: differentially expressed between drought-
tolerant/sensitive genotypes and differentially expressed
between treatment/control. Furthermore, quantitative
real-time PCR demonstrated that the expression pro-
files of the 20 candidates were generally in agreement
with the predictions from the RNA-seq results, indicating
that these genes are functionally associated with the
drought-stress response. In addition, the phylogenetic tree
of common bean NAC genes and known-function NAC
genes from other species also suggested that these 22
NAC genes may be related to drought stress. For example,
one group included five common bean NAC genes and 14
known-function NAC genes that are all induced by
drought stress [1, 39, 40, 42, 44, 65–70]. The members of
this subfamily are also the most widely studied and play
important roles in the NAC family. Another group in-
cluded five common bean NAC genes and CarNAC3 from
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chickpea [44], MsNAC from Medicago sativa [71],
StNAC2 from potato [72], ZMNAC111 from maize
[73], ANAC002 and ANAC047 from Arabidopsis [31,
74] and OsNAC10 from rice [43], all of which are induced
by drought. Phvul.005G059000 and Phvul.004G028300
belong to a group without any drought-related NAC pro-
teins. These results suggest that Phvul.005G059000 and
Phvul.004G028300 may be a new class of NAC TFs that
are not involved in drought resistance.

Conclusions
We comprehensively identified NAC genes in common
bean based on the genome sequence. This study identi-
fied a non-redundant set of 86 NAC genes in common
bean. Detailed analyses identified phylogenetic relation-
ships, conserved motifs, gene structure and expression
profiles of common bean NAC genes. Our research pro-
vides useful information for further research on the
function of NAC in common bean and will accelerate
functional genomics studies and molecular breeding pro-
grams. Moreover, the candidate drought-responsive
NAC genes identified in common bean will provide a
new resource for molecular breeding in food legumes
and other crops.

Methods
Searching for NAC family members in common bean
Whole-genome sequences of common bean were down-
loaded from the Phytozome genome database [19]. The
hidden Markov model (HMM) profile of the NAC family
(PF02365) was extracted from the Pfam database [75],
and the NAC HMM profile was used to search the com-
mon bean whole-genome protein database for target hits
with the NAC domain by HMMER3.0 [76]. Based on the
sequence ID of the NAC protein, the coding sequences
and genome sequences were extracted from the common
bean whole genome sequence database. Transcriptome
data of the genotypes Long 22-0579 (drought tolerant) and
Naihua (drought sensitive) were downloaded from NCBI
(GenBank accession no.: bean LTD SAMN03223377, bean
NOI SAMN03223381, bean NTD SAMN03223380, and
bean LOI SAMN03223378).

Data analyses
ExPASy was used to determine the number of amino
acids in the open reading frame (ORF), molecular weight
(MW), isoelectric point (pI) and length of the open read-
ing frame (length) of each gene (http://www.expasy.ch/
tools/pi_tool.html). Subcellular localization was predicted
using Softberry (http://linux1.softberry.com/). MEGA4.0
was also used to generate neighbor-joining (NJ) trees with
bootstrap values. The exon/intron organization of each
NAC gene was visualized in the Gene Structure Display
Server program [77]. Motifs of the NAC proteins were

displayed using MEME [50]. The upstream promoter se-
quences of NAC genes were identified using the Plant-
CARE database [78]. The heat map was viewed in the
MeV tool (http://www.tm4.org/mev.html). The upstream
promoter sequences of NAC genes from rice, soybean and
Arabidopsis were downloaded from the Phytozome
database.

Expression pattern analysis and qRT-PCR analysis
Transcript data were obtained from the Phytozome data-
base for young trifoliates, leaves, flower buds, flowers,
green mature pods, young pods, roots, stems, and nod-
ules (https://phytozome.jgi.doe.gov/phytomine/templa-
te.do?name=One_Gene_Expression&scope=global).
Total RNA was extracted from leaves using TRIzol re-

agent according to the manufacturer’s instructions
(Tiangen, Beijing, China), and first-strand cDNA was
synthesized using the SuperScript II reverse transcriptase
kit (Invitrogen). Real-time PCR was performed on an
ABI PRISM 7300 Sequence Detection System (Applied
Biosystems) using SYBR Premix Ex Taq (TAKARA).
Relative expression levels were calculated using the 2-△△CT

method. qRT-PCR was conducted using the common
bean actin gene (GenBank accession no.: EU369188.1) as
the control. Specific primers for qRT-PCR were de-
signed using primer 5.0 (http://www.premierbiosoft.
com/primerdesign/).
The common bean cultivars Long 22-0579 (drought-

tolerant genotype) and Naihua (drought-sensitive geno-
type) were employed to identify genes involved in
drought stress using RNA-seq. Seedlings of the cultivars
were grown in plastic pots (23 cm × 18 cm × 18 cm)
under a 14/10 h photoperiod at 25 °C (day) and 20 °C
(night) in a greenhouse (China, Beijing, 116°46′E, 39°92′
N). The water content was measured three times a week,
and any water lost was replaced in the pots to maintain
equivalent levels according to the treatment require-
ments. Twenty-five plants were used in each treatment.
All plants were irrigated to field capacity until 4 weeks
after seeding. For the terminal drought treatment, water-
ing was restricted to 25 % of the field capacity beginning
5 weeks after seeding. For optimal irrigation, the pots
were maintained at the field capacity throughout the ex-
periment [49].
The method employed for the identification of differ-

entially expressed NAC genes (DENs) from transcrip-
tome data involved tests implemented using DEGseq,
and the corresponding significance thresholds applied
were determined using the likelihood ratio test, Fish-
er’s exact test, the MA-plot-based method with a ran-
dom sampling model (p-value ≤ 0.001) and the fold-
change threshold of MA-plot log2 normalized fold
changes ≥2 [49].
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