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Abstract

Background: MicroRNAs (miRNAs) are endogenous, noncoding, short RNAs directly involved in regulating gene
expression at the post-transcriptional level. In spite of immense importance, limited information of P. vulgaris miRNAs
and their expression patterns prompted us to identify new miRNAs in P. vulgaris by computational methods. Besides
conventional approaches, we have used the simple sequence repeat (SSR) signatures as one of the prediction
parameter. Moreover, for all other parameters including normalized Shannon entropy, normalized base pairing
index and normalized base-pair distance, instead of taking a fixed cut-off value, we have used 99 % probability
range derived from the available data.

Results: We have identified 208 mature miRNAs in P. vulgaris belonging to 118 families, of which 201 are novel.
97 of the predicted miRNAs in P. vulgaris were validated with the sequencing data obtained from the small RNA
sequencing of P. vulgaris. Randomly selected predicted miRNAs were also validated using gRT-PCR. A total of
1305 target sequences were identified for 130 predicted miRNAs. Using 80 % sequence identity cut-off, proteins
coded by 563 targets were identified. The computational method developed in this study was also validated by
predicting 229 miRNAs of A. thaliana and 462 miRNAs of G. max, of which 213 for A. thaliana and 397 for G. max
are existing in miRBase 20.

Conclusions: There is no universal SSR that is conserved among all precursors of Viridiplantae, but conserved SSR
exists within a miRNA family and is used as a signature in our prediction method. Prediction of known miRNAs of
A. thaliana and G. max validates the accuracy of our method. Our findings will contribute to the present knowledge of

the successful prediction of miRNAs and their targets.

miRNAs and their targets in P. vulgaris. This computational method can be applied to any species of Viridiplantae for
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Background

MicroRNAs (miRNAs) are small non-coding RNAs [1]
with an approximate length of 22 nucleotides originating
from long self-complementary precursors [2]. miRNA
precursor sequences (pre-miRs) have intrinsic hairpin
structure which consists of the entire miRNA sequence
on one arm of the hairpin and the miRNA* sequence
on the opposite arm. miRNAs regulate a variety of
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biological processes like development, metabolism, stress
response, pathogen defense and maintenance of genome
integrity [3, 4]. Mature miRNA gets incorporated into the
RNA-induced silencing complex (RISC) [2], which regu-
lates gene expression either by inhibiting translation or by
degrading coding mRNAs by perfect or near-perfect com-
plement with the target mRNAs [5, 6]. For a given miRNA,
the number of target mRNA ranges from one to hundreds
[7]. However, in plants, most of the target mRNAs contain
a single miRNA-complementary site, and the correspond-
ing miRNAs perfectly complement these sites and cleave
the target mRNAs [8].

The first miRNA (lin-4) was identified in Caenorhabdi-
tis elegans in 1993 [9]. Since then, hundreds of miRNAs
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have been identified in plants, animals and viruses. In
recent years, advancement in technologies such as Bio-
informatics and Next-Generation Sequencing (NGS) fa-
cilitated the identification of huge number of putative
miRNAs in different organisms. However, the process of
identifying miRNAs is still a complex and difficult task re-
quiring interdisciplinary strategies, including experimental
approaches as well as computational methods. Compared
to the experimental approaches, computational predictions
have been proved to be fast, affordable, and accurate
[10-26]. In the last ten years, different computational strat-
egies have been developed to find new miRNAs, including
mining the repository of available Expressed Sequence Tags
(ESTs) with known miRNAs, as well as those based on the
conserved nature of miRNAs [12-16, 22, 23].

Majority of miRNAs are evolutionarily conserved be-
tween different species of the same kingdom and may
also exist as orthologs or homologs in other species [27].
Computational prediction of putative miRNAs is often
based on their evolutionarily conserved nature. Accord-
ingly, homologs of known miRNAs are searched in the
EST databases to identify the putative pre-miRs in other
species. Pre-miRs have a specific range of percentage AU
content in their sequences as well as Minimal Folding free
Energy Index (MFEI) [27]. Studies have also shown that
pre-miRs have distinct RNA folding measures such as
normalised Shannon entropy (NQ), normalized base-pair
distance (ND) and normalized base-pairing propensity
(Npb). Thus, AU content and MFEI are also used as pa-
rameters for prediction of new miRNAs.

Simple sequence repeats (SSRs) are repeating sequences
of one to six nucleotides long [28]. The presence of SSRs
in pre-miRs was identified by several studies [29-31], al-
though their precise role in pre-miRs is yet to be eluci-
dated. The SSRs present in pre-miRs in different species
did not show noticeable locational preferences and are
found anywhere in pre-miRs, suggesting that SSRs are
the important component of pre-miRs [32]. In pre-miRs,
mononucleotide repeats are the most abundant repeats,
followed by di- and tri-nucleotide repeats, while tetra-,
penta-, and hexanucleotide repeats rarely occur [32].
Moreover, the number of repeats correlates inversely to
the length of the repeats [32]. Absence of long SSRs
and low number of repeat types in pre-miRNAs may be
attributed to their small size, stability and low mutation
rate [32]. Due to these very characteristics, the identifi-
cation of SSR signatures in pre-miRs is easy and can be
used as a parameter in predicting miRNAs. However,
SSR signatures have not been used in the computa-
tional prediction of new miRNAs. In the present study,
we have used SSR signatures as a parameter to predict
new miRNAs.

Phaseolus vulgaris, belonging to the Fabaceae family, is
a vital leguminous crop in tropical and subtropical areas
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of Asia, Africa, and Latin America, as well as parts of
southern Europe and the USA (FAOSTAT 2009). P. vul-
garis is an important food worldwide and a significant
source of fibre, proteins and vitamins (FAOSTAT 2009).
High protein and carbohydrate content makes it not
only important for the human diet, but also suitable as
high protein feed and fodder for livestock. P. vulgaris is
a particular valuable component of low-input farming
system of resource-poor farmers (FAOSTAT 2009). This
leguminous crop enhances soil fertility through nitrogen
fixation [33]. In spite of immense importance, limited in-
formation is available about the miRNAs of P. vulgaris
and their patterns of expression [34—40]. There are only
eight reported miRNAs of P. vulgaris in the miRBase 20
[41]. In the present study, we have identified new miRNAs
in P. vulgaris by computational methods. In addition to
the conventional approaches, we have used the conserved
SSR signatures as one of the parameters for prediction.
Moreover, for all the other parameters, instead of consid-
ering a fixed cut-off value, we have used a 99 % probability
range derived from the available data. We obtained 208
new miRNAs, of which 201 are novel. Few randomly se-
lected predicted miRNAs were validated using qRT-PCR.
Targets for many of the predicted miRNAs were identi-
fied. Additionally, we also validated our computational
method by predicting known miRNAs in A. thaliana and
G. max. Our findings will contribute to the present know-
ledge of miRNAs and their targets in P. vulgaris. The
computational method developed in this study is not only
restricted to P. vulgaris but can be applied to any species
of Viridiplantae.

Results

Analysis of known Viridiplantae pre-miRs

All the known 6088 pre-miRs of Viridiplantae in the
miRBase 20 [41] were analysed, and the probability dis-
tributions of their AU content, length and MFEI are
shown in Fig. 1. The length of pre-miRs varies from 43
to 938 nucleotides, with the mean value of 149. How-
ever, when we consider the 99 % probability range, the
length of pre-miRs varies from 55 to 505 nucleotides.
Consequently, we set this range as a cut-off value for the
prediction of new miRNAs. The percentage of AU con-
tent in the pre-miRs ranges from 17 % to 92 %. This
range becomes 27 % to 77 % when we consider the 99 %
probability region, and accordingly it is used as the AU
content cut-off range. The MFEI has a mean value of
1.0 £ 0.28, however while considering 99 % probability
range, it is greater than or equal to 0.41. Consequently,
this value is used as the cut-off for MFEIL The probabil-
ity distributions for ND, NQ and Npb are plotted in
Fig. 2. Considering the 99 % probability region in the
distribution, the values of NQ and ND are less than or
equal to 0.45 and 0.15, respectively, while for Npb it is
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Fig. 1 Probability distributions of percentage AU content, length and MFEI of pre-miRs belonging to Viridiplantae

greater than or equal to 0.25. These values have been
used as the cut-off for these parameters.

Simple Sequence Repeats (SSRs)

To find the conserved SSR signatures within the pre-
miRs, all the 1892 miRNA families of Viridiplantae were
analysed (Additional file 1 Table S1). None of the SSR
signatures were found to be conserved in all the families.
However, conserved SSR signature(s) was found when a
particular family was considered. We find 1427 families
with only one pre-miR, and 465 families with two or
more pre-miRs. Within these 465 families, only those
conserved SSRs that are present in all the members of a
particular family were considered. The conserved SSR
having the maximum average R (number of SSR signa-
tures per 100 nucleotides) value was chosen as a SSR
signature for a given family. We find that with the win-
dow size three, the average R of a signature SSR is
greater than 2.5. With the increase in the window size,
the number of miRNA families having a conserved SSR
signature with an average R greater than two becomes
limited. Accordingly, the window size three was set to
identify the conserved SSR signatures in pre-miRs. For
the 1427 families with only one pre-miR, the SSR with

the maximum R was selected as a signature. In single
member families, the R is always greater than 2.5, which
is the minimum average R for the SSR signatures found
in the multimember families.

The SSR signatures in different miRNA families of the
kingdom Viridiplantae, the family Fabaceae and the spe-
cies P. vulgaris were analysed in Table 1. It shows that in
Viridiplantae, 8.77 % of miRNA families contain the sig-
nature AUU, 7.45 % of miRNA families contain the sig-
nature AAU and 6.29 % of miRNA families contain the
signature UUU. In Fabaceae, 10.71 % of miRNA families
contain the signature AUU, 9.70 % of miRNA families
contain the signature AAU and 6.87 % of miRNA fam-
ilies contain the signature UUU. In P. vulgaris, the sig-
nature UUG is present in 15.25 % of miRNA families,
while both the signatures AUU and UUU are present in
10.17 % of miRNA families. Significantly, the three most
frequently found signatures in each taxonomic category
are found in most of the miRNA families. They are the
signatures of 23 % miRNA families in Viridiplantae, of
27 % miRNA families in Fabaceae and of 36 % miRNA
families in P. vulgaris. The signature CCC is found in
only one miRNA family in Viridiplantae, and is absent in
all miRNA families in Fabaceae as well as in P. vulgaris.
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Fig. 2 Probability distributions of normalized base-pair distance (ND). normalized Shannon entropy (NQ) and normalized base pairing propensity
(Npb) of pre-miRs belonging to Viridiplantae
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Table 1 Distribution of SSR signatures in various miRNA families of Viridiplantae, Fabaceae and P. vulgaris
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A U c G
% F° pe % F° pc % FP pe % FP pe

A 492 444 254 296 141 169 132 182 085 148 202 424 A
745 970 593 877 10.71 1017 079 1071 085 079 061 0.00 U
143 141 085 238 303 0.85 063 061 169 106 040 0.00 C
307 404 254 391 283 508 037 020 0.00 069 020 000 G

U 201 182 0.00 217 323 085 1.80 263 085 270 303 424 A
259 283 254 6.29 6.87 1017 217 182 169 248 162 0.00 U
021 0.00 0.00 227 303 508 085 061 0.00 148 040 169 C
058 061 0.00 6.18 6.46 1525 058 081 085 153 162 085 G

C 122 101 339 037 000 0.00 079 061 0.00 032 020 0.00 A
190 222 0.00 211 222 508 032 040 0.00 037 081 0.00 U
026 020 0.00 079 020 000 005 000 0.00 069 0.00 085 c
037 0.20 0.00 063 040 000 063 0.00 085 074 040 085 G

G 148 242 254 032 000 000 069 040 0.00 079 081 0.00 A
159 162 254 095 141 085 058 081 0.00 042 040 0.00 U
0.16 040 0.00 026 020 0.00 074 020 0.00 090 0.20 0.00 c
058 020 169 0.16 000 000 069 020 0.00 021 0.00 000 G

V2- The percentage of miRNA families belonging to Viridiplantae with a particular signature SSR. There are 1892 miRNA families to which Viridiplantae miRNAs
belong. F°- The percentage of miRNA families belonging to Fabaceae with a particular signature SSR. There are 495 miRNA families to which P. vulgaris miRNAs

belong. P*- The percentage of miRNA families belonging to P. vulgaris with a particular signature SSR. There are 118 miRNA families to which P. vulgaris

miRNAs belong

In Fabaceae, eight signatures are absent in all miRNA
families, while 11 signatures are found only in one
miRNA family. In P. vulgaris, 32 out of 64 signatures are
absent in all miRNA families. The relative distribution of

the SSR signatures in the Viridiplantae, Fabaceae and P.
vulgaris is shown in Fig. 3.

Prediction of new miRNAs in P. vulgaris
The known Viridiplantae miRNAs from the miRBase 20
were used as query in the BLAST search with the EST
and GSS sequences of P. vulgaris as subject. From the
BLAST results satisfying the conditions mentioned in the
‘materials and methods’ section, a total of 141,724,357
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sequences were extracted with all possible lengths. These
sequences were used in BLASTX to identify and remove
the protein coding sequences. After removal, the number
of sequences reduced to 122,163,665. These sequences
were examined for the seven criteria mentioned in the
‘materials and methods’ section, and only those fulfilling
these criteria were retained as the predicted pre-miRs. In
case of multiple sequences resulted from a single BLAST
hit, the one which fulfils all the seven criteria with the
maximum MFEI and the maximum R was retained. Fi-
nally, 310 sequences were obtained and were designated
as putative pre-miRs in P. vulgaris. Extraction of the ma-
ture miRNAs from these 310 pre-miRs resulted in 208
new miRNAs, of which 201 are novel. These new miRNAs
belong to 118 miRNA families in P. vulgaris (Additional
file 2 Table S2). Fig. 4 shows a particular miRNA ‘pvu-
miR399a’ that fulfils all the seven criteria used for the
prediction.

The distribution of 208 newly predicted miRNAs in P
vulgaris varies among the 118 miRNA families (Table 2).
Four of the families namely MIR1533, MIR1527, MIR5021
and MIR848 are the most populated families with 15, 10,
10 and 7 members, respectively, while 85 families contain
only one member. In the remaining 29 families, the num-
ber of miRNA varies from 2 to 5. This is in accordance
with the diversity observed in other plant species [42].
The length distribution of newly predicted miRNAs (Fig. 5)
shows that the length of mature miRNAs fall within the
range of 15-24 nucleotides with an average length of 19
nucleotide (+1.6). However, miRNA pvu-miR848f is the
only exception with the length of 14 nucleotides.

Experimental validation of the predicted miRNAs in P.
vulgaris
Deep-sequencing of P. vulgaris small RNA library gener-
ated a total of 33,672,751 reads. The low quality reads as
well the reads with lower than 14 nucleotide length were
removed, resulting in 33,602,649 reads. The reads were
made unique using fastx_collapser. The sequencing data
obtained was BLAST searched with predicted miRNAs.
The presence of 97 (Additional file 3 Table S3) of the
predicted miRNAs in P. vulgaris is confirmed from the
sequencing data.

qRT-PCR was used to experimentally validate our com-
putational method and to compare the results with the se-
quencing data. A total of 5 computationally predicted
miRNAs were randomly chosen (Table 3) and qRT-PCR
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was done for these five miRNAs. Cr values were calcu-
lated using U6 snRNA as a normaliser gene. The relative
quantity of each miRNA to U6 snRNA was expressed
using the formula 272CT 143], where ACy = (Cr miRNA -
C1U6 snRNA) (Fig. 6). The expression profiles obtained
by qRT-PCR analysis mostly agreed with the expression
values obtained from the sequencing data of these 5 miR-
NAs (Fig. 7). For pvu-miR1519a, in qRT-PCR, the Ct
value obtained is quite high (34.4) indicating that it is a
very low expressed miRNA and this result correlated with
the sequencing data where the number of reads of this
miRNA is only 2 (TPM 0.06). For pvu-miR5368b, the
number of reads obtained from sequencing data is 1290
(TPM 38.4), the same value for pvu-miR5368a also, how-
ever, the relative expression obtained in qRT-PCR for pvu-
miR5368b is lower than that of pvu-miR5368a. This may
be due to the fact that pvu-miR5368b expression is rela-
tively low in leaves compare to other tissues. Several stud-
ies already have established that miRNA expression can
vary widely in different tissues or at different developmen-
tal stages [44, 45].

Computational validation of the prediction method

The computational method developed in this study was
used to predict the miRNAs of A. thaliana and the re-
sults were compared with known miRNAs of A. thaliana
(miRBase 20). The miRNAs from Viridiplantae excluding
those from A. thaliana and the genome of A. thaliana
were used as the inputs for prediction pipeline. A total of
229 miRNAs (Additional file 4 Table S4) were predicted,
of which 213 are already reported in miRBase 20. The
same procedure was repeated for G. max. A total of
462 miRNAs (Additional file 5 Table S5) were pre-
dicted, of which 397 are already reported in miRBase 20.
The performance of the prediction method is measured
using parameters sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV). Our
computational prediction method has a high sensitivity of
0.97 as well as high specificity of 0.99 (Table 4).

Prediction of the miRNA targets in P. vulgaris

The psRNATarget server was used to predict the miRNA
targets. The default sequences of the target candidates in
the server are of old version, hence the updated EST se-
quences of P. vulgaris from NCBI GenBank were used
as target candidates. For 130 miRNAs that belong to 69
families, 1303 target sequences were predicted. In order

Fig. 4 Secondary structure of a pre-miR (pvu-miR399a) showing the mature miRNA sequence highlighted in blue
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Table 2 Distribution of miRNAs within different miRNA families of P. vulgaris
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miRNA families

Number of members/family

MIR1533

MIR1527

MIR5021

MIR848

MIR167, MIR171

MIR156, MIR159, MIR166, MIR169, MIR6034

MIR319, MIR3440, MIR5054, MIR529, MIR5721, MIR6470, MIR902

MIR1514, MIR2606, MIR2673, MIR3442, MIR396, MIR4345, MIR477, MIR5261, MIR5368, MIR5558, MIR5654, MIR5998,
MIR6169, MIR829, MIR866

MIR1029, MIR1030, MIR1043, MIR1044, MIR1051, MIR1052, MIR1075, MIR1099, MIR1134, MIR1217, MIR1428, MIR1441,
MIR1519, MIR165, MIR1846, MIR1860, MIR1888, MIR1916, MIR2082, MIR2088, MIR2095, MIR2105, MIR2109, MIR2610,
MIR2873, MIR2934, MIR2938, MIR3444, MIR3630, MIR3633, MIR3711, MIR395, MIR3954, MIR3979, MIR398, MIR399,
MIR408, MIR419, MIR4224, MIR4225, MIR4243, MIR4245, MIR4246, MIR4413, MIR482, MIR5014, MIR5041, MIR5057,
MIR5083, MIR5140, MIR5169, MIR5176, MIR5177, MIR5179, MIR5213, MIR5248, MIR5255, MIR5264, MIR5281, MIR5298,
MIR5555, MIR5562, MIR5662, MIR5674, MIR5675, MIR5741, MIR5773, MIR5778, MIR5820, MIR6027, MIR6114, MIR6167,
MIR6171, MIR6196, MIR6214, MIR6479, MIR6484, MIR771, MIR773, MIR774, MIR831, MIR846, MIR861, MIR863, MIR919

15
10
10

Nw O,

to characterise the targets, BLASTX was used with the
predicted target sequences as query and the entire pro-
tein sequences of Viridiplantae as subject. Using 80 %
sequence identity cut-off, 318 targets for 95 miRNAs
were characterised (Additional file 6 Table S6). For
additional 339 targets for 80 miRNAs, the BLASTX
predicted uncharacterised and hypothetical proteins.
The hybridized structures of mature pvu-miR166d
with its two targets, EST 312062389 coding for UDP-

N-acetyl glucosamine pyrophosphorylase protein and
EST 312035414 coding for SNF1-related protein kinase
regulatory subunit are shown in Fig. 8.

Discussion

In the last decade, numerous studies confirmed that plant
miRNAs are directly involved in developmental processes
such as seed germination, morphogenesis, floral organ
identity, root development, vegetative and reproductive

No of miRNA sequences

16

Fig. 5 Frequency distribution of the length of mature miRNAs of P. vulgaris

20 24
Length of miRNA
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Table 3 Stem-loop reverse transcription primers for selected miRNAs

miRNA miRNA Sequence Primer sequences

pvu-miR1519a  AGUGUUGCAAGAUAGUCAUU

Reverse transcription primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAATGAC

Forward primer: CGGCGCAGTGTTGCAAGA
Universal reverse primer: CCAGTGCAGGGTCCGAGGTA

pvu-miR5054b  UGGCGCCCACCGUGGGG

Reverse transcription primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCCCAC

Forward primer: GGGGCCTGGCGCCCACCG
Universal reverse primer: CCAGTGCAGGGTCCGAGGTA

pvu-miR5368a  GGACAGUCUCAGGUAGACA

Reverse transcription primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGTCTA

Forward primer: CGGCGCCGGACAGTCTCAGG
Universal reverse primer: CCAGTGCAGGGTCCGAGGTA

pvu-miR5368b  UGUCUACCUGAGACUGUCC

Reverse transcription primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGACAG

Forward primer: CGGCGCCTGTCTACCTGAGA
Universal reverse primer: CCAGTGCAGGGTCCGAGGTA

pvu-miR1527j  UAACUCAACCUUAUAAAAC

Reverse transcription primer: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACG A

Forward primer: CGGCGCCTAACTCAACCTTA
Universal reverse primer: CCAGTGCAGGGTCCGAGGTA

phase change, flowering initiation and seed production
[46-51]. In addition to their important functions in organ
development, plant miRNAs play a crucial role at the core
of gene regulatory networks. They are involved in various
biotic and abiotic stress responses, [52—54] signal transduc-
tion and protein degradation [55]. Plant miRNAs also play
an important role in the biogenesis of small RNAs
(siRNAs) and in the feedback regulation of siRNA pathways.

In the present study, using computational methods, we
have identified 208 new miRNAs in P. vulgaris of which

201 are novel. Of these 208 predicted miRNAs, 97 were
validated through small RNA sequencing. In general,
computational prediction of miRNAs uses a highly con-
strained search space by setting fixed values to parameters
like AU content, MFEI and the length of the pre-miRs
[12, 13, 15, 16]. Constraining the parameters to a fixed
cut-off value reduces the number of predicted miRNAs. It
is already an established fact that the commonly used
parameters namely the length of pre-miRs, AU content
and MFEI are highly variable, ranging between 43-938,
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o
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Fig. 6 Expression profile of selected miRNAs from gRT-PCR analysis
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Fig. 7 Expression profile in TPM of selected miRNAs from sequencing data

17 %-92 % and 0.32-2.7, respectively. The distribution
of ND, Npb and NQ (Fig. 2) in miRNAs is significantly
different from other small RNAs, making them good
candidates as prediction parameters. However, there is
also an overlapping region in the distribution, which
can result in false positives while predicting using single
parameter. Thus using a combination of these parame-
ters will make the prediction pipeline more robust. In
the present study, instead of using the conventional com-
putational procedure, where all the prediction parameters
are set to a fixed value, we have used a 99 % probability
range. Initial application of fixed cut-off values for various
parameters resulted in only 26 new miRNAs in P. vulgaris.
This low number of miRNAs prompted us to use the 99 %
probability range with the anticipation of getting better
prediction. After using the 99 % probability range for
the first six parameters described in the ‘materials and
methods’ section, 2538 pre-miRs in P. vulgaris were
predicted, which is almost hundred times compared to
the conventional method. However, it should be noted
that the increased number includes both new predictions
as well as false positives. False positives are eliminated by
using the RNA folding parameters and conserved SSR
signature.

Table 4 Statistical parameters to measure accuracy of prediction

method

Parameter A. thaliana G. max
Sensitivity 097 097
Specificity 0.99 0.98
Positive predictive value 093 0.86
Negative predictive value 0.99 0.99

The presence of SSRs in pre-miRNAs is already estab-
lished [29-31], although their specific role in pre-miRs
is still unknown. Most of the SSRs in pre-miRs have few
steady characteristics, allowing their identification in
pre-miRs feasible. Thus conserved SSR signatures are a
potential parameter in predicting new miRNAs. In the
present study, we have used the conserved SSR signa-
tures as a prediction parameter. By using this parameter,
the predicted number of 2538 P. vulgaris pre-miRs was
reduced to 310. We have identified the SSR signatures
for all the Viridiplantae miRNAs present in the miRBase
20 (Additional file 1 Table S1), and these signatures can
be used for the identification of new miRNAs in any
species of Viridiplantae.

Along with the SSR, we have also used NQ, ND and
Npb in our prediction. After filtering the putative pre-
miRs through these four parameters, the length, AU con-
tent and MFEI for the predicted pre-miRs of P. vulgaris
vary from 55-105, 33-77 % and 0.42-1.2, respectively.
These values are in agreement with known pre-miRs in
Viridiplantae. These four independent parameters do not
restrict the physical and thermodynamic features of pre-
miRs to fixed values, and can be used for successful pre-
diction of new miRNAs in plants.

The miRBase 20 contains 7385 mature miRNAs of
Viridiplantae. Analysis of these 7385 miRNAs revealed
that more than 70 % of them belong to the 13 well-
studied plant species namely Medicago truncatula, Oryza
sativa, Glycine max, Brachypodium distachyon, Populus
trichocarpa, Arabidopsis lyrata, Solanum tuberosum,
Arabidopsis thaliana, Zea mays, Physcomitrella patens,
Sorghum bicolor, Prunus persica and Malus domestica.
Further we find that, each of these 13 species have more
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Fig. 8 Hybridized structure of mature miRNA with its targets. The mature miRNA forms the 5’ end and the target is at the 3’ end separated by 6
nucleotides. The pvu-miR166d with its two targets: (@) EST 312062389 coding for UDP-N-acetylglucosamine pyrophosphorylase protein regulated by
cleavage, (b) EST 312035414 coding for SNF1-related protein kinase regulatory subunit inhibited by translational regulation

than 200 mature miRNAs reported in the miRBase. In the
present study, prediction of the 208 mature miRNAs in P.
vulgaris is in accordance with this finding, thus justifying
our modified computational prediction method.

In order to validate the computationally predicted
miRNAs, small RNA library was prepared from the
Anupam cultivar of P. vulgaris. The quality reads with
more than 14 nucleotide length were BLAST searched
with the predicted miRNAs. Out of the 208 predicted
miRNAs, 97 are expressed in the sequenced sample.
The read numbers for miRNAs showed high diversity,
ranging from 1 to 37,259 for the expressed miRNAs.
Among these miRNAs, the miR166 family had the
most number of reads. For all the identified miRNAs,
transcript per million (TPM) was also calculated. The
dataset of known pre-miRs downloaded from the miR-
Base 20 contains miRNAs deposited from different
cultivars of P. vulgaris at different developmental
stages. However, the small RNA library created for
sequencing is from a single cultivar of P. vulgaris at a
particular stage of development, which makes it im-
possible for all the predicted 208 miRNAs to be present in
the sequence library. The presence of nearly fifty percent
of the predicted miRNAs in the sequencing data justifies
our method followed in computational prediction of
miRNAs.

Additionally, five randomly selected computationally
predicted miRNAs were validated using qRT-PCR. Rela-
tive expressions obtained in the qRT-PCR mostly cor-
roborated the sequencing data; only slight variation for
pvu-miR5368b can be attributed to the fact that miRNA
expression widely varies in different tissues and this
particular miRNA may have relatively low expression in
leaf tissues. The validation of the five randomly selected pre-
dicted miRNAs in both qRT-PCR and Illumina sequencing

substantiate our computational method for the prediction of
miRNAs.

All the newly predicted 208 miRNAs in P. vulgaris be-
long to 118 miRNA families. We find that of these 118
families, only 15 contain miRNAs distributed into 10 plant
species. Although, these miRNA families have a wide spe-
cies range, yet low number of miRNAs are present from
the species of Fabaceae family (Table 5). There are 21
miRNA families containing a single miRNA from one of
the species of Fabaceae, showing the under representation
of miRNAs of Fabaceae in the miRBase. Fabaceae, one of
the most important families in the Dicotyledonae [56], is
rich in high quality protein, providing high nutritional
food crops for agriculture all over the world. Our predic-
tion of 208 new miRNAs in P. vulgaris as well as identifi-
cation and characterisation of their targets will enrich the
present knowledge of Fabaceae miRNAs, and will defin-
itely help in deciphering the role of miRNAs in different
regulatory mechanisms.

miRBase 20 contains 427 mature miRNAs of A. thali-
ana of which 220 homologs are present in other species
of Viridiplantae. The rest of the known miRNAs (207)
from A. thaliana have no known homolog in other plant
species, making them difficult to predict. We have also
predicted 213 miRNAs of the known homologs from a
total prediction of 229 miRNAs in A. thaliana. Besides,
we also predicted 462 miRNAs in G. max of which 397
exists in miRBase 20 (97 % of 408 reported miRNAs).
This successful prediction not only validates our method,
but also establishes that the method can be applied to pre-
dict the miRNAs in any other plant species.

The prediction method can be evaluated using various
statistical parameters such as sensitivity, specificity, PPV
and NPV. Sensitivity measures the proportion of miRNAs
which are correctly identified by the prediction pipeline,
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Table 5 Distribution of Fabaceae species in various miRNA

families

miRNA  Number of Viridiplantae species Number of Fabaceae species
Family

156 48 3
159 35 2
166 42 3
167 37 4
169 36 3
171 41 4
319 34 6
395 30 3
39 42 5
398 30 2
399 30 4
408 32 5
482 23 5
529 10 1
1514 2 2
1519 1 1
1527 1 1
1533 1 1
2088 1 1
2109 2 2
2606 2 2
2610 1 1
2673 1 1

whereas specificity measures the proportion of sequences
which are correctly rejected. Our prediction method
shows both high sensitivity and specificity when tested for
known miRNAs of A. thaliana and G. max (Table 4). The
parameters PPV and NPV measures the probability of pre-
dicted or rejected sequences to be true miRNAs or not,
respectively. Higher values of PPV and sensitivity give us a
high confidence for a positive prediction, while higher
values of NPV and specificity give us high confidence for
the rejection

Recently, numerous studies suggested that the gen-
omic distribution of SSRs are nonrandom, and the SSRs
located in gene or regulatory regions play important role
in chromatin organization, regulation of gene activity,
recombination, DNA replication, cell cycle, mismatch re-
pair system [57, 58]. The transcriptome survey of several
plant species showed the high abundance of di- and tri-
nucleotide repeats compare to tetra-, penta- and hexa nu-
cleotide repeats; (AT), repeat being the most frequently
occurring microsatellites in plant genomes [59-63]. The
microsatellites in the genomic sequences play vital role in
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the biogenesis of several small non-coding RNAs, of
which most important are the miRNAs. Transcriptome
analysis of several plants revealed that a significant per-
centage of the unigenes constitutes ‘SSR bearing pre-
miRNA candidates’ [58], suggesting that SSRs are an
important component of pre-miRs. SSRs in pre-miRs
are derived from independent transcriptional units and
often relate to function [32]. Variations of SSRs within
pre-miRs are very critical for normal miRNA activity as
expansion or contraction of SSRs in pre-miRs directly
affects the corresponding miRNA products and may
cause unpredicted changes [32]. These characteristics
features foster exploit of SSR signature as a critical param-
eter in miRNA identification [32]. The number of miRNAs
predicted in the traditional method is too low and we
have introduced 99 % probability region for increasing
the search space. However, this has increased the num-
ber of false predictions. As a result of this, the number
of miRNAs predicted before the SSR filtering step for
A. thaliana and G. max are 2082 and 3541, respectively.
In spite of these high numbers of predictions, by using
SSR the final numbers of predicted miRNAs were re-
stricted to 229 and 462, respectively in these two species.
The specificity of our prediction method improved from
0.62 to 0.99 in A. thaliana and 0.49 to 0.98 in G. max, by
applying SSR filtration step. Thus SSR signatures act as an
effective filtering parameter in limiting the number of false
positives to acceptable limits.

The mature miRNA sequences and EST sequences of
P. vulgaris were submitted to the psRNATarget server
for the prediction of targets. The parameters were ad-
justed as described in ‘materials and methods’ section
for better prediction. The hpsize [64] was changed ac-
cording to the length of miRNA, as the server uses a
value assuming the length of miRNA as 20 nucleotides.
The miRNAs with length lesser than hpsize were ig-
nored by the server pipeline. The length of the miRNAs
predicted in the present study varies from 14—24 nucleo-
tides. The sequence length of central mismatch was also
changed according to the length of the miRNA. This
parameter helps to predict the targets inhibited by trans-
lational regulation and has no effect on targets inhibited
by cleavage of mRNA sequence [65]. Further, the max-
imum expectation value was set to 2.0 for stringent fil-
tering of false positive targets predicted by the server.

In the present study, 1305 targets were predicted for
130 miRNAs. Of these 1305 targets, functional informa-
tion was retrieved for 318 targets distributed in 46
miRNA families. In majority of the cases, the predicted
targets in this study were in accordance with the already
published reports in other plant species. Yu et al. [66]
showed that miR156 family control plant development
by regulating the trichome growth in Arabidopsis. 1t is
already established that MYB transcription factors are the
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negative controllers of the trichome growth. The miR156
family targets the MYB transcription factor mRNAs, and
by cleaving these transcription factors they positively con-
trol the trichome growth. We also found that the predicted
pvu-miR156d target the MYB transcription factors. In the
present study pvu-miR166d was predicted to target kinase
mRNA, which is in agreement with the reported target
kinase for miR166 family in soybean [67]. Calvino and
Messing [68] established that miR169 family in Sorghum
targets the carboxypeptidase mRNAs. Similarly, in the
present study, pvu-miR169b was predicted to target the
carboxyl-terminal-processing protease. Scarecrow-like
transcription factor is already an established target for
miR171 family in Arabidopsis [69] and Oryza sativa [70].
Similar results were obtained in our study where pvu-
miR171a was predicted to bind Scarecrow-like tran-
scription factor. ATP sulfyrylase responsible for sulphur
(S) uptake and assimilation is the target for miR395
family in Arabidopsis [69], rice [70] and soybean [67].
Newly identified pvu-miR395a was also predicted to
target the ATP sulfyrylase. In Arabidopsis, it was found
that miR396 family targets the tubulin mRNAs [71]. Our
prediction was in accordance with this finding, showing
that pvu-miR396b targets gamma tubulin. Basic blue pro-
teins (Plantacyanins) are validated targets for miR408
family in Arabidopsis and rice [70, 72]. Similar target was
predicted for pvu-miR408a. The predicted target fatty acid
desaturase of pvu-miR902c in our study is in agreement
with the findings of Wan et al. [73] showing that the
targets of miR902 are primarily involved in lipid
metabolism.

Conclusion

In this study, we have used computational method to
identify new miRNAs in P. vulgaris and few of them
were experimentally validated. We have used conserved
SSR signatures to predict new miRNAs. We have identi-
fied 208 new miRNAs belonging to 118 different families
of miRNAs in P. vulgaris, of which 201 are novel. We have
also predicted 1305 targets for 130 of these miRNAs. We
successfully predicted known miRNAs in A. thaliana and
G. max using our method. Presently, numerous miRNAs
from various plant species have been identified and char-
acterized by the aid of next-generation sequencing. How-
ever, there is still inadequate information of miRNAs in
many plant species. Identification of new miRNAs in all
plant species and deciphering their functions is the
present day challenge in biological discoveries. Wet-lab
experiments have their own limitations and the alter-
nate approach is in silico methods for miRNA studies.
In silico methods can rapidly identify new miRNAs and
their targets in any species. The computational approach
that we have developed can be successfully applied to
identify new miRNAs and their targets in any plant
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species, and is expected to generate an optimal frame-
work for deciphering the biogenesis, functions, and mech-
anisms of plant miRNAs that are not yet discovered.

Methods

Data collection and preparation

The Viridiplantae pre-miRs were downloaded from the
miRBase 20 (Release 20: June 2013) [74] and used as the
standard dataset of known pre-miRs. The small RNAs
belonging to different families were downloaded from Rfam
11 [75] for comparative analysis of various parameters. The
miRBase 20 contains 24,521 pre-miRs, of which 6088
belong to Viridiplantae. Besides, we have also downloaded
125,490 Expressed Sequence Tags (ESTs) and 92,534
Genomic Survey Sequences (GSSs) of P. vulgaris (txid3885)
from the GenBank [76]. Removal of the redundant se-
quences resulted in 2560 Viridiplantae pre-miRs, and
122,157 EST and GSS sequences of P. vulgaris. Protein
sequences of P. vulgaris were downloaded from the
protein database (http://www.ncbi.nlm.nih.gov/protein).
Genomes of A. thaliana [77] and G. max [78] were down-
loaded from Phytozome [79].

Analysis of known precursor sequences

All the downloaded 6088 Viridiplantae pre-miRs were
used to calculate the length of pre-miRs sequences (L),
AU content and MFEL The structures with the minimum
folding energy was generated using RNAfold [80]. The
MFEI value was calculated using the Adjusted MFE
(AMFE), which represents the MFE for 100 nucleotides.

-MFE
amre = “MFE 100
AMFE
MFEl = ——— —
(G+C)%

The genRNAstats program [81] was used to calculate
the NQ, ND and Npb for all known pre-miRs of Viridi-
plantae. Npb is the measure of total number of base
pairs present in the RNA secondary structure per length
of the sequence, and the value can range from 0.0 (no
base-pairs) to 0.5 (L/2 base-pairs) [82]. The base-pairing
probability distribution (BPPD) per base in a sequence
were measured using NQ [83], while the base-pair dis-
tance for all the pair of structures were measured using
ND [84]. Both the parameters ND and NQ were calcu-
lated from the base-pair probability p; between bases i
and j.

NQ=- % Zpij' log, (Pij)

i<j


http://www.ncbi.nlm.nih.gov/protein

Nithin et al. BMC Plant Biology (2015) 15:140

1
D=3 p(1-0)
i<j

The miRBase 20 classified Viridiplantae miRNAs into
1892 families. We have checked the presence of con-
served SSR signatures within the pre-miRs of all these
families. The conserved SSR signatures were counted in
all sequences for window size ranging from three to six.
Due to the variable length of the pre-miRs, the SSR sig-
natures were normalized per 100 nucleotides by the fol-
lowing equation.

_ Number of SSR signatures
B L

R x 100

Prediction of new miRNAs in P. vulgaris

BLAST search [85] was performed using the non-
redundant dataset of Viridiplantae pre-miRs as query
and non-redundant dataset of EST and GSS sequences
of P. vulgaris as subject, with an e-value cut-off of 1000,
word size 7 and mismatch less than 4 [86]. The upstream
and (or) downstream sequences with all possible lengths
ranging from 55-505 were extracted from EST and GSS
sequences that aligned with the miRNAs. In order to
remove the protein coding sequences, an ungapped
BLASTX with the sequence identity cut-off >80 % was
performed with all the extracted sequences as query and
the protein sequences of P. vulgaris as subject. After re-
moval of the protein coding sequences, remaining se-
quences satisfying the following criteria were designated as
the predicted precursor sequences: (i) formation of an ap-
propriate stem-loop hairpin secondary structure with mini-
mum free energy of folding and MFEI > 0.41, (ii) a mature
miRNA sequence located in one arm of the hairpin struc-
ture, (iii) miRNA sequence having less than 6 mismatches
with the opposite miRNA* sequence on the other arm of
the hairpin structure, (iv) without any loop or break in
miRNA* sequence, (v) AU content of the sequences within
the range 22-77 %, (vi) values for the parameters NQ, ND
and Npb should be <0.45, < 0.15 and > 0.25, respectively
and (vii) presence of SSR signature in the corresponding
miRNA family with R >2.5. In case of multiple sequences
resulted from a single BLAST hit, the particular sequence
that fulfils all the above seven criteria along with the
maximum values of MFEI and R was chosen. The above
mentioned steps are presented in a schematic diagram
in Fig. 9. Mature miRNAs were extracted from the pre-
dicted pre-miRs satisfying the above criteria.

Experimental validation of predicted miRNAs of P. vulgaris
Plant material

Healthy seeds of Anupam cultivar of P. vulgaris were
surface sterilized with 0.5 % Sodium hypochlorite and
germinated in dark at 28 °C for 2 days. Germinated
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seeds were allowed to grow in soilrite in BOD at 24 °C
for 10 days. Seedlings of 10 days old were sent in RNA-
later (Sigma-Aldrich) to Genotypic-Bangalore, India, for
further library preparation and sequencing.

Sequencing

Library preparation was performed at Genotypic Technol-
ogy’s Genomics facility following certified protocols from
NEXT Flex. Small RNA libraries for sequencing were con-
structed according to the NEXTflex™ small RNA library
protocol outlined in NEXTflex™ Small RNA Sequencing
Kit - 5132-02. 1.6 ug of total RNA was used as the start-
ing material. Briefly, 3" adaptors were ligated to the spe-
cific 3OH group of small RNA followed by 5" adaptor
ligation. The ligated products were reverse transcribed by
priming with reverse transcriptase primers. The cDNA
was enriched by PCR (12 cycles) and size selection was
done using 8 % polyacrylamide gel. The library was size
selected in the range of 140 — 160 bp, followed by over-
night gel elution and salt precipitation using glycogen,
3 M sodium acetate and absolute ethanol. The precipi-
tate was re-suspended in resuspension buffer. The pre-
pared library was quantified using Qubit fluorometer,
and validated for quality by running an aliquot on high
sensitivity Bioanalyzer Chip (Agilent). The Bioanalyzer
profiles showing fragments between ~130 to ~160 bp
with insert size being ~10 to ~40 bp were sent for
sequencing.

Sequencing data analysis

The quality reads from the sequencing data were extracted
and the adapter sequences were removed using cutadapt
[87]. The sequences smaller than 14 nucleotides were re-
moved. The reads were made unique for easy analysis
by using fastx_collapser (http://hannonlab.cshl.edu/
fastx_toolkit/index.html). The predicted miRNAs of
P. vulgaris were BLAST searched against the sequen-
cing data to validate the predictions.

Small RNA isolation

Small RNA was isolated from leaves of 10 days old seed-
lings of Anupam cultivar using mirPremier microRNA
isolation kit (Sigma-Aldrich) according to the manufac-
turer’s instruction. The quality and quantity of the iso-
lated small RNA was measured using a microvolume
spectrophotometer (JENWAY 7310) and stored at 20 °C.

cDNA synthesis and primer design

Small RNA was reverse transcribed to cDNA using stem-
loop reverse transcription primers for miRNAs as listed in
Table 3 following a pulsed RT reaction [88]. Stem-loop
primers, forward and reverse primers were designed ac-
cording to Kramer [89]. A three step pulsed RT reac-
tion was performed; an initial denaturation step at 80 °
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C for 5 min containing 20 ng of small RNA and 1 pM
of each gene specific primers, followed by primer an-
nealing incubation step at 60 °C for 5 min, followed by
final addition of reaction mixture containing 500 pM
dNTP, 1X buffer, RNase inhibitor and enhanced avian re-
verse transcriptase (Sigma-Aldrich).

Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)
qRT-PCR reactions were carried out for the five selected
miRNAs in a Bio-Rad CFX96 Real-Time PCR system
using Bio-Rad iQ SYBR green supermix. Gradient PCR
(50 °C-60 °C) was performed to select the ideal anneal-
ing temperature of 58 °C for the amplification of U6
snRNA (endogenous control) and selected miRNAs. The
reaction mixture containing 1X SYBR green supermix,
350 nM of each gene specific forward and reverse
primers and cDNA (100 ng) was then incubated at 95 °C
for 2 min,, followed by 40 cycles of 95 °C for 10 s and
58 °C for 20 s. Melting curve analysis was carried out to
verify the specificity of each amplicons. Each amplifica-
tion reaction was done in triplicate and the specificity of
amplicons was confirmed by the presence of a single
peak. Standard curve was prepared for U6 snRNA using
a twofold dilution.

Computational validation of the prediction method

The computational method developed in this study to
predict miRNAs was validated by predicting known
miRNAs in A. thaliana and G. max. The known miRNAs
(excluding those from A. thaliana) from Viridiplantae and

Table 6 Adjusted parameters for miRNA target prediction using
psRNATarget server

Length of  Length for complementarity ~ Range of central mismatch
miRNA scoring leading to translational
inhibition

14 14 6-8

15 15 7-8

16 16 7-9

17 17 8-9

18 18 8-10

19 19 9-10

20 20 9-1

21 21 10-11

22 22 10-12

23 23 11-12

24 24 11-13
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the genome of A. thaliana were used as inputs for val-
idation. Similar procedure was followed for G. max. The
sensitivity, specificity, PPV and NPV for the prediction
was calculated from true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) using
following equations.

S itivit e
ensiLivi =
Y TP  FN
Specificity = ———
pecfieity = 4 Fp

TP
PV = ———
PPV TP+ FP
NPV = ————
TN +FN

Target prediction of new miRNAs

The targets for mature miRNAs were predicted using
psRNATarget server [90] by submitting the mature
miRNAs as query and the EST sequences of P. vulgaris
as subject. To reduce the number of false predictions,
the maximum expectation threshold was set to a strin-
gent value of 2.0. The nucleotides for complementarity
scoring, hpsize [64] were selected as equal to the length of
the mature miRNAs. The maximum energy of unpairing
(UPE) the target site was set as 25 kcal [64]. The flanking
length around the target site was selected as 17 nucleotides
upstream and 13 nucleotides downstream [91]. Due to the
variable length of the mature miRNAs, the sequence range
of the central mismatch was adjusted (Table 6). To predict
the function of the target sequences, BLASTX was per-
formed against the protein database of the Viridiplantae
using 80 % sequence identity cut-off.
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