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Abstract

Background: Genomic studies are routinely performed on young plants in controlled
environments which is very different from natural conditions. In reality plants in temperate
countries are exposed to large fluctuations in environmental conditions, in the case of perennials
over several years. We have studied gene expression in leaves of a free-growing aspen (Populus
tremula) throughout multiple growing seasons

Results: We show that gene expression during the first month of leaf development was largely
determined by a developmental program although leaf expansion, chlorophyll accumulation and the
speed of progression through this program was regulated by the temperature. We were also able
to define "transcriptional signatures" for four different substages of leaf development. In mature
leaves, weather factors were important for gene regulation.

Conclusion: This study shows that multivariate methods together with high throughput
transcriptional methods in the field can provide additional, novel information as to plant status
under changing environmental conditions that is impossible to mimic in laboratory conditions. We
have generated a dataset that could be used to e.g. identify marker genes for certain developmental
stages or treatments, as well as to assess natural variation in gene expression.

Background

The plant leaf is a fantastic organ that provides the plant,
and ultimately mankind, with carbohydrates that are
essential for growth and maintenance. In many species
leaf morphology is remarkably plastic, the shape and size
of leaves that develop under diverse conditions may differ
substantially both in plants of the same species and even
on individual plants [1]. Leaf differentiation is controlled
by a genetic program, but to allow for plasticity in leaf
shape, the developmental program is modified by envi-

ronmental factors [2]. After the cell expansion phase, sec-
ondary cell wall formation occurs and the cell is
subsequently unable to change its shape. However, devel-
opmental programs continue to modify gene expression
in the leaf in adaptive responses that optimize its capacity
to perform its main function, photosynthesis.

In most plants leaves are formed from apical meristems
throughout the course of their vegetative development
and leaves at various developmental stages may often be
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present. Most trees also have an indeterminate growth
pattern, forming leaves throughout the growing season
and leaf plastochron indices (LPIs) can sometimes be
used to describe the different leaf developmental stages
along the stem [3]. Some trees, however have determinate
growth, whereby all leaves for the next growing season are
formed but developmentally arrested in winter buds that
will flush in a synchronized manner the following spring.
Leaf development from winter buds of trees is a somewhat
unusual developmental pathway. In the bud, leaf devel-
opment is arrested at an early stage, internode elongation
is inhibited and, if the tree has a determinate growth pat-
tern, most or all leaves that will develop in the coming
season overwinter in the bud. When buds are reactivated
in the spring, most leaf expansion is thought to be result
from cell expansion, but cell division also occurs and the
temporally overlapping cell division and expansion deter-
mine the final size and shape of the leaves [4,5]. Young
aspen trees typically have an indeterminate growth pat-
tern and produce new leaves until the critical day length
has been reached, when growth arrest and bud set occur.
Fully-grown aspens, and many other tree species, in Swe-
den (where the growing season is short) have however
only one flush, so at a given date all leaves are of identical
age.

The interaction between environmental and developmen-
tal factors that influence leaf development and gene
expression can be addressed in several ways, for example
by analysing plants with mutations that affect leaf devel-
opment [6] or by exposing plants to highly controlled
conditions and measuring changes in gene expression or
developmental parameters following changes in specific
variables [7]. A third strategy that has been much less fre-
quently employed is to monitor leaf development and
gene expression under natural, uncontrolled conditions
[8]. There are considerable challenges in such an
approach. For example, stochastic changes in weather
parameters or biotic interactions may obscure the main
intrinsic processes regulating leaf gene expression and
development, and when responses are measured bias in
the selection of the measured parameters may influence
the results. In attempts to generate interpretable data
regarding the complex phenomena and highly interacting
factors involved, we are combining several scientific
approaches, including high throughput genomic analyses
to measure gene expression (or at least mRNA levels),
together with morphological, physiological and ecologi-
cal evaluations of plants grown under natural conditions.
We have shown that multivariate statistical treatment of
gene expression data from leaves of an aspen tree grown
under uncontrolled, highly variable, conditions can be
analyzed to separate developmental, or rather leaf age-
dependent, factors from environmental factors influenc-
ing gene expression [8]. This prompted us to embark on a
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project to analyse the global pattern of gene regulation in
leaves of a tree grown under natural conditions in the
most efficient way, to complement data on gene expres-
sion in leaves in the model annual plant Arabidopsis
[9,10].

Instead of running DNA microarrays on samples from
every day, we believe that a strict sample selection scheme,
guided by experimental design and multivariate statistics,
aiming at maximizing the information content in the
results, can be used. Considering that our experimental
tree has determinate growth and based on our previous
studies, the life span of an aspen leaf could be divided into
three phases. Early in the season (in Um ed from late May
up to late June) leaves develop from buds, reach maturity
and at the end of the season they senesce. In between,
there is a time window when the leaf is neither growing
nor senescing. Based on expression data from eleven
genes, we have shown that the changes in gene expression
are larger in early and late season, whereas in the middle
season, gene expression is more constant [8]. When the
leaf is not growing, but has not yet started to senesce, gene
expression is, in theory, only needed 1) if the protein
composition of the leaf should be changed due to changes
in environmental conditions or 2) to replace proteins that
have been degraded. Therefore this time period is maxi-
mally informative to analyse environmental influences on
gene expression.

This study aims to answer several questions about gene
regulation in aspen leaves. For example, can DNA micro-
arrays best be used to get high-quality expression data to
faithfully monitor the biosynthetic activities in leaves of a
tree growing under natural, uncontrolled conditions?
Which weather factors are most important for determin-
ing mRNA levels? How similar, or different, is gene
expression in the same individual if several seasons are
compared? To do so we have constructed a timetable for
gene expression during the entire course of aspen leaf
development from initiation through to senescence and
have pinpointed environmental effects during different
phases of the growing season.

Results

The developmental pattern in gene expression over the
season could be visualized using DNA microarrays

We first wanted to gain a physiological overview of leaf
development, which we defined using leaf size (expan-
sion) and chlorophyll accumulation. This showed that
chlorophyll accumulation lagged behind the onset of
expansion by one week but then continued for another 2
weeks after leaves had stopped expanding (Figure 1). Bud
burst in trees can be accurately modelled by calculating
the temperature sum or 'day-degrees' above a certain
threshold temperature (typically +1°C to +5°C), after the
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release from dormancy [11]. We wanted to see if temper-
ature also regulated leaf expansion and chlorophyll accu-
mulation in leaves of aspen. It is not known exactly when
release from endodormancy occurs in aspens, but it is cer-
tainly long before the end of March (Rishikesh Bhalerao,
pers. comm.). If leaf length was plotted against tempera-
ture sum, using a threshold temperature of +1°C, there
was an almost perfect linear fit between leaf length and
temperature sum (R2 = 0.97), illustrating the temperature
dependence of leaf expansion up to June 19, when the
temperature sum reached 500 (data not shown). Moreo-
ver, if chlorophyll levels were compared with temperature
sum, again an almost perfect fit was found, up to June 28,
corresponding to temperature sum 700. Thus, tempera-
ture appeared to be the major determinant of leaf expan-
sion and chlorophyll accumulation from bud burst up to
the stage when the leaf was fully developed.

In the first part of this project, we focused on genes prima-
rily regulated by leaf age/developmental stage. We had
sampled leaves from our experimental tree every day for
several years, and could therefore choose among many
different leaf samples for analysis with microarrays. Most
informative in this respect would be samples where all
weather parameters were as similar as possible, whereas
the difference in developmental stage would be as large as
possible. Therefore, we wanted to select sampling days
spread throughout the growing season with similar
weather conditions. To do so in a statistically stringent
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way, we applied Principal Component Analysis (PCA) to
weather data recorded by a weather station about 200 m
from the studied tree (for details see Material and meth-
ods). An overview of the weather conditions throughout
the growing season in the year 2000 have been published
previously [8]. From the PCA representation of the calcu-
lated weather parameters for each day [See Additional file
1 and 2], we selected ten days evenly spread over the grow-
ing season. The weather on the selected days was sunny
with maximum day temperatures between 10 and 20°C.
We also included an additional sample (July 18) [see
Additional file 3], in the middle of the season, in which
the weather was significantly different (rainy).

We analyzed gene expression in the eleven selected dates,
using DNA microarrays, in four replicates against a com-
mon reference. Slides with poor quality due to uneven
hybridization were removed from further analysis. We
then applied PCA to obtain an overview of the dataset
and, in an unsupervised manner, summarize the variation
in gene expression in the samples (Figure 2). The eleven
samples from the whole growing season showed a very
clear developmental trend, as illustrated by the PCA score
plot [see Additional file 4]. The fact that replicated sam-
ples clustered closely together illustrate the high reproduc-
ibility of our array analysis. A time line could be drawn
through the diagram, in which the samples appeared in a
chronological order. This shows the success of the
approach we used to select samples for the experiment,
since noise in the gene expression profiles due to stochas-
tic environmental factors was largely eliminated, allowing
the effects of the developmental program to be clearly dis-
tinguished.

Most of the changes in developmentally regulated gene
expression appeared to occur before July 1, when leaves
were expanding and internal structures are formed. These
observations prompted us to analyze gene expression in
more detail, in order to improve the temporal resolution
of the analysis, during this phase. For this reason we
included in the experimental setup three additional sam-
ples for analysis during the same time period. In addition,
we decided to also include another seven samples from
the same time period, but from another year (2002). This
year was chosen since the weather during this period in
2002 was unusually warm, while May and June 2000 were
unusually cold, and it could therefore inform about how
temperature influenced gene expression during the time
of leaf development.

We analyzed all these arrays in the same way as men-
tioned above. An overview of the total pattern of gene
expression over two seasons confirms that the major
changes in gene expression occurred during the first
month after bud burst. The first dimension (t1) of the
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Overview of gene expression in leaves of free-grow-
ing aspen during the growing season. Comparison of
gene expression in leaves of free-growing aspen during the
growing season of 2000 (grey circles) and 2002 (white cir-
cles). The first two principal components obtained from the
PCA analysis of the microarray data are shown. Temperature
sums (day degrees, see Material and methods) for the days of
sampling are indicated, while la, Ib, Ic, Id, Il and Il corre-
sponds to gene expression sub-phases, described in the text

PCA score plot (Figure 2), which describes most (37%) of
the variation, separates the samples from May and June
from the remaining samples, showing that the main dif-
ferences in gene expression occurred before July 6 2000
and 1 July 2002. The second dimension (t2), which
describes 15% of the variation, sorts primarily the rest of
the samples in chronological order, and clearly separates
the July 6 and September 12 samples from the others.
However, the samples from August 3 to August 29 were
not convincingly separated from one another in either the
first or second dimension. Apparently, during July and
August, leaf-age dependent changes in gene expression
were minor, and there were no clear developmental trends
in gene expression, especially during the period around
August 1 (Figure 2). As the season progressed, larger
changes in gene expression occurred and the expression
profile of the sample from September 12 was quite differ-
ent from that of all preceding samples. This coincides, of
course, with early stages of the autumn senescence proc-
ess, although chlorophyll degradation has barely started
by this date, and visible leaf senescence does not occur
until long after it [12,13]. The sample from July 18, when
the weather was different, did not stand out as an obvious
outlier.

http://www.biomedcentral.com/1471-2229/8/61

Temperature determines the rate of progression through
the leaf developmental program

Inclusion of samples from two seasons not only increases
the resolution of the analysis at these growth stages, but
also provides additional information concerning the rela-
tionship between development and environmental fac-
tors, since the weather in June 2000 and June 2002 was so
different. However, the transcriptomes of all samples
could by large be connected with a single curve, implying
that although the leaves were exposed to different weather
conditions in 2000 and 2002, they went through basically
the same 'linear' developmental program, i.e. patterns of
gene expression changed in a predetermined way that was
only to a minor extent influenced by the weather condi-
tions. However, the leaves clearly went through this pro-
gram at different rates in the two years. In 2000 the
program started later (i.e. bud burst was later) and the
leaves progressed along the developmental axis much
more slowly than in 2002; May 27 2002 corresponded to
June 3 or 4 in 2000, whereas the gene expression profile
on June 3 of 2002 was similar to that of June 16 in 2000
(Figure 2). We therefore wanted to find out whether or not
the state of the transciptome, not only leaf expansion and
chlorophyll accumulation, was also determined by the
temperature sum. We calculated temperature sums from
January 1 for the years 2000 and 2002. The cumulative
sum of day degrees, indicated in Figure 2, showed that
days in the 'transcriptome state' correlated almost per-
fectly with the temperature sum, consistent with the
hypothesis that not only bud burst, leaf expansion and
chlorophyll accumulation but the whole process of leaf
development, from bud burst until the leaves were
mature, depended on the temperature sum.

Based on these findings, we subdivided the 'leaf develop-
ment period' e.g. the time period covered by the array
experiments for the two years (Phase I) into sub-phases.
We assigned the samples from May 25 2000, June 1 2000
and May 27 2002 to Phase Ia (temperature sum 250-
400), the samples from June 9 2000 and May 30 2002 to
Phase Ib (temperature sum 400-450), from June 15 2000
and June 3 2002 to Phase Ic (temperature sum 450-500)
and from June 22 2000, June 10 2002, June 29 2000 and
June 17 2002 to Phase Id (temperature sum 500-750).
Since the leaves entered Phase II (‘mature leaves') after
June 29 2000, the samples from June 24 2002 and July 1
2002 were assigned to Phase II. The transition from Phase
Ia to Ib coincided with the start of chlorophyll accumula-
tion, and thus chloroplast development, in the leaves and
the transition from Phase Ic to Id corresponded to when
leaves stopped elongating (Figure 1). The temperature
sum that appeared to be necessary for the leaf to complete
Phase I and enter Phase II was therefore around 350. The
whole process, from the first comparable transcriptional
stage (late Phase Ia, May 27 2002 comparable to June 3-
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4 2000) to Phase II took about 25 days in 2000 but only
14 days in 2002, illustrating the strong impact of temper-
ature on the role of leaf development.

Gene expression during leaf development reflected key
cellular events

Translating the information in expression data to biologi-
cally relevant information is a major task for biologists
engaged in transcriptomic analyses. Having defined a
number of leaf transcriptome phases and placed them on
two year's calendars, we aimed to describe the transcrip-
tional activities at each of the phases, to allow us to draw
conclusions about the main cellular activities at each
developmental stage. The microarray technique still gives
rather noisy data and studies of groups of genes in appro-
priate functional classes gives much more robust data
than analyses of individual genes [14]. Therefore, we
ordered the samples from year 2000 and 2002 according
to their respective developmental stage, as described
above, and examined the gene expression patterns in the
dataset, which can be viewed in UPSC-BASE [15]. In order
to determine, in an unsupervised manner, the main met-
abolic activities during each of the Phase I sub-phases we
classified the array elements on the Populus microarrays
according to the Gene Ontology (GO) classifications of
the closest Arabidopsis orthologues. We subsequently iden-
tified the GO classes, using the GOstats package in Bio-
conductor [16], that were significantly over-represented in
the sets of up-or down-regulated genes in each of the sam-
ples, ordered according to temperature sum/leaf develop-
mental stage. In Figure 3 and Additional file 5, GO
categories that were over-represented in up-regulated
genes are colored red, while those with significant over-
representation in down-regulated genes are colored green.
During Phase Ia leaves are expanding but chlorophyll
accumulation has not yet started (Figure 1). The major
transcriptional pattern during Phase Ia is a heavy up-regu-
lation of genes coding for ribosomal proteins (e.g. genes
in the Protein biosynthesis and Ribosome biogenesis
classes) and histones representing classes, such as Chro-
matin assembly and chromosome organization. Other
up-regulated GO classes include Cell organization and
microtubule-based processes, and DNA metabolism.
Expression of many genes with a role in the cell prolifera-
tion or pattern formation, such as Cyclin dependent
kinase (PttCDKB2) (PU00348) [17], YABBY-like tran-
scription  factor  (PU09301, PU09931, PU09586,
PU08954, PU26269, PU09515) [18], retinoblastoma
(PU09599, PU01146) [19] and Aintegumenta (PU04170,
PU05886, PU02438) [20,21] were also strong during this
phase. Many classes of genes were expressed at very low
levels in Phase Ia, including genes related to photosynthe-
sis, secondary metabolism, and responses to many biotic
and abiotic stimuli such as light/radiation, oxidative
stress, water, pathogens, wounding etc. Genes involved in
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Heatmap of the over-represented Gene Ontology
categories in the spring samples. The samples from the
spring 2000 and 2002 are ordered according to developmen-
tal leaf age. Red squares are categories over-represented in
significantly up-regulated genes and green squares are cate-
gories over-represented in significantly down-regulated
genes. Divergent groups that were over-represented in both
up- and down-regulated genes are plotted as yellow squares.
This figure shows selected categories of interest, for the full
image please see Additional file 5.

ethylene biosynthesis were weakly expressed in Late Phase
Ia and early Ib. During Phase Ia, the leaf is rapidly growing
and this growth is apparently accompanied by significant
cell division activity whereas many of the metabolic path-
ways typical of leaves, such as photosynthesis, secondary
metabolism and stress responses, are kept on hold.

In Phase Ib, the GO classes that are typically highly
expressed in Phase Ia (Ribosomal proteins, Histones,
DNA metabolism etc.) are not over-represented. Thus, cell
division activities appear to occur mainly in a short period
of time in aspen leaves developing from winter buds.
However, the expression levels of genes encoding compo-
nents of the photosynthetic apparatus and chlorophyll
biosynthesis increased strongly. Several categories of pro-
teins related to lipid metabolism (Fatty acid biosynthesis,
Lipid transport, Lipid biosynthesis) were also up-regu-
lated in Phase Ib. The categories Carbohydrate metabo-
lism, Cell wall organization and Biogenesis were also
over-represented in Phase Ib, consistent with Phase Ib
being a phase where cell elongation mainly occurred.
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Classes with particularly low expression in Phase Ib
included Lignin biosynthesis, indicating that secondary
cell wall formation had not yet started. Clearly, cells were
rapidly elongating, the primary cell wall was synthesized
and the proplastids were developing into chloroplasts
during this phase. At the individual gene level, tubulins
were up-regulated throughout both Phase Ia and Ib. The
expression of several genes involved in cell wall biosyn-
thesis peaked in these sub-phases, including genes encod-
ing expansin (exp1, in contrast to other expansin genes,
for which expression levels were highest in Phase Id), ara-
binogalactan proteins AGP18, AGP20 FLA10, proline-rich
protein (PRP4), pectin methylesterase-like protein, a ger-
min like protein (GER3) and pectate lyase. A cellulose
synthase began to be highly expressed in Phase Ib and its
expression level remained high up to the beginning of
phase II. The high expression of genes coding for photo-
synthetic proteins and enzymes in pigment biosynthesis
also continued in Phases Ic and Id. In addition, categories
such as Lipid transport and Cell wall organization and
biogenesis were highly expressed. Overall, there were con-
siderable similarities between the Phase Ib and Ic tran-
scriptomes, but some categories differed. For example,
phenylpropanoid and lignin biosynthesis was signifi-
cantly under-represented in Phase Ib, but not in Phase Ic.
GO classes overrepresented in Ib, but not in Ic, included
lipid and fatty acid biosynthesis and cellular morphogen-
esis. This suggests that some, but not many, cells in Phase
Ic had stopped elongating and started secondary cell wall
biosynthesis. In the last sub phase of Phase I (Id) cells had
stopped elongating (Figure 1) and genes coding for
enzymes involved in lignin biosynthesis were highly
expressed. In addition, classes related to amino acid - in
particular methionine - biosynthesis were over-repre-
sented, as was the class Carbohydrate metabolism.

Sucrose synthase, which was highly expressed in Phase Ia,
but weakly in Ib and Ic, was most strongly expressed dur-
ing sub-phase Id. During this sub-phase, primary cell wall
biosynthesis has largely ceased and secondary cell walls
are formed. The completion of secondary cell wall biosyn-
thesis and the concomitant down-regulation of genes
involved in lignin biosynthesis marked the end of Phase I
and entry into Phase II. When chlorophyll no longer accu-
mulated and the apparently leaf was fully mature. It
should also be noted that many categories were under-
represented throughout Phase 1, including responses to a
wide range of abiotic and biotic stresses, as well as second-
ary metabolism.

Weather-regulated gene expression

Secondly, we wanted to focus on environmental influence
of gene expression. Although weather, at least tempera-
ture, influenced the speed of progression of the transcrip-
tional program also in young leaves, the best resolution in
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the analysis of environmental influence on gene expres-
sion could be achieved in mature leaves when leaf-age
dependent changes were minimal. Based on the weather
data from the different years, we looked for a time period
when the weather conditions were least stable. The time
period from August 7 until August 16 had - especially in
2003 but also in 2004 - variable weather and was in the
period when leaf-age dependent changes in gene expres-
sion by large were absent so environmental signals should
be the major inducers and suppressors of gene expression.
We selected 10 leaf samples harvested from these time
periods and analyzed their gene expression using the DNA
microarrays. These data were analyzed with Orthogonal
projections to latent structures (OPLS), a supervised mul-
tivariate linear regression method [22]. In relation to the
unsupervised PCA method, OPLS requires and makes use
of additional background information; for instance pres-
ence of different sample groups (classes) [23] or treatment
concentrations. The special property of OPLS in this con-
text is the ability to separately describe information in the
data table that is related to the modelling aim (e.g. to dis-
criminate between different classes) and other systematic
trends. OPLS was used to predict gene expression levels
based on a description of the current and previous
weather, including sunlight, temperature, humidity, wind
and precipitation parameters [see Additional file 1 and 2].
Cross-validation [24] was performed to find an OPLS
model with good generalization properties. Based on
properties of the cross-validated OPLS model, microarray
elements that were reliably predicted from the weather
parameters were subsequently identified, suggesting that
such elements are influenced by or directly regulated by
the weather.

In the biplot (Figure 4) the 199 genes with good predic-
tion are shown together with weather parameters. The
relation between the different weather parameters is high-
lighted where parameters close to each other are having a
similar impact on gene expression. Weather parameters
close to genes are positively correlated with nearby genes
while genes opposite in the plot are negatively correlated.
Weather parameters far away from origo have stronger
influence on included genes. As expected, temperature
and sun are strongly correlated while humidity and pre-
cipitation show opposite influence. The global OPLS
model describes a many-to-many relationship between
microarray elements and weather parameters, but OPLS
could also be used to pinpoint the weather parameters
that are most important for the regulation for a particular
microarray element. For this purpose, we constructed
local OPLS models for each microarray element where
weather parameters were used to sequentially predict one
microarray element at a time. From the predictive load-
ings of each local model, an approximation of the influ-
ence of weather parameters for each individual microarray
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Biplot of the weather parameters and the modelled genes. The modelled genes are represented as black dots and the
weather parameters are coloured according to the legend. In addition to the colour each parameter is label with the calcula-

tion (min = minimum, max = maximum, mean = average, tot =

cumulative sum, std = standard deviation) and day or time of

measurement (m = morning, a = afternoon, e = evening). A number without additional letter corresponds to cumulative time
period. The plot pinpoints the relationship between the different calculated weather parameters used for the modelling of the
gene expression. Weather parameters close to each other in the plot are having a similar impact on gene expression. The
weather parameters are further described in additional file | and 2.

elements is achieved. Two examples of models are shown
in Figure 5, where both the relation between measured
and predicted mRNA levels is shown, and also the weather
parameters that were most correlated with gene expres-
sion. Similar to what was shown in Wissel et al, mRNA
levels could in these cases be accurately predicted by the
weather parameters, and the relative importance, and
direction, of the different factors could be estimated. For
example, Photosystem II 10 kDa (PsbR) genes mRNA lev-
els were negatively correlated with temperature, sun and
wind but positively correlated with precipitation and
humidity (i.e. had a higher expression on rainy days)
while two-component responsive regulator genes mRNA
levels were positively correlated with temperature varia-
tions and sun but negatively correlated with static temper-
ature and sun (i.e. had a higher expression on when the
temperature varying). PsbR has previously been reported
to be under dehydration-rehydration control in Xerophyta
humilis [25] but contrasting results for Arabidopsis [26].

The two-component responsive regulator genes belong to
the GARP-ARR-B transcription factor family [27]. The
ARR-B family is showing overlapping expression patterns
in Arabidopsis and might be light-regulated [28].

Finally, we compared the genes differentially regulated in
the two sub experiments. The 'cut-off' for being under
developmental or environmental control or not is some-
what arbitrary, but using the same criteria in both analy-
ses, — positive B-values [29] - we defined 7615 array
elements as having their mRNA levels mainly determined
by the stage of leaf development in the early season com-
pared to only 2368 clones under weather control in the
second set of experiments. 648 array elements were found
in both lists. Genes principally under developmental con-
trol early in the season were, consistent with the analysis
above, involved in the central anabolic processes of the
leaf. Gene Ontology categories high over-represented
among these genes included, for example translation,
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Figure 5

Characteristic of modelled gene expression. The two first columns show the relative gene expression (black = meas-
ured, red = predicted) and the third column correspond to the positive or negative correlation of the weather parameters rel-
ative to the gene expression. The third column describes calculated weather parameters and length of bars corresponds to
their impact on the gene expression. The weather parameters are further described in additional file | and 2. (A) Photosystem
Il 10 kDa is negatively correlated with temperature, sun and wind but positively correlated with precipitation and humidity (i.e.
had a higher expression on rainy days). (B) two-component responsive regulator is positively correlated with temperature var-
iations and sun but negatively correlated with static temperature and sun (i.e. had a higher expression on when the tempera-

ture varying).

photosynthesis, ribosome biogenesis and assembly,
organelle organization and biogenesis, ribonucleoprotein
complex biogenesis and assembly, and nucleosome
assembly. [see Additional file 6]. In contrast, very few GO
categories were consistently affected by weather factors,
and those that mainly belonged to small or rather ill-
defined categories such as 'system development' or 'dehis-
cence' [see Additional file 7].

Conclusion

Can we really understand plant growth, development and
acclimation by only studying plants grown under control-
led conditions in green-houses and in climate chambers?
It is obvious that in many cases highly controlled condi-
tions are necessary and without the possibility to repro-
duce experiments, plant biology would still be in its
infancy. Yet, it is similarly obvious that plants grown in
the lab behave very differently from plants grown under
natural conditions, where biotic and abiotic factors typi-
cally vary considerably, and often unpredictably [30]. The
overall aim of this contribution is to see to what extent

high throughput studies of gene expression on plants
grown under natural conditions can give results that are
reproducible and, more importantly, informative. We
have set up a DNA microarray analysis pipeline [15] in
order to process our cDNA microarrays in a standardized
way. Here, we use this pipeline to process many samples
from aspen leaves harvested from one single tree over sev-
eral years, after sample selection aimed at optimizing the
information content of the samples, based on previous
experiments and consideration of the biology of aspen
leaves. The standard strategy in gene cataloguing projects
such as AtGenExpress [9] is to grow plants under highly
defined conditions in order to minimize the biological
variation between samples. This is undoubtedly a useful
strategy, but we demonstrate that another strategy, moni-
toring gene expression in single individuals that are
exposed to different environmental conditions over time,
can also be used. The life history of a plant sets constraints
on the strategies that can be applied, and aspen has several
disadvantages compared to Arabidopsis in this respect. It
also has strengths as a model system, for example its large
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size and perennial growth habit, and since this kind of
study could not have been performed in Arabidopsis, the
two model systems complement each other [31-33].

We believe that this study shows that a developmental
program (in this case leaf development) can faithfully be
analyzed using samples from uncontrolled conditions.
The transcriptome underwent significant changes during
the first weeks of leaf development and during this stage
the predefined developmental program of the leaves was
much more important than environmental parameters in
determining the leaf transcriptome. During this time,
leaves expand, cells divide and elongate, chloroplasts are
formed and the leaf is finally, in our case after 20-30 days
depending on temperature, mature. Uncontrolled envi-
ronmental factors, such as temperature, of course modu-
late leaf development significantly [34] and this must
occur through the differential regulation of certain genes,
but the effect on the overall transcriptome is not large
enough to hamper this analysis. The progression through
the certain 'sub phases' of Phase I, and the dependence on
temperature of its speed, is expected and could of course
also have been detected by analyzing plants grown under
constant conditions, but we believe that obtaining this
information from a tree grown under natural conditions
adds to the significance of the findings.

Temperature sum has been shown to be an accurate pre-
dictor of bud burst in both conifer and broad-leaf trees
[35,36] and many authors have used temperature sum-
based analyses to draw important conclusions about bud
burst [11,37]. Temperature is also likely to be the major
determinant of leaf expansion [38] and chlorophyll accu-
mulation. However, temperature sum has not previously
been shown, to our knowledge, to be so tightly connected
to the leaf transcriptome all the way up to the stage where
the leaf is fully mature, internal structures have been
formed and secondary cell wall biosynthesis has been
completed. This correlation has to be confirmed by stud-
ies of more genotypes and over several years, but we can
now identify a well-defined set of marker genes to distin-
guish the different sub-phases (data not shown), making
it possible to monitor the progression efficiently through
the developmental stages. Likewise, based on our dataset
it is possible to select, for example, genes most suitable to
use as 'control genes' to normalize e.g. RT-PCR data or the
genes indicative of various environmental stresses, with-
out being influenced by leaf age. Of course, our dataset is
not as comprehensive as corresponding datasets from Ara-
bidopsis leaves [9,10], but we nevertheless believe it will
serve as a useful resource for future studies. For example,
by including a large number of additional Populus leaf
microarray datasets present in UPSC-BASE (e.g. after
drought stress, herbivore and pathogen treatments, cold
treatments, diurnal cycles etc.) we can now perform meta-

http://www.biomedcentral.com/1471-2229/8/61

analyses and identify genes that have similar transcription
responses throughout all experiments, i.e. which consti-
tute a regulon. For each of the regulons, we can using the
methods developed here, select the variables that most
influence gene expression, keeping in mind that different
factors are important in growing, mature and senescing
leaves. Another possibility is to, for each regulon, select
one or more marker genes that could be analyzed in a
large number of samples, for example in different geno-
types, to dissect natural variation in gene expression, This
variation may be substantial in aspen, considering that
the genetic variation at the DNA sequence level is unusu-
ally high in comparison not only with most annuals and
crop plants, but also in comparison with other trees [39].
Such a toolbox could hopefully be used to address many
important questions, not only informing about tree biol-
ogy but also about plant biology in general. Our dataset
could also be used to examine the expression pattern of
orthologs that have been shown to regulate different
aspects of leaf development in Arabidopsis [40,41] or to
identify novel genes whose expression patterns indicate
that they may play a role in various stages of leaf develop-
ment. These possibilities were beyond the scope of the
work presented here, but since our dataset is publicly
available in UPSC-BASE [15], such analyses can now be
undertaken.

Changes in gene regulation during leaf development are
very strong. This has significance for sampling strategies
for plants grown under constant conditions. Unless iden-
tical developmental stages are sampled, changes in gene
expression induced by various treatments are likely to be
masked by the larger effect caused by differences in devel-
opmental stage. This is important since many treatments,
not only temperature, influence leaf development. This
could be illustrated by one of our own experiments, where
the 'direct effects' of gene expression by treatment with
elevated [CO,] were, by large, masked by the apparent
changes in leaf developmental stage, despite leaves being
sampled with the intention that they should be at the
same stage (i.e. had the same plastochron index, PI) [42].
Other published DNA microarray experiments may have
suffered from the same problems, adding to the lack of
consistency often found between results obtained in dif-
ferent experiments.

Two-colour microarray data provide relative measure-
ments of gene expression, and if many samples are ana-
lyzed, like in this study, over- and under-representation
means in comparison with the whole dataset. This has to
be kept in mind during the analysis of the data: low repre-
sentation of, for example, stress related genes during
Phase I is not an absolute measure but means lower than
the 'average sample’, and since many samples were from
stages when the leaves did not grow and therefore have
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only a low expression of genes involved in 'building the
leaf' and therefore, as a consequence, higher expression of
all other types of genes. Therefore, we do not think that
our data necessarily indicate that expression of genes
involved in resistance against biotic and abiotic stress is
not very important during Phase I, rather that stress genes
are disappearing in the overload of development genes.
This is nothing that is special for a study like this, per-
formed in the field, but something that needs to be kept
in minds during e g all time series analysis of microarray
data.

It should be pointed out that the analysis we have per-
formed here only provides indications regarding the 'aver-
age transcriptome' of leaf cells. Clearly, different cell types
will have very different gene expression patterns [43,44],
and different areas of the leaf will not be in exactly the
same developmental phase [45-47]. We believe that cellu-
lar development is likely to be more highly synchronized
during bud flush than during 'normal' leaf development.
This is because many cells may be arrested in the same
developmental stage in winter buds, and when conditions
are permissive for bud flush, the cellular activities of many
cells are synchronized. In continuously growing plants
cells in the different parts of the leaf are in different stages,
so the overall gene expression profile in the leaf may be
more of a blend of many developmental stages, but this
needs to be experimentally verified.

Finally, we believe that this contribution also demon-
strates some of the power of multivariate statistics in the
analysis of gene expression, both in terms of analyzing
patterns in DNA microarray data but also to identify
breakpoints in e.g. time series, when subtle changes in
gene expression characteristics can be pinpointed. Aspen
has several disadvantages compared to Arabidopsis as
model system, but it also has strengths such as large size
and perennial growth habit. Another obvious difference
between the model systems is the amount of genetic vari-
ation. Aspen individuals in a local population have about
1% nucleotide diversity inside genes [39], i.e. two aspens
trees are on DNA level more divergent than a human and
a chimpanzee. We believe that this is a further argument
in favour for our experimental strategy, to do detailed
transcript profiling of one single tree, since using different
aspen trees as biological replicates would result in lack of
resolution in the results similar to the situation if a chim-
panzee should be used as a biological replicate for array
studies on humans. Our aim is to use this dataset to fur-
ther look at natural variation in gene expression in aspen
individuals, but that is outside the scope of this publica-
tion.

http://www.biomedcentral.com/1471-2229/8/61

Methods

Sampling

Leaves were harvested following a controlled procedure
from branches 2 m above ground on one single fully
grown (>30 years) free-growing aspen tree (Populus trem-
ula) on the Umed University campus (63° 49'17"N, 20°
18'40"E) at 11.00 am on each sampling occasion through-
out the entire growing seasons of 2000-2005. The sam-
pled leaves were flash frozen in liquid nitrogen and stored
at -70°C awaiting analysis. At least 20 leaves from each
occasion were then crushed in liquid nitrogen and mixed.
Each replicate used a fraction of leaf mixture for RNA
extraction. The samples from 2000 were the same as those
used in a previous study [8].

Relevant weather parameters (temperature, humidity, air
pressure, wind, sun intensity and precipitation) were cal-
culated from data collected by a weather station located
on the Umed university campus about 200 m from the
tree from which the samples were harvested. The data
were collected hourly throughout the year and trans-
formed to new parameters describing stability, variation
and time lags of original weather parameters. The lagged
variables consist of morning, afternoon, evenings and day
summaries in different combinations. The calculated lag-
ging variables correspond to environmental factors that
develop slowly and not directly measured by the weather
station, such as soil water potential and temperature. For
more details about the analysis of the weather data see the
principal component analysis (PCA) section [24]. Leaf
length of 6 leaves were measured with a ruler each day and
leaf chlorophyll content was measured with a chlorophyll
content meter (CCM-200, Opti-Sciences, Tyngsboro, MA,
USA) on the same leaves during the beginning of the
growing season 2005.

For the first set of microarray experiments, samples col-
lected on eleven days with similar weather conditions
were selected (June 1, June 15, June 29, July 6, July 18, July
27, August 3, August 11, August 18, August 29, September
12). Subsequently, further samples from three additional
dates in 2000 (May 25, June 9, June 22) and seven from
2002 (May 27, May 30, June 3, June 10, June 17, June 24,
July 1), were selected. The third set of microarray experi-
ment (a detailed weather study) contains samples from
August 7 until August 16 from both 2003 and 2004. More
detailed information about the samples can be found in
UPSC-BASE [15]. Temperature, precipitation, irradiance
for the detailed spring and weather experiment are shown
in Figure 6.

Labelling and hybridization

A common reference experimental design was used for
most samples. The RNA for the common reference was a
pooled mixture of 40 RNA preparations from the year
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Overview of weather conditions. Weather conditions during the detailed spring and weather experiment. The line repre-
sents maximum irradiance of the day (W m-2), black bars show the daily precipitation (mm) and grey bars denote the maximum
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2000 [8]. RNA was prepared according to previously pub-
lished methods [48,49] with the small modifications [50].
RNA was reverse transcribed into aminoallyl-labelled
c¢DNA, using 20 g total RNA primed with 5 ug oligo-dT
primer, and Superscript II reverse transcriptase (Invitro-
gen, Carlsbad, CA, USA). The cDNA was then purified
using Microcon 30 (Millipore, Bedford, MA, USA) con-
centrators, eluted in H,O and dried in a Speed-vac centrif-
ugal evaporator.

For the first experiments (whole season), all samples were
hybridized manually against the common reference in
four replicates without dye-swap using the POP1 slides

described by [12]. The samples were re-suspended in 10
4L of 0.1 M NaHCO; in which the cDNA was coupled to
Cy-3- or Cy-5-esters (Amersham Bioscience, Little Chal-
font, UK) for 3 h. The labeled samples were mixed and 7.5
L of 4 M hydroxylamine was added to prevent cross-cou-
pling. The mixed samples were purified using QIAquick
columns (Qiagen, Valencia, CA, USA) and then dried in a
Speed-vac centrifugal evaporator. A 30 ul. portion of
hybridization buffer (0.5% SDS, 5x SSC, 5x Denhart's
solution and 50% formamide) was added to each slide,
and the slides were then incubated for 45 min at 42°C in
a water bath. Each dried sample was re-suspended in 25
L hybridization buffer together with 3 4L oligo-dA (10
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g pl-1) and 0.4 uL tRNA (25 pg pl-1), then applied to
the slide surface. The slides were hybridized for 16 h at
42°C and washed with three solutions (1x SSC, 0.2%
SDS, followed by 0.1x SSC, 0.2% SDS and finally 0.1x
SSC). After washing the slides were dried under a stream
of nitrogen gas.

For the second set of experiments (the detailed spring
study), samples were hybridized against the common ref-
erence using the POP2 arrays [51,52] in an automated
slide processor (ASP; Amersham Bioscience, Little Chal-
font, UK) with dye-swaps. In addition to all clones
included in the POP1 arrays, POP2 also contains clones
from new cDNA libraries. The samples were re-suspended
in 10 uL of 0.1 M NaHCO;, pH 9, and mixed with the
appropriate Cy-dye, dissolved in 10 4L DMSO. The sam-
ples were coupled for 120 minutes and cleaned using a
Cyscribe GFX purification kit (Amersham Bioscience, Lit-
tle Chalfont, UK) according to the original instructions.
The cDNA was eluted in 60 yL of elution buffer and then
the volume was reduced in vacuo to 41 uL. Appropriate
incorporated samples were pooled and mixed with 45 L
SSC (20x), 45 pL formamide (100%), 4 4L SDS (10%), 1
UL tRNA (10 pg pl-1) and 3 L oligo-dA (25 ug pL-1). The
samples were denatured at 95°C for 3 min before inject-
ing them into ASP chambers, which were placed in the
ASP. Here, the slides were exposed to pre-hybridization
buffer (5x SSC, 50% formamide, 2.5x Denhart's solution,
0.1% BSA) and the samples then were injected using a
syringe. The slides were hybridized for 14-16 h at 42°C
then washed with three buffers of sequentially decreasing
concentration (1x SSC, 0.05% SDS followed by 0.3x SSC
and finally 0.05x SSC). Detailed information about the
parameter settings in the ASP can be sent on request. The
third set of experiment (weather study) was hybridized in
a loop experiment using the POP2 arrays as described for
the second set of experiment.

Slides were scanned 4-5 times with predetermined
increasing laser power and phototube multiplier (PMT)
settings using a Scanarray scanner (PerkinElmer AB, Swe-
den). The resulting images were analyzed in Genepix 5.0
(Axon Instruments, CA, USA). All TIFF images were proc-
essed with composite pixel intensity (CPI) settings set to
find circular features and resize the features within 80—
150% of default size (100 xm)and composite pixel inten-
sity threshold set to 300 during alignment. Weak spots
were automatically marked as not found. The extracted
data were stored as results files containing raw data and
various statistical measurements. When necessary, the
POP1 subset of samples from the year 2000 in the POP2
arrays were extracted and analyzed together with the orig-
inal POP1 samples from year 2000. For the first set of
microarray slides some slides were discarded due to une-
ven hybridisation. Numbers of kept hybridizations are

http://www.biomedcentral.com/1471-2229/8/61

indicated in parenthesis, June 1(4), June 15(2), June
29(3), July 6(3), July 18(4), July 27(4), August 3(4),
August 11(4), August 18(3), August 29(4), September
12(2).

The raw data are stored in the public microarray poplar
database UPSC-BASE [15] in which the first (whole sea-
son), second (detailed spring) and third (weather) have
been assigned the codes UMA-0001 UMA-0032 and
UMA-0078, respectively. The different scan levels for each
slide were merged with Restricted Linear Scaling (RLS)
[53] followed by step-wise normalization [54] before fur-
ther analysis.

Linear models

Gene-wise linear models were used to analyze the gene
expression values for each sampling date. The linear
model is described by Y = X * S+ & where Y is a vector of
log-ratios from different slides, X is the design matrix, £is
the vector of parameters and « is the error. For the third
set of experiment (weather study) an insilico average was
calculated to allow comparison over the time [55]. The
models were calculated using functions from the package
Linear Models for Microarray Data (LIMMA) [29] in the
statistical software R [56] implemented in UPSC-BASE.

Principal component analysis

Principal component analysis (PCA) is an unsupervised
projection method used to extract systematic trends from
large data tables [57]. Data sets containing possibly sev-
eral thousand of features (e.g. expression levels of genes,
protein abundances, etc.) can be reduced to a handful of
principal components characterizing the strongest sys-
tematic effects according to the variance in the data. Each
of these principal components (generally referred to as
latent variables [58] describe independent effects in the
data, which relate the samples by means of score vectors
and the corresponding features using the loading vectors.
PCA is most typically utilized for exploratory analysis pur-
poses; to identify trends, clusters or outlying samples
where this cannot be performed for each sample individ-
ually. In the present case, PCA was performed on the
weather and microarray data using the SIMCA-P 11.5 soft-
ware (Umetrics AB, Ume aa, Sweden). All variables were
mean-centred and scaled to unit variance prior to weather
analysis, which implies subtracting the mean value from
each weather parameter and dividing it by its standard
deviation. The microarray data were only mean centred.
The number of principal components in the PCA model
was selected according to cross-validation [see Additional
file 8 for details]

Orthogonal projections to latent structures
Orthogonal projections to latent structures (OPLS) is a
supervised multivariate linear regression method [22]. In
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relation to the unsupervised PCA method, OPLS requires
and makes use of additional background information; for
instance presence of different sample groups (classes) [59]
or treatment concentrations. There currently exists a mul-
titude of supervised linear regression methods in the liter-
ature [60].

OPLS was used to predict gene expression levels based
sunlight, temperature, humidity, wind and precipitation
parameters on the time of sampling and earlier. To avoid
the problem of over fitting, cross-validation [24] was per-
formed to find an OPLS model with good generalization
properties. Based on properties of the cross-validated
OPLS model, microarray elements that were reliably pre-
dicted from the weather parameters were subsequently
identified, suggesting that such elements are influenced
by or directly regulated from the weather. OPLS model-
ling was performed using the statistical software R [56]
based on in-house produced code. The microarray data set
was mean-centred for each microarray element whereas
weather parameters were both mean-centred and scaled to
unit variance prior to analysis. OPLS model parameters
were selected according to cross-validation [see Addi-
tional file 8 for details].

Identification of microarray elements affected by weather
The ability of the OPLS model to approximate the expres-
sion profile of a microarray elements based only on the
weather parameters will be denoted the predicted varia-
tion for that particular element. The predicted variation
ranges from negative infinity to one, where a high positive
value indicates a reliable prediction and vice versa. Such a
strategy for identification of reliably predicted features has
been employed previously in a different context [61]. The
predicted variation estimates were subsequently con-
verted to conventional p-values based on a permutation
strategy, where the link between weather parameters and
expression levels has been disrupted. This procedure was
repeated numerous times in order to estimate what degree
of predicted variation that could be expected by chance
from a data table with equal properties [62]. The esti-
mated p-values were subsequently corrected for multiple
testing inflation using step-wise false discovery rate correc-
tion [63]. False discovery rate adjusted p-values (FDR)
were called significant if FDR < 0.05, rendering a total of
199 significant microarray elements. See Figure 4 for an
overview of the microarray elements and the relation to
the weather parameters.

Comparing array elements effected by environmental vs.
developmental control

For the weather dataset the in silico reference was calcu-
lated and array elements having a positive B-statistic value
for each date were merged into a unique environmental
gene set. For the detailed spring dataset the B-statistic were
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calculated against the seasonal reference and the two lists
of array elements were compared.

Local modelling to highlight weather-gene links

The global OPLS model describes a many-to-many rela-
tionship between microarray elements and weather
parameters. This is beneficial from a multivariate perspec-
tive but it may be non-trivial to directly pinpoint the
weather parameters that are predominantly influential for
one particular microarray element. For this purpose, we
constructed local OPLS models for each microarray ele-
ment where weather parameters were used to sequentially
predict one microarray element at a time. From the predic-
tive loadings of each local model an approximation of the
influence of weather parameters for each individual
microarray element is achieved. This is shown in Figure 5
for a set of selected microarray elements.

Analysis of functional classes

To assess changes related to interesting biological themes
systematically we used a version of the GOstats Biocon-
ductor package [16], modified for applications with our
poplar array and implemented in UPSC-BASE [15] using
information obtained from the PopulusDB [51,64] and
the Arabidopsis Information Resource (TAIR) [65]. Func-
tional classes for the closest Arabidopsis orthologue to each
of the Populus genes were collected from Gene Ontology
(GO) [66] definitions. The GOstats inputs were lists of
significant genes [67]. The output was parsed and used to
follow time trends in the biological themes and classes
with p-values less than 0.05 were regarded as important.
The results were summarized and plotted on a GO graph
structure. Only categories over-represented at one or more
time point and their parents were used in the graph.

Temperature sum

Temperature sums were calculated as the accumulated
daily mean temperature above the threshold value 1°C
[36]:

TS(t) = ZTS(t) -1, (1)

Where TS is the temperature sum on day t, T(t) is the daily
mean temperature (°C) on day t, T} is the threshold tem-
perature (1°C) and t, is the starting date of the tempera-
ture sum accumulation, here January 1st [68].
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Data file containing weather parameters. The data used for the weather
calculations.

Click here for file
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Additional file 3

Graphical representation of the weather during the growing season in
the year 2000. The first two principal components in the PCA analysis of
the weather parameters are shown. White circles depict calendar dates
during the growing season (May 15 to October 15), grey circles show the
eleven dates selected for the whole season experiment. The grey circle to
the right marks the controlled outlier.
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|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-61-S3.eps]|

Additional file 4

Gene expression in leaves of free-growing aspen during the growing
season. The first two principal components obtained from the PCA anal-
ysis of the microarray data from year 2000 are shown. Technical replicates
are given the same symbol.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-61-S4.eps]|

Additional file 5

Heatmap of the over-represented Gene Ontology categories in the
spring samples. The samples from the spring 2000 and 2002 are ordered
according to developmental leaf age. Red squares are categories over-rep-
resented in significantly up-regulated genes and green squares are catego-
ries over-represented in significantly down-regulated genes. Divergent
groups that were over-represented in both up- and down-regulated genes
are plotted as yellow squares. This figure shows all significant categories
of the selection showed in Figure 3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-61-S5.eps]

Additional file 6

Significant Gene Ontology categories for genes differentially expressed
during development. List of gene ontology categories showing significant
over-representation during leaf development.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2229-8-61-S6.xls]
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Additional file 7

Significant Gene Ontology categories for genes differentially expressed
during weather influence. List of gene ontology categories showing sig-
nificant over-representation during weather influence.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-61-S7 xls]

Additional file 8

Description of used cross-validation. More extensive description about
the cross-validation used in OPLS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-61-S8.doc]
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