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Backround

Light has a pronounced effect on gene expression via pho-
toreceptors [1] particularly during the early photomor-

Abstract

Background: Light and temperature are the key abiotic modulators of plant gene expression. In
the present work the effect of light under low temperature treatment was analyzed by using
microarrays. Specific attention was paid to the up and down regulated genes by using promoter
analysis. This approach revealed putative regulatory networks of transcription factors behind the
induction or repression of the genes.

Results: Induction of a few oxidative stress related genes occurred only under the Cold/Light
treatment including genes encoding iron superoxide dismutase (FeSOD) and glutathione-dependent
hydrogen peroxide peroxidases (GPX). The ascorbate dependent water-water cycle genes showed
no response to Cold/Light or Cold/Dark treatments. Cold/Light specifically induced genes encoding
protective molecules like phenylpropanoids and photosynthesis-related carotenoids also involved
in the biosynthesis of hormone abscisic acid (ABA) crucial for cold acclimation. The enhanced/
repressed transcript levels were not always reflected on the respective protein levels as
demonstrated by dehydrin proteins.

Conclusion: Cold/Light up regulated twice as many genes as the Cold/Dark treatment and only
the combination of light and low temperature enhanced the expression of several genes earlier
described as cold-responsive genes. Cold/Light-induced genes included both cold-responsive
transcription factors and several novel ones containing zinc-finger, MYB, NAC and AP2 domains.
These are likely to function in concert in enhancing gene expression. Similar response elements
were found in the promoter regions of both the transcription factors and their target genes
implying a possible parallel regulation or amplification of the environmental signals according to the
metabolic/redox state in the cells.

phogenetic development of plants. Light is also a driving

force for photosynthesis, which in turn regulates many
metabolic processes in cells. Such regulation occurs either
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directly by production of ATP and reducing power
NADPH or indirectly e.g. via redox active compounds, like
thioredoxins and glutathione (GSH), which then might
exert an effect on gene expression [2]. Transcription of
nuclear genes is also known to be orchestrated by photo-
synthesis products [3,4].

A wealth of global gene expression data is now available
from Arabidopsis plants exposed to various light treat-
ments as well as to low temperatures and salt or dehydra-
tion treatments [5-10]. Gene transcription, regulated by a
number of transcription factors, is strongly influenced
both by abiotic environmental factors and various cellular
compounds [7,11-15]. Although in some recent experi-
ments a specific role of light has been implicated in
response of plants to biotic stress [11,16], the role of light
in global gene expression analysis, particularly when com-
bined with various other abiotic stress conditions, has
remained elusive. Indeed, besides its function via pho-
toreceptors, light exerts effects on gene expression also via
the photosynthetic apparatus, whose function can be
strongly modulated by various environmental stress con-
ditions [17]. Light and temperature changes in natural
environments often occur in parallel but the dissection of
the role of light and the function of the photosynthetic
apparatus, from the sole low temperature effect have been
studied only with a limited set of genes [18,19].

Arabidopsis is a freezing tolerant plant and it's cold toler-
ance increases upon exposure of plants to low tempera-
ture [20]. Moreover, during the cold acclimation process
light is required for enhanced freezing tolerance in Arabi-
dopsis leaves [21]. Here, we have performed transcript pro-
filing of Arabidopsis thaliana leaves after a low temperature
treatment of plants in light or in darkness or after a sole
light or dark treatment. Light had a profound effect in
increasing the amount of transcripts from so-called cold-
responsive genes. More importantly, the condition of cold
and light induced a specific set of genes, which apparently
are important in the development of freezing tolerance.
The complexity of gene expression patterns is emphasized
by the fact that more than 40 differentially regulated tran-
scription factors were found. The regulatory role of these
transcription factors and their target genes for the devel-
opment of Arabidopsis cold acclimation is discussed.

Table I: Effect of cold treatments on functional properties of PSII

http://www.biomedcentral.com/1471-2229/8/13

Results

Physiological consequences of the cold treatments on
Arabidopsis photosynthetic apparatus

Eight-week old Arabidopsis plants were transferred from
normal growth temperature (23°C, 60% relative humid-
ity) directly to low temperature (3°C, 60% relative
humidity) under normal growth light (100 umol photons
m?2 s1) or to darkness for eight hours. About 10%
decrease in the photochemical efficiency (Fv/Fm) and the
oxygen evolving activity of photosystem II (PSII) was
measured after cold and light (hereafter, Cold/Light or C/
L) treatment, but not after cold and dark (hereafter Cold/
Dark or C/D) treatment (Table 1). In our Nordic consor-
tium project (NKJ), parallel experiments showed about
2.5 times more severe loss in the activity of PSI after the
Cold/Light treatment [22], which implies nearly 30%
inhibition of PSI in our Cold/Light treatment.

The redox state of thylakoid proteins in chloroplasts were
monitored by preparing a phosphothreonine-immunob-
lot from differentially treated Arabidopsis leaves (Figure 1).
The amount of phoshorylated PSII core proteins (P-CP43,
P-D2, P-D1) increased under Cold/Light condition indi-
cating an increased reduction state of the plastoquinone
pool (PQ pool) between PSII and PSI [23]. On the other
hand, LHCII proteins were partially dephosphorylated
under Cold/Light condition and completely dephosphor-
ylated after Cold/Dark and Dark treatments. In addition,
77 K fluorescence measurements, demonstrating the pro-
portional amount of LHCII proteins attached to either PSI
(F732) or PSII (F685), indicated that the proportion of
LHCII proteins attached to PSII (F685) increased under
Cold/Light and even more under Cold/Dark conditions
(Figure 1, at the bottom). This reflected changes in the
redox state of chloroplast stroma as well as in the compo-
nents of the electron transport chain. Upon accumulation
of reduced thiols in the stroma under the Cold/Light con-
dition resulted in the inhibition of the LHCII kinase,
whereas in darkness the LHCII kinase was deactivated due
to the oxidation of the electron transfer chain (as well as
the stroma) [23].

Treatment Fv/Fm % of Control O,-evolution pmol O, mg Chl-! h-! % of Control
Light Control 0.81 £0.01 100 198 + 14 100
Cold/Light 0.71 £0.01 88 175+ 13 88
Dark Control 0.79 £ 0.02 97 139 £ 12 100
Cold/Dark 0.80 £ 0.0l 98 143 £ 15 103

The values are the mean from 6 (Fv/Fm) and 8 (O,-evolution) independent experiments + SD.
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Phosphothreonine-immunoblot of thylakoid pro-
teins isolated from Arabidopsis leaves after four dif-
ferent treatments: Control (Ctr), Cold/Light (C/L), Dark
(D) and Cold/Dark (C/D). Below the immunoblot, 77 K fluo-
rescence emission ratios (F732/F685 + S.D.) of thylakoids
from differentially treated plants are given. F732 stands for
the fluorescence peak at 732 nm representing the emission
from PSI and F685 for the fluorescence peak at 685 nm from
PSII. Differences in F732/F685 ratios are related to reversible
phosphorylation of the light-harvesting chl a/b proteins
(LHCII) and their attachment with PSI (phosphorylated, high
ratio) and PSIl (non-phosphorylated, low ratio). P-CP43, P-
D2, P-D1 denote the phosphorylated proteins of PSII core,
P-LHCII denote the LHCII phosphoproteins.

Overview of gene expression changes in Cold/Light, Cold/
Dark and Eight-Hour Dark treatments

The cDNA microarray experiments are based on the Arabi-
dopsis GEM1 clone set purchased from InCyte Genomics,
Palo Alto, CA, USA consisting of circa 8000 ESTs corre-
sponding about 6500 unique genes [4]. It is important to
note that this cDNA microarray is containing only one
third of annotated genes present in whole Arabidopsis
genome. The microarray experiments were designed so
that all treatments were compared to the control plants
harvested from the controlled-environment chambers
(100 pmol photons m2s1, 23°C) at the same hour of the
day as the treated plants were harvested; thus making the
light and low temperature treatments comparable with
each other with respect to the circadian effects on gene
expression.

For defining the up or down regulation of the gene, we
used two-fold expression changes as a cut off value
(treated plants compared to control plants) and the Stu-
dents t-test for determining statistical significance of each
gene in different treatments (p-value less than 0,05
including false discovery rate (FDR)). As a result, 471
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cold-responsive genes were obtained (Figure 2A and Addi-
tional file 1), of which only 117 were common for both
the Cold/Light and Cold/Dark treatments. Many of these
genes were established cold-responsive genes. In addition,
there were 237 genes responding only to the Cold/Light
treatment and 117 genes responding only to the Cold/
Dark treatment. As a control to the Cold/Dark treatment,
it was necessary to find out how the eight-hour darkness
under normal growth temperature (hereafter Dark or D)
modulates the gene expression. As depicted in Figure 2B,
234 genes were considered as Cold/Dark responsive

Low temperature

| 471 Cold-responsive genes ‘

117
Cold/Dark
responsive
genes

Cold/Light
responsive

Chloroplast-
targeted

Mitochondria-
targeted

Secretory
targeted

O

B.

234
Cold/Dark-
responsive

genes
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in
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426
Dark-

responsive
genes

Figure 2

Summary of gene expression data after three differ-
ent treatments: Cold/Light, Cold/Dark and Dark
treatments. A. Number of genes showing at least two-fold
up or down regulation after the Cold/Light and Cold/Dark
treatments. The predicted localization of gene products (Tar-
getP program) is indicated in the lower part of the Figure. B.
A Venn diagram indicating the number of genes showing at
least two-fold up or down regulation after the Cold/Dark
and Dark treatments.

Page 3 of 20

(page number not for citation purposes)



BMC Plant Biology 2008, 8:13

genes, but even higher number of genes (426) turned out
as only the dark-responsive genes. Of these, only 58 genes
were regulated similarly in both dark treatments.

Cold-responsive genes were also analyzed with respect to
possible organelle-targeting signals (Figures 2A and 3).
Cold/Light induced 61 and repressed 13 genes with chlo-
roplast-targeting signal, as predicted by TargetP [24]. Of
these, 41 and 9 genes, respectively, responded specifically
only in the Cold/Light treatment (Figure 3). Indeed, here
were only a few Cold/Dark specific genes with chloroplast
targeting signal. The eight-hour dark treatment at 23°C,
on the other hand, modified the expression of a large
number of genes encoding chloroplast-targeted proteins;
40 were up regulated and 54 down regulated.

Expression of established cold responsive genes in Cold/
Light and Cold/Dark conditions

An up regulation of many well-characterized cold-respon-
sive genes was found upon a transfer of plants from nor-
mal growth temperature to low temperature implying an
initiation of the cold acclimation/dehydration process.
The expression of several canonical cold-responsive genes
was more up regulated in Cold/Light than in Cold/Dark
condition (Table 2 and Additional files 2 and 3). These
included genes encoding the low temperature-induced
proteins (LTIs), like XERO2/LTI30 (At3g50970), LTI78/
RD29A (At5g52310), ERD10 (Early Response to Dehydra-
tion, Atlg20450), ERD3  (At4g19120), KIN1
(At5g15960), two galactinol synthases (At1g56600 and
At1g09350) and dehydrin RAB18 (At5g66400). Several
other low temperature responsive genes were also found
but their expression did not differ whether the low tem-
perature treatment was given in light or in darkness.

Up-regulation
(two-fold or more)

Down-regulation
(two-fold or more)

Cold/Light Cold/Dark

()
(2NN

Dark

Cold/Light Cold/Dark

Dark

Figure 3

Response of genes encoding chloroplast-targeted
proteins to the Cold/Light, Cold/Dark and Dark
treatments. Venn diagram indicating differential expression
of genes upon the three different treatments.
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Differential expression of genes encoding proteins
associated with thylakoid function

The expression of genes encoding various LHCII (LHCB)
proteins was strongly enhanced under Cold/Light condi-
tion, but not under Cold/Dark condition (Table 2). On
the contrary, only a few differences in the expression of
nuclear genes coding for the core proteins of PSII or PSI
complexes were recorded. None of the Psb genes coding
for PSII proteins were up or down regulated more than
two-fold after the Cold/Light or Cold/Dark treatment.
However, there was a slight up regulation under Cold/
Light condition (less than the cut off value) of PsbW
(At2g30570) and PsbP (At1g77090) messages and these
messages were also significantly down regulated after
eight-hour dark treatment (data not shown). In addition,
two genes encoding proteins closely associated with PSI,
PSI-N (At5g64040) and thioredoxin (At1g08570) were up
regulated, but only under the Cold/Light treatment (Table
2). Many of these microarray results were verified by using
northern blot analysis (Figure 4).

We also investigated whether the experimental conditions
applied here had any effect on the expression of genes
encoded by the chloroplast genome (Figure 5). To this
end, a northern blot analysis of PsbA, PsaC and PetB genes,
encoding core components of PSII, PSI and the Cytbf
complex, respectively, was performed. However, no differ-
ential expression of these chloroplast genes was recorded
between different treatments of plants.

Distinct gene expression changes were recorded for several
nuclear encoded proteases, whose function is closely
related to thylakoid protein complexes. Three FTSH genes
(At5g42270, At1g50250 and At1g06430) were up regu-
lated especially under Cold/Light condition (Table 2).
These genes encode proteases involved in degradation of
the D1-protein of the PSII reaction centre [25] and possi-
bly also of the LHCB-proteins [26]. In addition, one Zn
metalloprotease (At1g49630) gene was highly induced
under Cold/Light condition. This gene encodes for a pro-
tease, similar to gene product of At3g19170, needed for
the cleavage of the signal peptide in chloroplast and mito-
chondria targeted proteins [27]. Two genes encoding ATP-
dependent CLP proteases were also found differentially
expressed, one was up regulated (At1g09130, CIpR3) and
the other was down regulated (At5g51070, CLPD/ERD1)
after the Cold/Light treatment.

Differential expression of genes related to ROS scavenging
enzymes under Cold/Light, Cold/Dark and Dark conditions
The accumulation of compounds related to oxidative
stress were monitored by applying the DAB-staining
method to Cold treated leaves (Figure 6). The leaves from
Cold/Light treated plants revealed some reddish-brown
precipitate of oxidized DAB, indicative of oxidative stress,
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Table 2: Up or down regulated transcripts upon different temperature and light treatments

AGl-code and Description Cold and Dehydration Responsive Genes Control Cold/Light Cold/Dark Dark
Atlg09350 galactinol synthase, AtGolS3 09 0.1 42.0 * 3.0%* 17.1 £ 1.5 1.0+ 04
At3g50970 dehydrin (XERO2) (Low-temperature-induced protein, LTI30) 1.0£0.1 17.8 £3.0 11,7253 0.4%0.1
At5g52310 low-temperature-induced protein 78, (RD29A) (UP) 1.3+£0.2 11.6 £3.5%®@ 3.6%1.7 0.1 £0.1
Atlg20450 dehydrin (ERD 10, Low-temperature-induced protein, LTI45) 1.3+02 10.4 £ |.4* 3.8+£0.6 0.6 £ 0.1
At4g19120 ERD3 protein 1.3+0.2 3.5+0.6% 1.6 +0.4 0.4%0.1
At5g15960 stress-induced protein KINI (UP) 1.3 £0.1 26109 1.7+£0.2 0.1 £0.1
Atlg56600 galactinol synthase, AtGolS2 (Down) 1.2+£0.2 2.1 £0.2% 1.2+03 0.7+02
At5g55400 dehydrin RABI8 1.2 +0.1 2.0+0.3 0910 05+03
LHCB genes
At3g27690 light harvesting chlorophyll A/B binding protein, LHCB 2.4 (Down) 1.2+£0.2 15.8 + 4.1* 1.7 £0.2 05+03
At2g05070 light-harvesting chlorophyll A/B binding protein, LHCB 2.2 (Down) 12 £0.1 8.1 £2.3* 1.3£0.2 0.6 +£0.3
At3g08940 chlorophyll a/b-binding protein, LHCB 4.2 (Down) 1.2 £0.1 2.7 £ 0.8* 07+02 1.7£0.2
At3g22840 early light-induced protein, ELIPI (Up) 1.0 £ 0.1 2.4 £ 0.3* I.1 £0.1 0.8+0.2
At1g29930 light harvesting chlorophyll A/B binding protein (Down) 1.1 £0.1 2.1 £0.3% 09 0.1 1.2+£0.2
Photosystem | related genes
At5g64040 photosystem | reaction center subunit, PSI-N (Down) 12+0.2 2.5 £0.3* 1.3£0.2 0.8 £0.1
At1g08570 thioredoxin I.1 +£0.1 2.0+0.2 1.710.2 1.710.2
Genes encoding chloroplast targeted proteases
Atl1g49630 Zn metalloprotease 1.2£0.1 5.5 £ 0.9* 1.9£0.2 0.6 £ 0.1
At5g42270 FTSH protease (H5) (Up) 1.1 £0.1 2.9 £0.4* 1.0+0.2 0.6 £0.1
Atlg50250 FTSH protease (HI) (Up) 12£0.1 2.3 +0.3* 12+0.2 0.6 £0.1
Atlg06430 FTSH protease (H8) I.1 £0.1 2.1 £0.3* 09+02 0.7 +0.1
Atl1g09130 ATP-dependent CLP protease (CLPR3)(-) 1.1 £0.1 2.1+£05 1.7+0.7 1.3x0.1
At5g51070 ATP-dependent CLP protease (CLPD), ERDI protein (-) 1.1 £0.1 0.4%0.1 0.5%0.1 1.5%0.1
Genes Encoding Chloroplast Targeted ROS Scavenging Enzymes
At4g| 1600 glutathione peroxidise (Up) 1.3 £0.1 5.7 1.1* 1.4+£0.2 0.7 £ 0.1
At4g25100 iron superoxide dismutase (FeSOD) (Up) 12+£0.3 3.2 £ 0.4* 1.7£0.2 1.8+0.3
At2g25080 glutathione peroxidise (Down) 1.3+0.2 2.8 0.3 1.4+£03 1.4+0.2
At3g54660 gluthatione reductase (-) 1.2 £0.1 2.1 £0.2* 1.4£0.1 0.6 £ 0.1
Expression of Catalase and Ascorbate Reductase Genes
At4g35090 catalase 2 (Up) 1.3£0.1 6.4%1.4 3.8%1.2 25104
At3g09940 monodehydroascorbate reductase 09 +0.1 09 £0.1 12+0.2 0.8 £0.1
At3g52880 monodehydroascorbate reductase 1.3 £0.1 09+02 0.7 £0.1 0.7 £ 0.1
Atlg20630 catalase | (Down) 1.1 £0.1 0.8+0.1 09+0.2 12+£0.2
Atlg75270 dehydroascorbate reductase 09 +0.1 0.6 £ 0.1 0.6 £ 0.1 05+02
At5g03630 monodehydroascorbate reductase 1.3£0.1 0.5 0.1 0.6 £ 0.1 09+02
Atlgl9570 dehydroascorbate reductase 09+02 04+02 0.4%0.1 0.3x0.1
At1g20620 catalase 3 (Down) 1.5+£03 0.4%0.1 0.5+0.1 24102
Carotenoid Biosynthesis Genes
At5g67030 zeaxanthin epoxidase precursor, (LOS6/ABAI)(ZEP) 1.3£0.2 3.8 £0.6* 1.7£0.5 0.7 £0.1
Atlg74470 geranylgeranyl reductase 1.4 +0.1 3.0 £ 0.4% I.I £0.1 1.3+£0.2
At4g32770 tocopherol cyclase (SXDI) 1.0 £ 0.1 2.1 £0.2% 1.0£0.1 08+0.2
Atlg08550 violaxanthin de-epoxidase precursor, (NPQI) 1.2 £0.1 09 £0.1 0.7 £ 0.1 0.6 £ 0.1
Chlorophyll Biosynthesis Genes
At1g58290 glutamyl-tRNA reductase | (GIuTR) (HEMALI) 1.0+0.1 6.5 £ 0.7* 26+09 1.2+02
At3g56940 dicarboxylate diiron protein, (CHL27, CRDI) 12 £0.1 4.5 £ 0.6 1.4£0.1 1.1 £0.2
At5g13630 Mg-chelatase H-subunit (CHLH) 1.2+0.1 2.2 £0.2% 12+0.2 09 +0.1
Phenylpropanoid Pathway Genes
At5g17050 UDP glucose:flavonoid 3-o-glucosyl-transferase 1.0£0.1 12.6 £ 3.7* 1.9+0.8 0.8 £0.1
At3g53260 phenylalanine ammonia-lyase (PAL2)(-) 12+0.2 3.7%0.6 1.9+£0.7 1.2 £0.1
At5g13930 chalcone synthase (naringenin-chalcone synthase) (Up) 1.0 £ 0.1 29%1.0 1.0£0.2 0.6 +£04
At4g30210 NADPH-cytochrome p450 reductase, (ATR2) 1.2 +£0.1 25+0.2 2.1 £0.3 1.3+£05
Atlgl5950 cinnamoyl-CoA reductase 1.0£0.1 2.5 £ 0.2* 1.4+£03 09+02
At4g34050 caffeoyl-CoA 3-O-methyltransferase 1.1 £0.1 22105 .1 £0.2 0.6 £0.1
Carbon metabolism genes
Atlg32900 starch synthase 1.3+04 6.1 £2.1 40+32 1.1 £0.2
At4g17090 glycosyl hydrolase family 14 (beta-amylase) 1.2 £0.1 6.1 £0.7 32+ 14 0.5+0.2
At1g08920 sugar transporter, putative similar to ERD6 protein 1.0£0.1 3.4%0.8 22103 0.8 £0.1
At3g01550 triose/phosphate translocator I.1 £0.1 2.4 £ 0.2* 1.3+0.2 1.0 £ 0.1
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Table 2: Up or down regulated transcripts upon different temperature and light treatments (Continued)

At4g38970 plastidic fructose-bisphosphate aldolase (UP)

Atlg69830 alpha-amylase (I,4-alpha-D-glucan glucanohydrolase)
At4g36670 sugar transporter

At3g46970 starch phosphorylase, alpha-glucan phosphorylase, H isozyme
Atlg71880 sucrose transporter SUCI (sucrose-proton symporter)
Anaerobic Carbon Metabolism Related Genes

At4g33070 pyruvate decarboxylase-1, (PDCI)

Atlg77120 alcohol dehydrogenase, (ADH)(-)

At4g17260 L-lactate dehydrogenase, (LDH)

1.3+£0.2 2.0+0.2 2404 03+0.2
1.3+0.2 1.0£0.2 0.5%0.1 0.3 0.1
1.0+0.1 09+0.2 2005 1.810.2
09+0.1 09 0.1 0.5+0.1 0.6 +0.2
1.0+0.1 0.8=+0.1 2.9 £0.7* 05+0.2
.1 +£0.1 63113 3.3+0.6 09+0.2
0.9 0.1 2.0+0.3 1.5%0.1 1.0+£0.2
1.0£0.1 1.7£0.1 1.8 0.1 1.0+0.2

Control represents internal variation (technical and/or biological) of different leaf samples from growth condition. Value # s.e. indicates expression
ratio of Treatment/Control after normalization + standard error of the mean (n = 3—4). Genes in the table are listed in decreasing expression ratios
according to Cold/Light treatment in each group of genes. @Genes that differ significantly (Students t test p-value less than 0.05) in their expression
between the Cold/Light and Cold/Dark condition are marked with an asterisk (*). Values in bold indicate the quality control of gene expression
(a statistical test of differential expression for a specific condition, Students t test p-value less than 0.05). A comparison between Cold/Light and
moderate high light responsive gene expression [4] is indicated after description of the gene: (UP); a gene up regulated under moderate high light,
(Down); a gene down regulated under moderate high light and (-); no change in the gene expression under moderate high light.

At4g17090 and starch phosphorylase, At3g46970), of which the
starch synthase and f-amylase were both up regulated more under
Cold/Light than Cold/Dark condition, whereas the o-amylase and
starch phosphorylase were down regulated under the Cold/Dark and
Dark treatments.

Interestingly, we found three genes related to anaerobic carbon
metabolism, which were clearly up regulated under Cold/Light con-
dition, namely puruvate decarboxylase (PDC1, At4g33070), alcohol
dehydrogenase (ADH, At1g77120) and L-lactate dehydrogenase
(LDH, At4g17260) genes (Table 2).

Differential expression of transcription factors

The results shown in Table 3 depict 48 transcription factors that were
differentially expressed compared to control condition. Thirteen
transcription factors were significantly up regulated only under
Cold/Light condition, 17 both in Cold/Light and Cold/Dark condi-
tion, a few (6) preferably in Cold/Dark and 12 solely in the Dark
condition. The largest group of differentially expressed transcription
factors (14) belongs to various types of zinc finger family transcrip-
tion factors.

Some of these transcription factors have been shown to be involved
in oxidative stress, like ZAT12 At5g59820 [39] or in salt stress, like
STO (At1g06040) and STZ/ZAT10 (At1g27730 [40]). The second
largest group consisted of AP2-domain transcription factors (8),
including two DRE binding proteins DREB1B (CBF1, At4g25490)
and DREB2A (At5g05410) that have been well characterized in reg-
ulation of cold responsive and dehydration responsive genes, respec-
tively [7,41]. Of these two genes, DREB2A (At5g05410) was
significantly more induced by the Cold/Light than Cold/Dark treat-
ment (Table 3, Figure 4), even though the low temperature is the
main regulator of these transcripts [42]. In addition, a cold-respon-
sive AP2-transcription factor RAV1 (At1g13260) was induced upon
the cold treatment both in light and in darkness [43]. Other types of
transcription factor genes were also found differentially expressed
compared to control conditions, like 6 members of the MYB family
of transcription factors, 3 members of homeobox related transcrip-
tion factors, 3 members of the bZip transcription factors like
AtbZip35 (ABRE/ABF1, At1g49720) and two genes encoding bZip
family of chloroplast targeted transcription factors (ATB2/AtbZIP11,
At4g34590 and Hy5, At5g11260), 2 members of the WRKY family of
transcription factors, 3 members of the bHLH family of transcription
factors, two NAC-domain family members of transcription factors
and 11 other genes of DNA binding families of transcription factors.
The expression of some transcription factor genes, three members of

the AP2 and one member of the MYB family of transcription factors
(CCA1, At2g46830) was verified using northern blot analysis (Figure
4). Despite the low expression of transcription factors in general, we
found a good correlation between the northern blot and the micro-
array results (Table 3).

Since we were studying the effect of light in the cold acclimation
process, it was of interest to find out whether the genes involved in
circadian rhythm and/or phytochrome/cryptochrome related light
sensing processes were likewise affected. However, we did not find
any differences between the Cold/Light and Cold/Dark treatments in
the transcriptional expression of genes encoding phytochrome/cryp-
tochrome related transcription factors, light regulators or light recep-
tors (Data not shown). Instead, we found a clear differential
expression of these photoreceptor-responsive genes after the Dark
treatment.

Evaluation of the correlation between the transcript and protein
levels

Some genes that showed large expression changes at the transcript
level were also analyzed at the protein level by western blotting (Fig-
ure 7). This analysis was limited to low temperature inducible dehy-
drins like XERO2 and ERD10 and to some photosynthesis related
genes, which were strongly up regulated, especially under the Cold/
Light condition. Figure 7A depicts the dehydrin proteins and their
relative quantities under Control, Cold/Light, Cold/Dark and Dark
conditions. Strong up regulation recorded at transcript level, both
under Cold/Light and Cold/Dark did not occur at the protein level.
On the contrary, under Cold/Dark condition the protein amounts
were decreased. However, it is interesting to note that the amount of
proteins did increase when the plants were allowed to recover for
one hour at normal growth temperature (re-1hL). Similarly, despite
strong up regulation of LHCB and glutathione reductase transcripts,
the protein levels of chloroplast targeted LHCB proteins and glutath-
ione reductase protein remained nearly unchanged during the Cold/
Light and Cold/Dark treatments (Fig. 7B). Another glutathione
reductase gene (At2g24170), which however, was not present in our
c¢DNA array, encodes a cytoplasmic protein, and this protein showed
increased amounts both under Cold/Light and Cold/Dark condi-
tions. Based on these few protein analyses, it is clear that the tran-
script up regulation is not necessarily reflected in the increased
protein contents; in fact the opposite might occur as in the case of
dehydrin proteins in darkness. We are presently undertaking a pro-
teome study, in order to specify how the transcript levels of highly
responsive genes are related to respective proteins levels.
Transcription factors were bound to corresponding response
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Figure 4

Verification of some microarray results using north-
ern blot analysis after four different treatments: Con-
trol (Ctr), Cold/Light (C/L), Cold/Dark (C/D) and
Dark (D). Hybridizations were made with genes encoding:
four photosystem Il light harvesting proteins (LHCB) and the
Early Light Inducible Protein (ELIPI); two photosystem |
related (PSI) proteins, PSI-N and plastocyanin (PC); two pro-
teins of carbohydrate metabolism, a plastidic fructose
bisphoshate aldolase (PI-FBA) and a pyruvate decarboxylase
(PDCI); a ZEP protein involved in zeaxanthin and ABA bio-
synthesis; four chloroplast targeted proteins involved in oxy-
gen radical scavenging and three cytoplasmic or peroxisomal
catalases (CAT); a cold-responsive protein (LTI78/RD29A)
and genes encoding a MYB-like (CCAI) and three AP2 tran-
scription factors. The hybridization of the 16S rRNA probe
to total RNA is shown in the bottom of the figure.

whereas no such precipitate was detectable in Cold/Dark
treated leaves. Also an induction, particularly in Cold/
Light condition, was observed for a few genes encoding
chloroplast-targeted enzymes active in scavenging of ROS
(Table 2, Figure 4). These included an iron superoxide dis-
mutase (FeSOD, At4g25100), and two glutathione
dependent phosholipid hydrogen peroxide peroxidases
(At4g11600 and At2g25080). The FeSOD protein seems
not to have a chloroplast-targeting signal, but it has been
experimentally shown to be located in the chloroplast
[28]. In addition, a gene encoding chloroplast targeted
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Ctr C/LL. C/D D
PsbA

1.0 1.1 1.3 1.2
PsaC

1.0 1.3 1.3 1.0
PetB J—

1.0 1.1 1.2 1.3
16S rRNA | S S S .
Figure 5

A northern blot analysis of three chloroplast encoded
transcripts (PsbA, PsbC and PetB) after Control (Ctr),
Cold/Light (C/L), Cold/Dark (C/D) and Dark (D)
treatments. Numbers indicate the quantities of respective
mRNAEs after each treatment with value 1.0 for the control.
Three independent northern blots were used for quantifica-
tion against 16S rRNA.

glutathione reductase (GR) was up regulated more than
two-fold under the Cold/Light condition.

It is interesting to note that the expression of genes encod-
ing ascorbate-glutathione cycle enzymes, monodehy-
droascorbate reductases (MDHAR) and dehydroascorbate
reductases (DHAR), located in the cytosol or in the chlo-
roplasts, was either down regulated or unchanged (Table
2, Figure 4). Similarly, the expression of cytosolic or per-
oxisomal catalases were either unchanged (CATI,
At1g20630) or down regulated (CAT3, At1g20620) with
catalase 2 (CAT2, At4g35090) as an exception, which was
clearly up regulated after all three treatments i.e. under the
Cold/Light, Cold/Dark and Dark conditions.

Several genes involved in the biosynthesis of photosyn-
thesis-related isoprenoids [29-31] were also differentially
expressed (Table 2). Geranylgeranyl diphosphate (GGPP)
is a key compound leading to production of carotenoids,
chlorophyll phytol tail, plastoquinone, phylloquinone
and tocopherol (lipid-soluble compounds with antioxi-
dant activities) [30]. The expression of geranylgeranyl
reductase (CHLP, At1g74470), a gene encoding protein
that catalyzes the hydrogenation of GGPP to phytyl
diphosphate (PhyPP) and a gene encoding tocopherol
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Control Cold/Light Cold/Dark

Figure 6

Accumulation of oxidative stress related compounds
in Arabidopsis leaves after Control, Cold/Light and
Cold/Dark treatments. A reddish-brown colour indicates
production of oxidized DAB in leaves.

cyclase (SXD1, At4g32770) being involved in vitamin E
(tocopherol) biosynthesis [32], were significantly induced
on transcript level under the Cold/Light treatment. In
addition, zeaxanthine epoxidase gene (LOSG6/ABAI,
At5g67030, [33]), involved in the carotenoid pathway
leading to biosynthesis of abscisic acid (ABA), was specif-
ically up regulated (almost four-fold) only under Cold/
Light condition. It is intriguing that the gene for reverse
function, violaxanthine deepoxidase (NPQ1, At1g08550)
that is important for heat dissipation of absorbed excita-
tion energy was not up regulated under the Cold/Light
condition.

Three chlorophyll biosynthesis genes were also up regu-
lated under Cold/Light condition: glutamyl-tRNA reduct-
ase 1 (HEMAI, At1g58290), Mg-chelatase (CHLH,
At5g13630) and dicarboxylate diiron protein (CRDI,
At3g56940) (Table 2). Of these, only HEMA1 gene was
also induced under the Cold/Dark conditions, but three
times less than under Cold/Light condition.

Phenylpropanoid pathway is another complex pathway
and produces phenolic compounds like flavonoids and
anthocyanins that have oxidative stress alleviating abili-
ties [34,35]. Two of differentially expressed genes encode
chloroplast-targeted  proteins, = NADPH-ferriprotein
reductase (ATR2, At4g30210) and UDP glucose flavonoid
3-o0-glycosyl-transferase (At5g17050), of which the latter
one was more than 10-fold up regulated under Cold/Light
(Table 2). The other genes encoding flavonoid biosynthe-

http://www.biomedcentral.com/1471-2229/8/13

sis proteins are located in the cytoplasm. Generally, these
genes were more induced after Cold/Light than Cold/
Dark treatment, with the exception of two flavonol syn-
thase genes (At2g38240 and At5g05600). Additionally,
there were two genes significantly up regulated only in
Cold/Light conditions, cinnamoyl CoA reductase
(At1g15950) and caffeoyl CoA 3-O methyltransferase
(At4g34050) that are not related to flavonoid biosynthe-
sis, but encode proteins for reconstruction of cell wall
components like lignins, lignans, hydroxycinnamic acids,
suberins, sporopollenins and cutins [36].

Genes encoding proteins involved in carbon metabolism
are not down regulated in Cold/Light or Cold/Dark
treatments

Even though it is generally accepted that low temperature
decreases carbon fixation (reductive carbon cycle) and
inactivates Calvin cycle enzymes in chilling sensitive
plants, this is not probably the case in chilling tolerant
plants [37,38]. In accordance, we found no down regula-
tion of Calvin cycle genes in Cold/Light or in Cold/Dark
treatments. However, these transcripts were clearly down
regulated after 8-hour dark treatment (see Additional file
4).

Genes encoding two sugar transporters, ERDG,
(At1g08920) and a triosephosphate/phosphate transloca-
tor (At3g01550) were more up regulated under Cold/
Light than Cold/Dark condition, and vice versa, two other
sugar transporters, a sucrose/proton transporter (SUCI,
At1g71880) and At4g36670 were up regulated only under
Cold/Dark condition (Table 2). All these sugar transport-
ers are membrane proteins with seven to twelve mem-
brane spanning helixes, but do not have chloroplast
targeting signals. The cytosolic fructose-bisphoshate aldo-
lase gene (At4g26530) was slightly up regulated only after
the Cold/Light treatment, whereas the corresponding
plastidic fructose-bisphosphate aldolase gene
(At4g38970) was up regulated upon both the Cold/Light
and Cold/Dark treatments. In addition, there seems to be
a differential expression between the genes involved in
biosynthesis (starch synthase, At1g32900) and degrada-
tion of starch (a-amylase, At1g69830; [-amylase,
At4g17090 and starch phosphorylase, At3g46970), of
which the starch synthase and B-amylase were both up
regulated more under Cold/Light than Cold/Dark condi-
tion, whereas the a-amylase and starch phosphorylase
were down regulated under the Cold/Dark and Dark treat-
ments.

Interestingly, we found three genes related to anaerobic
carbon metabolism, which were clearly up regulated
under Cold/Light condition, namely puruvate decarboxy-
lase (PDC1, At4g33070), alcohol dehydrogenase (ADH,
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At1g77120) and L-lactate
At4g17260) genes (Table 2).

dehydrogenase (LDH,

Differential expression of transcription factors

The results shown in Table 3 depict 48 transcription fac-
tors that were differentially expressed compared to control
condition. Thirteen transcription factors were signifi-

http://www.biomedcentral.com/1471-2229/8/13

cantly up regulated only under Cold/Light condition, 17
both in Cold/Light and Cold/Dark condition, a few (6)
preferably in Cold/Dark and 12 solely in the Dark condi-
tion. The largest group of differentially expressed tran-
scription factors (14) belongs to various types of zinc
finger family transcription factors.

Table 3: Genes encoding up regulated transcription factors that changed their expression upon different temperature and light

treatments

AGl-code and Description

At2g23340 AP2 domain transcription factor, putative

At5g63790 No apical meristem (NAM) protein, NAC-domain protein, (ANAC102)
At2g47890 CONSTANS B-box like zinc finger family protein
At4g08150 KNAT| homeobox-related protein

At5g05410 DRE binding protein (DREB2A)

At5g04340 C2H2 zinc finger transcription factor — related

At1g06040 zinc finger transcription factor STO

At4g18390 TCP family transcription factor, teosinte branched| protein
Atlg51700 Dof zinc finger protein ADOFI

At4g34590 bZIP family transcription factor, ATB2/bZipl| |

At5g54470 CONSTANS B-box zinc finger

At5g44190 myb family transcription factor, (GLK2)

At4g23750 AP2 domain transcription factor, (ERF)

At4g25490 C-repeat/DRE binding factor | (CBFI) (DREBIB)
Atlg27730 salt-tolerance zinc finger protein, C2H2-type, ZATI0
At5g57660 CONSTANS B-box like zinc finger family protein (COLS5)
At2g46830 MYB-related transcription factor (CCAl)

At5g59820 zinc finger protein ZATI2

At1g49720 abscisic acid responsive elements-binding factor, ABF|/AtbZip35
At4g28140 AP2 domain transcription factor, RAP2.4

Atlgl3260 AP2 domain transcription factor, putative (RAVI)
At5g08790 No apical meristem (NAM) protein family, NAC-domain protein (ATAF2)
At5g37260 MYB family transcription factor

At4g12040 expressed protein zinc finger protein, AN -like

At2g45820 remorin, a non-specific DNA binding protein

At3g52800 zinc finger — like protein zinc finger protein, AN |-like
At2g22430 homeobox-leucine zipper protein ATHB-6 (HD-Zip)
At5g02840 myb family transcription factor (SANT-domain)

At4g32800 AP2 domain transcription factor TINY

At5g52510 scarecrow-like transcription factor 8 (SCL8)

At3g55980 zinc finger transcription factor (PEIl), CCCH-type
At3g07650 CONSTANS B-box like zinc finger (COL9)

At2g21650 myb family transcription factor

At5g58900 myb family transcription factor (SANT Domain)
At2g03340 WRKY family transcription factor

At3g61260 DNA-binding protein-related DNA-binding protein (dbp)
At3g16770 AP2 domain transcription factor RAP2.3

At2g25900 CCCH-type zinc finger

At5g07100 WRKY family transcription factor SPF|

At1g02340 bHLH protein (HFR1)

Atlg34370 zinc finger protein-related similar, C2H2-type

At2g42280 bHLH protein family

At3g59060 bHLH protein family

At5g56140 KH domain protein

At5g1 1260 bZIP protein HYS identical to HY5

At4g| 7460 homeobox-leucine zipper protein HAT| (HD-Zip protein |)
Atlgl 3450 DNA binding protein GT-I-related

At5g37720 RNA and export factor binding protein, putative transcriptional coactivator ALY, Mus musculus

Control Cold/Light  Cold/Dark Dark
09+0.1 89%I1.1*@ 2809 1.0+0.2
1.2+£0.1 4.1 £ 0.4* 1.5+06 0.9+0.1
1.1 £0.1 4.0 + 0.5* 1.6 £ 0.1 1.0+ 0.2
1.0£0.1 3.9 + 0.5% 1.9 £06 0.7+ 0.1
1.0 £ 0.1 3.6 + 0.3* 2005 0.9+0.2
1.0£0.1 3.3+0.3* 1.9 0.1 1.0+£0.1
1.5+02 3.3 +0.4* 1.7+£03 0.8+0.2
1.0£0.1 3.0 +0.3* 1.5 0.1 0.6 £0.1
1.0 £ 0.1 2.4 0.5% 1.1 £0.2 0.80.1
1.1 £0.1 2.4+ 0.6* .1 £0.1 0.9 +0.1
0.9 +0.1 2.3 +0.2* 1.3+03 1.0+ 0.2
1.1 £0.1 2.2+ 0.4* .1 £0.1 1.0+£0.3
0.9 +0.1 2.0 + 0.3* 1.3+0.1 2009
1.1 £0.1 83+27 4.0+0.8 1.0+£0.2
1.1 £0.2 6.2+3.7 712+1.2 1.1 £07
14+£02 5.1£1.0 4.1+0.7 43+0.5
1.0 £ 0.1 3.8+04 37+2.1 1.0+ 0.2
1.0 £ 0.1 3.7£1.1 23+0.5 1.1 £0.1
1.0 £ 0.1 3.4+0.5 21+07 0.7+ 0.1
0.9 +0.1 3.2+0.6 1.7+1.3 1.0£0.1
1.1 £0.1 3.1+£1.0 4.2+0.8 0.9 0.1
12402 29+0.5 1.3+06 1.0 £ 0.4
0.9 +0.1 29+04 44+22 1.2+0.1
1.0£0.1 28+03 3.4+0.5 22+03
1.3+£02 2.7+0.5 1.9+ 06 1.7£0.2
1.0£0.1 26+0.7 3.6+0.8 1.6 £0.5
1.6 £0.2 2.1+£0.5 21+05 1.6 £0.3
1.2+£0.1 2.1+£03 1.7+ 04 2.0£0.3
1.0+£0.2 2.1+0.1 23+08 0.7+0.1
1.1 £0.1 20+£0.2 3.6%1.1 1.1 £02
0.9 +0.1 12+07 3.8+ 0.4* II£1.2
1.0£0.1 1.9+£03 3.5 + 0.5*% 1.5+03
1.0 £ 0.1 1.3+0.1 22+ 1.5 0.9+02
1.1 £0.1 1.6 £0.2 22+0.2 0.9+0.2
1.1 £0.1 1.7+0.2 21+09 0.4%0.1
1.1 £0.1 1.6 £0.4 2.1+0.5 52+0.9
1.4+£02 1.7+0.3 1.7%0.3 85+4.1
1.3+0.1 0.8 0.1 1.1 £03 5.1+£1.0
1.2+£0.1 1.0 £ 0.1 1.7 £ 0.5 3.6+0.5
1.3+02 1.6 £0.2 1.4 %0.1 28+0.7
1.0+0.1 12+£02 0.8+0.1 26+0.2
1.0 £0.1 1.0 £0.1 .1 £0.1 25+0.1
1.2 £0.1 0.7+02 1.1 £02 23+03
1.1 £0.1 1.1 £0.1 .1 £0.1 23+0.2
0.8+0.1 1.5+0.2 1.3+0.1 2.1+0.2
1.2+£0.1 0.8 0.1 0.9+0.1 2.1+£03
1.1 £0.1 0.7 £0.1 0.9 0.1 2.1+0.1
1.2 +£0.1 12+£0.1 1.0£0.1 20+0.1

Control represents internal variation (technical and/or biological) of different leaf samples from growth condition. Value # s.e. indicates expression
ratio of Treatment/Control after normalization # standard error of the mean (n = 3—4). Genes in the table are listed according to decreasing
expression ratios in different condition. The big groups of transcription factors that are up regulated at a given condition are underlined. @Genes
that differ significantly (Students t test p-value less than 0.05) in their expression between the Cold/Light and Cold/Dark condition is marked
with an asterisk (¥). Values in bold indicate the quality control of gene expression (a statistical test of differential expression for a specific

condition, Students t test p-value less than 0.05).
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Some of these transcription factors have been shown to be
involved in oxidative stress, like ZAT12 At5g59820 [39] or
in salt stress, like STO (At1g06040) and STZ/ZAT10
(At1g27730 [40]). The second largest group consisted of
AP2-domain transcription factors (8), including two DRE
binding proteins DREB1B (CBF1, At4g25490) and
DREB2A (At5g05410) that have been well characterized
in regulation of cold responsive and dehydration respon-
sive genes, respectively [7,41]. Of these two genes,
DREB2A (At5g05410) was significantly more induced by
the Cold/Light than Cold/Dark treatment (Table 3, Figure
4), even though the low temperature is the main regulator
of these transcripts [42]. In addition, a cold-responsive
AP2-transcription factor RAV1 (At1g13260) was induced
upon the cold treatment both in light and in darkness
[43]. Other types of transcription factor genes were also
found differentially expressed compared to control condi-
tions, like 6 members of the MYB family of transcription
factors, 3 members of homeobox related transcription fac-
tors, 3 members of the bZip transcription factors like
AtbZip35 (ABRE/ABF1, At1g49720) and two genes encod-
ing bZip family of chloroplast targeted transcription fac-
tors (ATB2/AtbZIP11, At4g34590 and Hy5, At5g11260), 2
members of the WRKY family of transcription factors, 3
members of the bHLH family of transcription factors, two
NAC-domain family members of transcription factors and
11 other genes of DNA binding families of transcription
factors. The expression of some transcription factor genes,
three members of the AP2 and one member of the MYB
family of transcription factors (CCA1, At2g46830) was
verified using northern blot analysis (Figure 4). Despite
the low expression of transcription factors in general, we
found a good correlation between the northern blot and
the microarray results (Table 3).

Since we were studying the effect of light in the cold accli-
mation process, it was of interest to find out whether the
genes involved in circadian rthythm and/or phytochrome/
cryptochrome related light sensing processes were like-
wise affected. However, we did not find any differences
between the Cold/Light and Cold/Dark treatments in the
transcriptional expression of genes encoding phyto-
chrome/cryptochrome related transcription factors, light
regulators or light receptors (Data not shown). Instead,
we found a clear differential expression of these photore-
ceptor-responsive genes after the Dark treatment.

Evaluation of the correlation between the transcript and
protein levels

Some genes that showed large expression changes at the
transcript level were also analyzed at the protein level by
western blotting (Figure 7). This analysis was limited to
low temperature inducible dehydrins like XERO2 and
ERD10 and to some photosynthesis related genes, which
were strongly up regulated, especially under the Cold/

http://www.biomedcentral.com/1471-2229/8/13

Light condition. Figure 7A depicts the dehydrin proteins
and their relative quantities under Control, Cold/Light,
Cold/Dark and Dark conditions. Strong up regulation
recorded at transcript level, both under Cold/Light and
Cold/Dark did not occur at the protein level. On the con-
trary, under Cold/Dark condition the protein amounts
were decreased. However, it is interesting to note that the
amount of proteins did increase when the plants were
allowed to recover for one hour at normal growth temper-
ature (re-1hL). Similarly, despite strong up regulation of
LHCB and glutathione reductase transcripts, the protein
levels of chloroplast targeted LHCB proteins and glutath-
ione reductase protein remained nearly unchanged during
the Cold/Light and Cold/Dark treatments (Fig. 7B).
Another glutathione reductase gene (At2g24170), which
however, was not present in our cDNA array, encodes a
cytoplasmic protein, and this protein showed increased
amounts both under Cold/Light and Cold/Dark condi-
tions. Based on these few protein analyses, it is clear that
the transcript up regulation is not necessarily reflected in
the increased protein contents; in fact the opposite might
occur as in the case of dehydrin proteins in darkness. We
are presently undertaking a proteome study, in order to
specify how the transcript levels of highly responsive
genes are related to respective proteins levels.

Transcription factors were bound to corresponding
response elements according to their expression level
Electrophoretic mobility shift assay (EMSA) was used to
demonstrate the interaction between the DNA binding
proteins (i.e. putative transcription factors) and the corre-
sponding response elements present in the promoter
regions of low temperature/light responsive genes. For
this purpose, the mRNA isolated from differently light
and low temperature treated leaf rosettes was translated in
vitro and the binding of proteins to four DNA response
elements was tested (Figure 8). Since, the in vitro transla-
tion mixture contains a variety of different DNA binding
proteins; it is possible that several transcription factors
bind to the same response element. As demonstrated in
Figure 8, the in vitro translated protein mixture originating
from the Cold/Light or Cold/Dark samples contained spe-
cific binding activity to the DRE response element, thus
most probably containing a low temperature induced
DRE binding (DREB) protein. Interestingly, only one
hour recovery at growth temperature after the Cold/Light
treatment was enough to abolish this DNA-protein inter-
action (Figure 8), in accordance with a decrease of mRNA
encoding the DREB proteins (Data not shown). The trans-
lated protein mixtures also contained proteins binding to
ABA and DOF responsive elements but no increase in the
binding activity to these elements was observed either by
the Cold/Light or by the Cold/Light and subsequent 1h-
recovery treatments of plants. However, less binding of
transcription factors to these elements occurred when
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Figure 7

Western blot analysis of dehydrin proteins (A) and of LHCB and glutathione reductase proteins (B). Protein
samples isolated from Arabidopsis leaves under growth condition (Ctr), after the Cold/Light (C/L) treatment, subsequent recov-
ery for one hour at normal growth conditions (re-1hL), after 8-hour Darkness (D) and after the Cold/Dark (C/D) treatment. A
typical result is presented out of three independent western blot experiments.

plants had been treated for 8-hours in Darkness or in the
Cold/Dark condition. In contrast, increased binding of in
vitro translated proteins to the GBF-element occurred
under all treatments as compared to control.

Discussion

Light has a significant effect on the expression of
transcription factors during exposure of plants to low
temperature

The work presented here addresses for the first time the
role of light in the cold acclimation process of Arabidopsis
at the transcript level using microarray techniques. In this
respect, the induction of transcription factors and their
role in transcriptional activation of cold-responsive genes
is highly important (Tables 3 and 4). Approximately 1700
transcription factors have been identified in Arabidopsis
thaliana genome of which only a small fraction is geneti-
cally characterized [44].

Previous studies have demonstrated that cold acclimation
involves a rapid up regulation of genes encoding CBF
transcriptional activators [7] and other ERF/AP2 domain
proteins, known also as DRE binding (DREB) proteins
[45]. It is of interest that two genes encoding AP2 domain
transcription factors (DREBA2 (At5g05410) and a previ-
ously uncharacterized AP2-domain transcription factor
(At2g23340) were all significantly more up regulated in
Cold/Light than in Cold/Dark (Table 3), being in line
with similar enhanced up regulation of the well-estab-
lished cold responsive genes (Table 2, Figure 4). Our tran-
script profiling together with promoter analysis (Table 4,
Additional file 5 and Figure 8) suggest a concerted effect
of low temperature and light in the up regulation of sev-
eral cold responsive genes.

We also identified a number of transcription factor genes
specifically induced only under the Cold/Light condition,
although the light intensity was not changed upon a shift
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Electrophoretic mobility shift assay (EMSA) indicat-
ing DNA-protein interactions under different light
and temperature conditions. The oligonucleotide DNA
probes are shown below each EMSA experiments. In vitro
translated protein extracts that were used in EMSAs are indi-
cated by the numbers: | no protein extract, 2 Control
(growth condition), 3 Cold/Light, 4 Cold/Light and subse-
quent recovery for one hour at normal growth condition, 5
Darkness and 6 Cold/Dark. Inducible DNA-protein interac-
tions are indicated by arrow heads.

of plants to low temperature. Therefore we anticipate that
signals from chloroplasts, modified by low temperature
[19], are important in regulation of these genes. They
include genes encoding two NAC domain proteins
(ANAC102, At5g63790 and ATAF2, At5g08790), three
AP2/ERF-domain proteins (At2g23340, At5g05410 and
At4g23750), five zinc finger proteins (At2g47890,
At5g04340, At1g06040, Atlg51700 and At5g54470), a
homeobox (At4g08150), a TCP family (At4g18390), a
bZIP family (At4g34590) and a myb family (At5g44190)
of transcription factors. Only three of these genes
(At5g63790, At4g28140 and At4g23750) seem not to be
subject to regulation by various light treatments as
revealed by using the GENEVESTIGATOR program, [10].
It is conceivable that these transcription factor genes
respond to changes in the function of the photosynthetic
machinery and related changes in chloroplast redox con-
ditions and/or the production of different metabolites
derived from CO, fixation [4]. These transcription factors
are, in turn, likely to induce the Cold/Light specific
nuclear encoded transcripts (Tables 2 and 3), many of
which are characterized by a chloroplast targeting signal
and are involved in different protective functions, includ-
ing the biosynthesis of carotenoids, reactive oxygen scav-
enging enzymes and components of the phenylpropanoid
pathway as well as in the production of ABA.

Environmental conditions modulate the expression of
transcription factor genes and their target genes via the
same response elements

An important fact was discovered when examining the
response elements in the proximal promoter regions of
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both the transcription factor genes and their target genes
(Table 4, Additional file 5). Similar response elements in
the promoter regions of these both gene groups were evi-
dent. Environmental conditions thus seem to regulate via
signalling/metabolic cascades the expression of both the
transcription factor genes and their target genes. To some
extent this was expected since the microarray data would
produce information of genes having a similar expression
pattern under similar stress conditions. In Table 4 we have
selected and analysed the promoter elements of some
most up regulated genes either under Cold/Light or under
both the Cold/Light and Cold/Dark conditions. It is clear
that the increasing number of DRE binding elements
present in the most highly expressed Cold/Dehydration
responsive genes (XERO2, RD29A and ERD10) is related
to their transcriptional efficiency independently of light
(Table 2, Figure 8). These elements are also expected to
play an important role in light-dependent regulation of
photosynthesis-related as well as other light-regulated
genes.

It is conceivable that the light and/or ABA-responsive ele-
ments are additionally involved in transcriptional regula-
tion of many cold responsive transcription factor genes,
since they do not contain any DRE binding elements (see
Table 3). Indeed, it was interesting to note the absence of
positive feedback loops for transcriptional regulation of
transcription factor genes, as they did not appear to have
their own response elements in the promoter regions
(except ADOF1). The promoter region of different genes
depicted in Table 4 contains also a number of other
response elements capable of transcriptional regulation
according to circadian, heat, calcium, salt or carbon status
of the cells. Thus, it appears that environmental cues have
a direct effect on the transcriptional network via signalling
events, which are driven by cellular and metabolic proc-
esses. Transcription factor genes responding to these sig-
nals, concomitantly with their target genes, then have a
capacity to specifically amplify the expression of these tar-
get genes.

Putative light signalling pathways involved in low
temperature regulation of gene expression

The obvious question is how light affects the low temper-
ature signalling cascades involved in induction of tran-
scription factors and their target genes. Earlier studies
have pointed out the necessity of light for induction of
genes through the C-repeat/dehydration responsive ele-
ments in response to low temperature, being mediated by
phytochrome B [46]. This mechanism is likely involved in
the case of DREB/CBF and related transcription factors
[43], whose expression was clearly enhanced by Cold/
Light as compared to Cold/Dark condition.
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Table 4: Summary of Transcriptional Regulation of Target Genes (Table 2) and Transcription Factor Genes (Table 3). The Table
Represents the Number of Response Elements Present in the Promoter Region of Differently Expressed Cold/Light (C/L) or Cold/
Dark (C/D) or Dark (D)-Responsive Genes. Promoter Analysis Was Performed within 500 bps Upstream of Transcription Start Site
using a Genomatix™ and Athena Programs. Response Elements that Are More than 90% Same within a Group of Expressed Genes are
underlined According to Genomatix Gene2Promoter Analysis. Enriched Response Elements within the Same Groups of Genes (P-
value < 10e-3) Are Indicated as Underlined and Bold According to Athena Visualization Program [71].

Response elements and conditions under which the DREB' ABRE2 AHBP3
elements induce genes

GBOX4 GTBOXS LREM¢ CCAF? HSF® CGCG® SALT!0 DOFF!!

Cold ABA ABA  ABA/Light Light Light ~ Circadian Heat Calcium Salt Carbon

Target genes, AGI Code, description

Atlg56600, Galactinol synthetase.C/L
Atlg09350, Galactinol synthase. C/L, C/D
At3g50970, XERO2, C/L, C/D
At5g52310, RD29A, C/L, C/D
Atlg20450, ERDI0, C/L, C/D
At5g15960, KINI, C/L

At5g66400, RABI8, C/L

Atlg20340, PC, C/L

At4gl 1600, GPX, C/L

Atlg77120, ADH, C/L

At3g08940, LHCB4.2, C/L

At3g27690, LHCB2.4, C/L

At2g05070, LHCB2.2, C/L

Atlg29930, LCHBI.3, C/L

At5g67030, ZEP, C/L

At5g13930, Chalcone synthase. C/L
Transcription factor genes
At4g25490, DREBIB, C/L, C/D
At5g05410, DREB2A, C/L, C/D
At2g46830, CCAI, C/L, C/D
Atlg49720, ABFI, C/L, C/D
Atlgl3260, RAVI!3, C/D, C/L
Atlg51700, ADOFI, C/L

At4g34590, ATB2-GBF6, C/L
At5g63790, ANAC102'2, C/L
At5g08790, ATAF2!2, C/L

At2g42280, MYC 4D

Miscellaneous, Dark induced genes
At3g12580, HSP70, C/D

At2g32950, COPI regulatory protein, D |
At4g02440, F-box protein, ZGT, D 0 0 0

Control set of random genes, no changed
expression in C/L, C/D or D condition *

At2g37460, Root nodulin MtN21
At4g12550, Seed lipid transfer protein LTP
At3g56020, 60S ribosomal protein L4
At4g31700, 40S ribosomal protein RPS6
At3g47600, MYB94

Atlg73460, protein kinase
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3 5 0 0 I 2 0 1
| 3 0 0 0 2 0 2
0 4 0 I 0 0 0 0
0 6 0 I | 0 0 0
0 0 0 2 0 3 0 |
| | 0 I 0 0 0 I
| I 0 0 0 0 | I
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Footnotes |—14: References for response elements found in Arabidopsis thaliana.l) [13]; [72] 2) [12] 3) [73]; [74] 4) [75]; [76] 5) [77]; [78] 6) [79].
7) [80; [81] 8) [82]; [83] 9) [84] 10) [85]; [86] 1) [87] 12) [88] 13) [89] 14) [90]
* Altogether, the promoter regions of 1000 genes in the Control group were tested with similar results.

A MYB-related transcription factor CCA1 (At2g46830) is
another well-characterized phytochrome B linked factor
that has previously been described to be involved in light-
regulation of genes encoding chloroplast targeted proteins
like the light harvesting (LHCII), ELIP1 and chlorophyll

biosynthesis (e.g. HEMA1) proteins [47]. Our results,
however, demonstrate that both Cold/Light and Cold/
Dark conditions induce the CCA1 gene, whereas the accu-
mulation of several LHCB and ELIP1 transcripts occurs
only upon the Cold/Light treatment (Tables 3 and 4). It is
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therefore possible that CCA1 protein is post-transcrip-
tionally modified only in Cold/Light by a CKII kinase
induced phosphorylation, which has been shown to stim-
ulate the binding activity of CCA1 to the target DNA reg-
ulatory regions [48,49].

Our results indicated that ABA biosynthesis genes are spe-
cifically induced under Cold/Light treatment. A clear indi-
cation of this was the induction of the first gene in ABA
biosynthesis, the zeaxanthin epoxidase (ZEP) gene
[31,33]. In previous microarray experiments using ABA-
treated plants (100 uM), 22 genes encoding transcription
factors were induced [6], many of which behaved simi-
larly in our Cold/Light experiments. Our study and the
studies above suggest that ABA may act as a chemical sig-
nal via induction of bZip (ABRE, ABF, G-box), MYC
(bHLH), homeodomain-leucine zipper (HD-Zip) and
MYB transcription factors (Table 4, Figure 8 and Addi-
tional file 5). Moreover, an increased level of ABA has
been shown to increase for example the expression of
LHCB genes in microarray experiments, similarly to our
Cold/Light treatment [5,6]. ABA-marker genes (listed in
supplemental material of Nemhouser et al. [50]) were
also analyzed against our gene lists of two-fold up and
down regulated genes in the Cold/Light and Cold/Dark
conditions. Out of 119 ABA marker genes present in our
array, the up regulation of twelve genes was found to be
specific to the Cold/Light condition, up regulation of nine
genes was common for both conditions and only two
were specific to the Cold/Dark condition (see also Addi-
tional File 6). The initial steps of ABA biosynthesis are
occurring in the chloroplasts; only the last three steps are
cytosolic [31,33]. Thus, it is possible that ABA may have a
light dependent role in inducing transcription via ABA-
responsive transcription factors, but in darkness also
decreasing the transcription of genes encoding ABA-
responsive transcription factors (Figure 8). Interestingly,
the promoter analysis in Table 4 indicates that almost all
genes induced only by Cold/Light contained the ABRE,
AHBP (HD-Zip) and G-box DNA binding motifs. This
result is further supported by the fact that a significant
over-presentation of these promoter motifs was found in
those genes that were clearly up regulated only under
Cold/Light or under both Cold/Light and Cold/Dark con-
ditions but not in those genes up regulated only in Cold/
Dark condition (Additional file 5). The exact mechanism
by which ABA/Light induces the up regulation of these
transcription factor genes remains to be elucidated in
more detail.

We also considered the reduction state of thylakoid elec-
tron carriers and the production of H,O, in chloroplasts
as Cold/Light-induced stress signalling pathways [51].
Both physical characterization of Arabidopsis plants [Fig-
ure 6, [22]] and our microarray data, indicated that pro-
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duction of some ROS species in the chloroplasts was
induced under the Cold/Light condition and some genes
encoding ROS scavenging proteins were turned on (Table
2). We found a specific up regulation only under Cold/
Light treatment of three genes encoding chloroplast ROS
scavenging proteins, an iron superoxide dismutase
(FeSOD) and two glutathione dependent peroxidases
(GPX) [52] (Table 2). However, there seems to be a specif-
icity of ROS signalling in the Cold/Light treatment.
Indeed, no induction of glutathione-ascorbate cycle genes
(Table 2), like ascorbate peroxidases, monodehydroascor-
bate or dehydroascorbate peroxidases known to become
induced under excess light stress [11,53-56] was recorded
upon the Cold/Light treatment. Thus, it is evident that our
Cold/Light treatment did not induce such a high PSII exci-
tation pressure as was reported in earlier experiments by
Huner and coworkers [19], where a high light intensity
treatment or a low temperature treatment in combination
with moderate light intensity was applied. Even though
our Cold/Light treatment induced detectable levels of
ROS species, probably originating from chloroplasts, it is
possible that the plants exposed Cold/Light were able to
scavenge most of these oxygen radicals. Our previous
microarray experiments with Arabidopsis [4] excluded the
role of PSII excitation pressure in regulation of gene
expression up to the light intensity of 450 umol photons
m=2 s1. Such moderate high light condition induced a
gene expression pattern very similar to the Cold/Light
condition, particularly in respect to the photosynthesis
and oxidative stress related genes (See Supplemental
Material in Piippo et al., 2006 [4], and Table 2). Apart
many similarities between Cold/Light and moderate high
light induced genes, the major differences were detected
in the expression of LHCB genes. Under moderate high
light these genes were mainly down regulated except for
the gene encoding ELIP1, whereas under Cold/Light con-
dition these LHCB genes were clearly up regulated.

The Cold/Light condition induced reduction of both the
PQ pool and also of the stromal electron acceptors on the
reducing side of PSI, as can be deduced from the phospho-
threonine blots (Figure 1, [23]). It has frequently been
suggested that several nuclear genes respond to the redox
state of the PQ pool to regulate photosystem stoichiome-
try and light harvesting capacity as well as antioxidant
scavenging systems [57-60]. Our results however, are in
variance with this hypothesis as evidenced by strong up
regulation of LHCB genes under Cold/Light conditions
that induce a reduction of the PQ pool.

Sugar metabolism/signalling is yet another potential
source for regulation of nuclear genes [4,15,61-63] and is
likely to cause drastic changes in gene expression between
Cold/Light, Cold/Dark and Dark treatments. A shift from
photosynthesis to respiratory sugar metabolism is a prob-
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able cause for the changes detected in the gene expression.
For example, Dark treatment under normal growth tem-
perature induced twice as many genes as the Cold/Dark
treatment (Figure 2B, Additional files 7 and 8). Starch syn-
thesis is evident under Cold/Light condition (Table 2),
whereas soluble sugars are expected to increase under
Cold/Dark and especially under Dark condition. The
effect of signalling sugar molecules on nuclear gene
expression might be exerted via DOFF or WRKY (SPF1)
elements present in both the transcription factor genes
and their target genes (Table 3).

Conclusion

Acquisition of cold hardiness and freezing tolerance in
Arabidopsis plants is enhanced by a low temperature treat-
ment, particularly when performed in light as compared
to darkness. Here we show that light is indeed required for
low temperature induced transcriptional expression of
several transcription factors and genes involved in meta-
bolic pathways, which are essential for development of
cold hardiness. It is likely that several light-signalling
pathways, originating from chloroplasts by production of
redox active molecules and photosynthesis end products
are cross talking with various pure low temperature
induced pathways, which in turn probably rely on
changes in Ca2+ efflux across cell membranes [64], thereby
together resulting in the maximation of cold acclimation
[65]. Light was shown to enhance the expression of well-
known cold-responsive genes (Table 2), which is in line
with presence of multiple ABRE and DOF response ele-
ments in the promoter regions of several cold-induced
genes (Tables 3 and 4). Besides enhancing the expression
of cold-responsive transcription factors and their target
genes, Cold/Light also had unique effects. Most distinc-
tively, the combination of Cold and Light was particularly
needed for up regulation of several genes encoding
enzymes involved in biosynthesis of hormones (ABA) and
various other compounds essential for scavenging of reac-
tive oxygen species, for protection of membranes and for
remodulation of the components involved in electron
transfer reactions in the thylakoid membrane in order to
optimize their function at low temperature.

Methods

Plant material and growth conditions

Arabidopsis thaliana ecotype Col-0 seeds were germinated
in 50% vermiculite/50% soil and grown in controlled-
environment chambers at 23 °C and under 100 pumol pho-
tons m2s! (8-hour-photoperiod) for 8 weeks. A short day
photoperiod was used to prevent bolting (flower shoot
formation) and thus keep the plants under vegetative
growth. The relative humidity was controlled during
growth and low temperature treatments and kept con-
stantly at 60%. Cold treatments for 8 hours were per-
formed at 3°C (measured from the bottom of the leaf
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using digital thermocouple). To allow full CO, assimila-
tion before the treatments, plants were transferred after 2
hours of the beginning of light period directly from
growth temperature to the low temperature treatment.
The cold treatments were performed either in the light
(100 pmol photons m-2s1) or in the dark. The dark treat-
ment at 23 °C for 8 hours was also performed after 2 hours
of the beginning of light period. Controls for Cold/Light,
Cold/Dark and Dark samples were treated at 23°C in the
light (100 pmol photons m-2s'1) the same 8 hours. Inter-
nal variation in results was controlled by Blanc hybridiza-
tions of leaf material collected from growth conditions
(designated as Control in Tables 2 and 3). After treat-
ments, 2 to 3 g of leaf material from 4-6 individual plants
was collected and directly frozen in liquid nitrogen.

PSII activity measurements

Fluorescence measurements of Arabidopsis leaves after dif-
ferent light and temperature treatments were performed
using a PAM2000 fluorometer (Walz, Germany).
Detached leaves were kept in the dark for 30 minutes prior
to the detection of variable (Fv) and maximal (Fm) fluo-
rescence. Steady-state rates of oxygen evolution were
measured using Hansatech DW1 O, electrode and saturat-
ing light intensity in the presence of 1 mM 2,5-dimethyl-
p-benzoquinone (DMBQ) as an artificial electron accep-
tor and at Chl concentration of 10 ug Chl mL-!. Thylakoid
membranes were isolated according to [66]. The chloro-
phyll content was determined according to [67].

Western blot analysis

After specific treatments of plants, the leaves were
detached and immediately frozen in liquid nitrogen. Total
proteins were isolated simultaneously with RNA isolation
using TriZol reagent (Invitrogen Inc., USA) according to
manufacture's instructions. Protein samples (25 pg of
total protein/well) were solubilized in 6 M urea Laemmli
buffer and run in a 6 M urea SDS-PAGE. Proteins were
detected using dehydrin antibody (Stressgen Bioreagents,
Canada), specific LHCB2 and LHCB4 antibodies (Agris-
era, Sweden) and glutathione reductase antibody (a gift
from Helen Reynolds/Philip Mullineaux, John Innes
Institute Norwich, UK).

All buffers for thylakoid membrane isolation contained
10 mM NaF. Thylakoid samples corresponding to 1 g
Chl per lane were run in SDS-PAGE, and thylakoid phos-
phoproteins were immunodetected with phosphothreo-
nine antibody (New England Biolabs) using
chemiluminescence for detection (ECL, Amersham bio-
sciences, UK).

77 K fluorescence
77 K fluorescence emission spectra of thylakoid mem-
branes were measured with a diode array spectrophotom-
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eter (S2000, Ocean Optics, Dunedin, Florida, USA)
equipped with a reflectance probe. Fluorescence was
excited with light below 500 nm (defined with LS500S
and LS700S filters, Corion Corp., Holliston, MA) and the
emission was recorded between 600 and 800 nm.

Detection of oxidative stress by 3,3'-diaminobenzidine
(DAB) uptake method

Oxidative stress was detected by DAB method [68]. Leaf
samples from the Control, Cold/Light and Cold/Dark
were placed under vacuum in a solution containing 1%
DAB (w/v) in 10 mM Mes (pH 5.8) for 1 h. The leaves
were cleared by boiling in ethanol (96%) for 5 min. The
products of oxidative stress were visualized as a reddish-
brown coloration.

RNA isolation and cDNA labelling

Total RNA was first isolated using TriZol-reagent (Invitro-
gen, USA) according to manufacturer's recommendations
and used for further isolation of mRNA by Dynabeads
mRNA Purification Kit (Dynal, Biotech, Norway). 250 pug
of total RNA yielded 2.5-5 ng of mRNA. For Cy3 (control)
and Cy5 (treated) cDNA labelling (vica versa in dye
swap), 1 pg of poly(A) mRNA was labelled with (dT),,_;5
primers (Amersham Biosciences, UK) with direct incorpo-
ration of either Cy3 or Cy5 dUTP using Superscript II
Reverse Transcriptase (Invitrogen, USA). RNA was
degraded and the labelled cDNA products were further
purified using Microcon ® YM30 columns (Millipore,
USA). The quantity of labelled cDNAs was measured
using Nanodrop ND-1000 spectrophotometer (Nano-
drop Technology's, USA) and the quality was checked on
1% agarose gel prepared in TAE (Tris/Acetate/EDTA)
buffer.

Microarray hybridizations and scanning

Cold/Light, Cold/Dark and Dark samples were hybridized
against samples kept the same 8-hours in normal growth
conditions. Additionally, control hybridization was made
against leaves taken from different individual Arabidopsis
plants after 10 hours of the beginning of the light period.
Arabidopsis cDNA microarray slides are based on the
GEM1 clone set (8000 ESTs) purchased from InCyte
Genomics, Palo Alto, CA, USA [4]. The 8 k cDNA array
was spotted as triplicate on the slides allowing three tech-
nical replicates upon each hybridization. Slides were UV-
cross linked (90 mJ/cm2) and prehybridized with 1% BSA
(fraction V) in 5 x SSC, 0.1% SDS for 30 min at 50°C and
washed with 2 x SSC and 0.2 x SSC for 3 min. After cen-
trifugation (500 x g for 10 sec) the slides were used for the
hybridizations during the same day. The labelled cDNAs
were combined (10 to 20 pmol of labelled Cy3 and Cy5
cDNAs) in the total volume of 80 pl (3 x SSC, 0.65x Den-
hardt's and 0.3% SDS). Hybridization was performed in a
sealed chamber (Corning, USA) overnight at 65°C. The
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arrays were washed at room temperature with 0.5 x SSC/
0.1% SDS for 15 min, twice with 0.5 x SSC/0.01% SDS for
5 min and twice with 0.06 x SSC for 1 min and spinned
dry for 10 sec with microarray centrifuge. The slides were
scanned using ScanArray Express 5000 device (GSI
Lumonics, USA) and the spot intensities were quantified
using software provided by the same device (Scan Array
Express Microarray Analysis System 2.0, Perkin-Elmer,
USA). Visually bad spots or areas on the array and low
intensity spots were excluded.

Microarray data analysis

The spot intensity data was transferred to GeneSpring GX
7.3 software (Agilent Technologies, USA). From the three
technical replicates of each slide, the median intensity
value was taken for further calculation of intensity
dependent normalization of spots for each slide (Lowess,
Per Spot and Per Chip). Biological experiments consisted
of three to four independent biological replicates (each
biological replicate starting from a new set Arabidopsis
seeds to grow a new set of plants). Control and Cold/Light
treatments consisted of four biological replicates, whereas
Cold/Dark and Dark treatments consisted of three biolog-
ical replicates. The correlation co-efficient between the
biological replicates varied from 0.6 to 0.8, which was
considered relevant for this kind of analysis. Of Lowess
normalized data, GeneSpring program calculated the
ratios of up or down regulation of genes. Next the normal-
ized values of up or down regulated genes were tested for
statistical confidence. The induction or repression of a
gene should be statistically significantly different from a
ratio of 1.0 determined with Students t test in GeneSpring
(termed as quality control). After Benjamini and Hoch-
berg false discovery rate (FDR) correction for multiple
testing, a false discovery rate of 0.05 or less was considered
statistically significant. In addition, standard error of a
mean (s.e., n = 3 or 4) was calculated for each normalized
ratio value presented in the Tables. All original data con-
taining normalized ratios of means, standard errors of the
mean and t-test p-values (quality control), can be found
in the Additional files 2 to 4 and 7 to 10. To find out
whether the difference in gene expression between Cold/
Light and Cold/Dark treatments was statistically signifi-
cant, a Students t test was performed. The risk level set was
at 0.05 (p < 0.05, marked as * in Tables 2 and 3). Arabi-
dopsis genes encoding proteins potentially targeted to dif-
ferent cellular compartments, like chloroplast,
mitochondria or secretory pathway were searched in
GeneSpring using TargetP based MIPS database [69]. Our
microarray contained 1260, 649, and 1133 genes poten-
tially targeted to chloroplast, mitochondria and the secre-
tory pathway, respectively. All the raw data has been
submitted and accepted to ArrayExpress (EBI) database in
line with the MIAME principles of publishing microarray
data (submission accession number: E-MEXP-1068).
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Northern blot analysis

RNA was isolated from Arabidopsis thaliana leaves (2-3 g)
using the TriZol-reagent method according to the manu-
facturer's (Invitrogen, USA) instructions. Total RNA sam-
ples (10 pg per lane) were denaturized using glyoxal at
50°C for 1 hour, separated on a 1.2% agarose gel and
blotted onto nylon filters. Blots were hybridized overnight
at 65°C with probes prepared from cDNA fragments that
were previously used for spotting of the cDNA slides.
Radioactive labelling of the probes with 32P-dCTP was
performed using a Prime-a-Gene Kit (Promega, USA).
Blots were washed finally at 50°C, 1 x SSC, 0.1% SDS and
visualized by autoradiography. The mRNA expression lev-
els were analyzed and quantified using a computerized
image analysis scanner (Chemilmager™ 8000, Alpha
Innotech Corp, USA).

Electrophoretic mobility shift assay (EMSA)
Electrophoretic mobility shift assay was performed
according to Kvietikova et al., 1995 [70]. Instead of using
nuclear extracts, we used proteins translated in vitro from
the same mRNA used for the microarray experiments. In
vitro translation was performed according to Wheat Germ
Extract Technical manual (L4380) (Promega, USA).
Translation efficiency and quality of in vitro translation
was checked using 35S L-methionine for labeling of the
newly synthesized proteins and the products were visual-
ized by 2D-gel electrophoresis and autoradiography
(results not shown). For production of non-radioactive in
vitro translated proteins, 1 mM L-methionine was used.
Five double stranded oligonucleotide probes were made:
DREB 5'tgactaCCGAcatgagttcc3', ABF 5'ccttgtccacGTGTatc
atc3', DOF 5'atcttatatAAAGceaccatt3', and GBF 5'cttgtccAC
GTGtatcatca3'. These double stranded oligonucleotide
probes were end-labeled with 32P-y-ATP using T4 Polynu-
cleotide Kinase (Fermentas, Litauen). DNA-protein bind-
ing reactions were performed at 10°C for 30 min in a total
volume of 20 pl containing in vitro translation mix (100
pg protein), including the newly translated proteins, 0.5 x
104 cpm oligonucleotide probe, 100 ng poly (dI-dC)
(Amersham Biosciences, USA) as non-specific competitor
in 10 mM Tris/HCI pH 7.5, 50 mM KCl, 50 mM Na(Cl, 1
mM MgCl, 1 mM EDTA, 5 mM DTT, and 5% glycerol.
DNA-protein samples were separated in 5% non-denatur-
ing polyacrylamide gels for 2 hours at 150 V using TBE as
a buffer. Gels were then dried and exposed to autoradiog-
raphy at -80°C for 48 hours.
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Fold (p-value less than 0.05 at least in one condition)

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-13-S3.XLS]

Additional file 4

Down Regulation of Cold/Light, Cold/Dark and Dark Responsive genes
Containing a Chloroplast Targeting Signal (p-value less than 0.05 at least
in one condition)

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-13-S4.XLS]

Additional file 5

Enriched transcription factor binding sites (TFs) were checked in three
different groups of genes that were up regulated more than two fold: Only
Cold/Light, Both Cold/Light and Cold/Dark and Only Cold/Dark condi-
tions. Genes for the analysis were taken from Additional files 2, 3 and 8,
respectively. Significant over-presentation of promoter motifs within the
group (P-value < 10e) is indicated by ***. Analysis was performed using
Athena visualization tool [71].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-13-S5.XLS]

Additional file 6

Visualising gene expression only under Cold/Light, Cold/Dark, Dark, con-
ditions using MAPMAN analysis [91]. Following MAPMAN schemes
were used: Metabolic Overview, Regulation Overview and Cellular Func-
tion Overview. Up regulated genes are shown in blue and down regulated
genes in red. Visualized data is based on Additional files 3, 7 and 8.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2229-8-13-S6.PDF]
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Additional file 7

Up or Down Regulation of Dark-Responsive Genes at Least Two-Fold (p-
value less than 0.05 at least in one condition)

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-13-87.XLS]

Additional file 8

Up or Down Regulation of Cold/Dark-Responsive Genes at Least Two-
Fold (p-value less than 0.05 at least in one condition)

Click here for file
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2229-8-13-S8.XLS]

Additional file 9

Up or Down Regulation of Cold/Dark and 8 h Dark-Responsive Genes
at Least Two-Fold (p-value less than 0.05 at least in condition)

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
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Additional file 10

Up Regulation of Cold/Light, Cold/Dark and Dark-Responsive Genes
Containing a Chloroplast targeting Signal (p-value less than 0.05 at least
in one condition)

Click here for file
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