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Abstract

Background: Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the
distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx I, GmLx2 and GmLx3, and many of
these genes have been characterized. We were interested in investigating the relationship between the
soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two
rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by
ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to
estimate Lxs in the common ancestor of soybean and Medicago.

Results: Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential
evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-
Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison
of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx
regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions
generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was
observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of
Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34
Lx genes (15 Mtlxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows
that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor.

Conclusion: This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in
soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago,
demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between
soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate
estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or
Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to
taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively.
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Background

Lipoxygenases (LOXs) have been intensively studied for
the past century and have been reported in yeast, algae,
fungi, animals, and plants [1]. In higher plants, LOXs are
almost ubiquitous and involved in various physiological
processes. Importantly, the oxidized products by these
enzymes are involved in the traumatic acid and jasmonic
acid (JA) pathways, which confer various biotic and abi-
otic resistance traits to plants [2-4]. Soybean lipoxygen-
ases have received significant attention, since the oxidized
compounds cause soy products to have an unpleasant fla-
vor [1,5,6]. Many lipoxygenase isozymes have been iso-
lated and are well characterized, but these studies were
mainly focused on LOX 1, 2 and 3, the lipoxygenases pref-
erentially expressed in seeds. Moreover, an analysis of soy-
bean mutant lines lacking the isozymes has shown that
the Lx1 and Lx2 loci are tightly linked, while the Lx3 locus
is independent of the other two loci [7,8]. Additionally,
several vegetative Lx genes, such as Lx4, Lx5, Lx6, Lx7, and
Lx8, have been detected and characterized [9,10].

A number of Lx loci have been identified in the fully
sequenced Arabidopsis thaliana and almost completed
Medicago genomes. This suggests that there are more Lx
genes not yet reported in the soybean genome, and that
the number of soybean Lxs would outnumber those in
Arabidopsis and Medicago. The expansion of a gene family
is related to gene duplication events, such as whole
genome duplication, tandem duplication, and transposi-
tion [11]. An investigation of the Lx gene family expan-
sion is also of interest in the context of soybean genome
evolution, since soybean is known to have undergone two
rounds of polyploidy events by analyses of ESTs [12,13].
The duplicated soybean genome has been investigated by
RFLP mapping and more than two regions have been
detected by RFLP probes [14]. Furthermore, analyses of
homeologous BAC clones, anchored by FAD2 and HCBT
genes, revealed highly conserved regions produced by a
recent duplication 14.5 million years ago (MYA) [15,16].
The presence of duplicated soybean chromosomal regions
was substantiated by analyzing seventeen homeologous
BACs [17]. These studies also showed the genome rear-
rangement of homeologous regions after whole genome
duplication.

Genome duplication events are common in most crop
plants [18]. Even model plants, such as Arabidopsis and
Medicago, have undergone at least one round of genome
doubling [12,19]. A comparative genomic approach using
Medicago has provided insights into complex legume
genomes, which cannot be satisfactorily studied provided
by the model plant A. thaliana [20]. The divergence of soy-
bean and Medicago from a common ancestor which expe-
rienced genome duplication was estimated at 50 MYA
[14]. Medicago and soybean, two closely related legume
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plants, have had two bursts of gene duplication, but it is
not clear whether they had a shared polyploidy event
before taxon divergence. To clarify this issue, a phyloge-
netic analysis of gene families was performed, and a
hypothesis of shared polyploidy prevailed over the alter-
native hypothesis of taxon divergence prior to duplication
[21]. Later, the early duplication of soybean before the
Medicago-soybean split was supported by the whole
genome duplication which predated speciation between
Medicago and Lotus japonicus [22].

With regard to genome conservation in legumes, many
studies have shown broad-scale conservation of legume
genomes and gene order [23,24]. Not only among soy-
bean, Medicago and Arabidopsis [24] but microsynteny was
also observed among three genomes [25]. Mudge et al.
(2005) [26] identified very high synteny between 3 Mb of
soybean DNA sequences and 2 Medicago chromosomes. A
recent study also demonstrated a network of synteny
within conserved regions among Arabidopsis, Medicago
and soybean [27].

In this study the evolutionary expansion of the soybean Lx
gene family was demonstrated to occur by two rounds of
polyploidy and the evolutionary relationships of nineteen
Lx genes in four homeologous chromosomal regions were
explored. Moreover, the differential rates of evolution in
orthologous and paralogous regions of the Lx gene
regions between soybean and Medicago reflect the history
of the paleopolyploid soybean genome.

Results

Assembly and Mapping of Soybean BACs and Scaffolds
PCR-based screens of the gmw1 BAC library identified a
total of six BAC clones: gmw1-45b2 and gmw1-91g6 for
both Lx1 and Lx2; gmw1-6b18, gmw1-9c4, gmw1-22a20,
and gmw1-22f19 for Lx3. In other words, Lx1 and Lx2 are
located on the same BACs, but Lx3 is on different BACs,
which is in accordance with many previous reports [8,28].
The six BAC clones were sequenced using 454 sequencing
technology and the average read length was 250 bp. The
number of contigs varied from 1 to 25 and the largest
assembled contig was 36 kb (see Additional file 1). Two
BAC clones, gmw1-22a20 and gmw1-22f19, were fully
sequenced. The remaining gaps were closed by hybridiza-
tion assemblies, adding ABI-Sanger sequences amplified
across the gaps [29]. Here, we mainly used gmw1-9c4 con-
taining Lx3 and gmw1-91g6 containing Lx1 and Lx2 for
further analysis (Figure 1). More than ten scaffolds con-
taining lipoxygenase genes were identified from the 7x
whole genome sequencing (WGS) assembly from early
2008 http://www.phytozome.com/soybean and selected
scaffolds showing synteny with BAC clones were analyzed
for further study. Sequences of gmw1-9c4 and gmwl-
91g6 were embedded in Scaffold 88 and Scaffold 134,
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Comparative map of six Lx regions from soybean and
Medicago. In silico genetic mapping with SSR markers placed
the soybean Lx regions into four different linkage groups
(LGs). Two BAC clones, gmw|1-9¢c4 and gmw1-91g6, were
selected containing Lx/, [x2 and Lx3, and these genes were
embedded in Scaffolds 88 and 134. Two blocks showing syn-
teny with selected BACs were detected in Medicago and con-
tig 148 on Medicago chromosome 2 was more similar to the
BAC:s. Blast search with the sequence of contig 214 on Medi-
cago chromosome 8 resulted in two more soybean Lx scaf-
folds. Soybean QTLs for each Lx region are denoted as
brown characters and some of them are conserved among
the four regions.

respectively. Also, the sequences of Scaffold 146 and Scaf-
fold 215 were highly identical to each other and showed
colinearity with those BAC clones (Figures 1 and 2). Scaf-
fold 88, Scaffold 134, Scaffold 146, and Scaffold 215 were
named GmA, GmA', GmB, and GmB', respectively. A total
of 13 soybean Lx genes were searched on NCBI and nine
of them were included in GmA, GmA', GmB, and GmB'.
Two of the soybean Lx genes did not have proper scaffolds
with high scores, and the scaffold containing GmLOX9
did not show any synteny except for the GmLOX9 gene
itself (see Additional file 2).

Genetic mapping was achieved by identification of lipox-
ygenase genes and simple sequence repeat (SSR) markers
placed on the composite map http://www.soybase.org.
Previously, GmLx1 and GmLx2 on Scaffold 134 were
mapped to linkage group (LG) F and GmILx3 on Scaffold
88 was mapped to LG E [7,28,30]. By in silico mapping
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Dot plot alignments of six Lx regions between soy-
bean and Medicago. MtA shows a high level of similarity
with GmA and GmA'. Both GmB and GmB' have an inversion
block, and their sequences end with repetitive lipoxygenases
like MtB. Common sequences among the six regions are
highlighted with blue dotted lines.
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based on sequence, the four scaffolds were placed on four
different LGs: Scaffold 88 was anchored by Satt575,
Satt213, Sat_112, and Satt411 on LG E; Scaffold 134 con-
tained Sat_090, Satt656, and Sat_417 on LG F; Scaffold
146 had Sat_115, Sat_199, Sat_129, Sat_233, and Satt089
on LG A2; Scaffold 215 was mapped to LG M by Sat_389,
Satt404 and Sat_391.

Numerous QTLs have been related to these four Lx regions
in soybean and some of them have been associated with
more than one region: corn earworm resistance (CEW)
and yield QTLs on part of LG E and LG F [31-34]; sucrose
content QTLs on LG A2 and LG M [35], 0il QTLs on LG E
and LG A2 [36,37]. These mutually conserved QTLs indi-
cate that specific genes associated with CEW, yield,
sucrose, and oil have been retained across homeologous
genomic regions after genome duplication (Figure 1).
Additionally, the carbon isotope discrimination (CID) on
LG F and soybean cyst nematode resistance (SCN) on LG
A2 have been reported [32,38].

Comparison of Lx Regions in G. max and M. truncatula
Two Lx regions colinear to these two soybean BACs were
detected on Medicago chromosomes 2 and 8 in Medicago
pseudomolecule 2.0 http://www.medicago.org/genome
and named MtA and MtB, respectively (Figure 2). MtA
consists of five BAC clones: AC148918, AC137554,
AC146308, AC136955 and AC155896. MtB is comprised
of four BAC clones: AC149580, AC140032, AC149638
and AC174341. A dot-plot analysis of the six Lx regions
between soybean and Medicago revealed that all showed
synteny with some genome rearrangement by insertion,
deletion, and tandem duplication. MtA shared most of the
genes with the two soybean BACs; however, Mt8 contig
214 showed synteny with only short regions of the both
ends of the soybean BACs, with tandem duplicated Lxs
being observed instead. Also, a search in the Medicago
database http://www.tigr.org/tdb/e2k1/mtal/ identified
32 Lx gene loci. Only 15 Lxs in these two regions were fur-
ther analyzed because the remaining loci did not show
any synteny with soybean Lx regions.

Detailed gene structure and comparisons of the six Lx
regions are shown by blue dotted lines (Figure 2) and
BLASTZ (Figure 3). The Ks values between homologous
genes were calculated (see Additional file 3). Full annota-
tion of the genes is available in Additional file 4. A total of
15 pairs of combinations between the six regions were
compared based on their Ks values (Table 1). By compar-
ing the median Ks values of common genes among the six
regions, differential evolutionary rates between Medicago
and soybean were observed. The median Ks value between
MtA and MtB was 0.75, which was close to the Medicago
older peak estimated by other analyses [12,13,22]. The
median Ks value between Gm-Gm paralogs was similar to
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previous reports [12,13]. However, the median Ks value
between Gm-Mt paralogs was smaller than Mt-Mt para-
logs, but larger than Gm-Gm paralogs (Tables 1 and 2).
The median Ks value of Gm-Mt orthologs was almost the
same as that of Gm-Gm paralogs. The median Ks value of
GmA-GmA' and GmB-GmB' were 0.11 and 0.10, respec-
tively, suggesting they were produced by a recent poly-
ploidy in soybean like the event defining the FAD2 gene
family and HCBT gene regions [15,16].

The gene density of the six Lx regions was similar: one
gene per 7.06 kb in MtA; one gene per 8.11 kb in MtB; one
gene per 7.27 kb in GmA; one gene per 7.55 kb in GmA";
one gene per 7.59 kb in GmB; one gene per 7.62 kb in
GmB'. The density of these regions in Medicago was not
significantly different from that of the homologous
regions in soybean, consistent with previous reports of
one gene per 6 kb or 5.8-6.7 kb [16,26,39]. The average
GC content was approximately the same among those
regions: 32.68% in MtA; 32.52% in MtB; 32.14% in GmA;
32.05% in GmA', 31.96% in GmB; 31.17% in GmB"
Among the six Lx regions in this study, GmA and GmA'
were more similar to MtA, whereas GmB and GmB' were
closer to MtB (Figs. 2, 3).

Phylogenetic Analysis of Lx Genes in Soybean and
Medicago

A total of 34 Lxs were detected from the six homologous
Lx regions: 2 in MtA; 13 in MtB; 3 in GmA; 4 in GmA"; 7
in GmB; 5 in GmB' (Figure 3). For convenience, each Lx
gene was named according to its species, chromosomal
region, and physical order. Thus, their designated names
are different from their GenelDs in GenBank. Because the
Lx gene structures were very similar, their evolutionary
relationships were uncovered by calculating their Ks val-
ues. The Ks values among ten Lxs (from M(B_Lx2 to
MtB_Lx11) ranged from 0.3440 to 0.6393, indicating
extensive tandem duplication of Lx genes after whole
genome duplication in Medicago. Phylogenetic analysis
using parsimony of 34 Lx genes in the six regions classi-
fied these 34 Lx genes into two clades denoted as black
and white squares (Figure 4). The grouping of Lx genes
showed that GmB Lxs were more similar to MtB Lxs than
to GmA or GmA' Lxs. In other words, the divergence time
between GmA and GmB was earlier than the time of spe-
ciation between the two species. After taxon divergence,
GmA and GmB regions were duplicated resulting in GmA,
GmA', GmB, and GmB'. In Medicago, the tandem duplica-
tion of Lx genes was observed instead of another poly-
ploidy.

Discussion

Ancient polyploidy in the Lx regions of common ancestor
Previously, it had not been clear whether soybean and
Medicago shared a polyploidy event because the old peak
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Diagrammatic representation of gene conservation between the six Lx regions by BLASTZ. The sequence high-
lighted with blue dotted lines in Figure 2 was analyzed in detail with gene prediction. The length and orientation of predicted

genes are represented as arrows, and homologous sequences are connected with grey boxes. Each lipoxygenase is depicted as
a black box and white arrow, and soybean Lx genes registered in GenBank are denoted with their gene names. A total of 34 Lx

loci, 15 from Medicago and 19 from soybean, were detected.

of paralog Ks in Medicago did not overlap with that of the
soybean [12,13]. To explain the gap between the soybean
and Medicago paralog Ks peaks, Blanc and Wolfe hypoth-
esized that the soybean lineage split from one of the allo-
polyploid genomes of Medicago [12]. Later, an analysis of
gene families provided a framework of shared polyploidy
prior to taxon divergence [21]. A total of 56% of gene fam-
ilies also supported a shared soybean-Medicago duplica-
tion before the split, whereas the remaining gene families
supported alternative hypotheses, including taxon diver-
gence prior to the ancient polyploidy [40]. In addition, a
lower synonymous substitution rate in soybean was sug-
gested to explain the difference between Medicago and
soybean Ks value peaks [13,40].

Our data corroborates the hypothesis that the two peaks
of median Ks values in soybean and Medicago actually rep-
resent the same event but show differential synonymous
substitution rates. While orthologs refer to homologous
genes that have been generated by speciation, paralogs are
homologous genes generated via duplication [41]. The

median Ks values of Mt-Mt paralogs, Gm-Mt paralogs, and
Gm-Gm paralogs revealed the differential evolutionary
rates between the two species (Table 1). The median Ks
value of Mt-Mt paralogs (Ks = 0.75) is greater than that of
Gm-Gm paralogs (Ks = 0.46), while the Gm-Mt value is
intermediate. Thus, to decide the chronological order of
duplication and taxon divergence without bias produced
by differential evolutionary rates, it is absolutely crucial to
compare the values within the same category. A compari-
son of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs
(Ks = 0.45) indicates that ancient duplication occurred
prior to speciation (Table 2). In conclusion, the Mt-Mt,
Gm-Mt and Gm-Gm paralogs actually represent the same
duplication event, although their absolute values look dif-
ferent.

Recently, a large-scale duplication between Medicago and
L. japonicus was proven to have occurred before speciation
[22]. The Ks distribution of ancient duplication between
Medicago and Lotus was not significantly different, even
though Medicago had a narrower peak and Lotus showed a
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Table I: Median Ks values for combinations of pairs between six
Lx regions from Medicago and soybean

Combinations of pairs Median Ks
Ancient polyploidy
Mt-Mt paralog
MtA-MtB 0.75
Gm-Mt paralog
MtA-GmB 0.58
MtA-GmB' 0.60
MtB-GmA 0.64
MtB-GmA' 0.67
Gm-Gm paralog
GmA-GmB 0.46
GmA-GmB' 0.45
GmA'-GmB 0.48
GmA'-GmB' 0.46
Taxon divergence
Gm-Mt ortholog
MtA-GmA 0.40
MtA-GmA' 0.41
MtB-GmB 0.49
MtB-GmB' 0.50
Recent polyploidy
Gm-Gm paralog
GmA-GmA' 0.11
GmB-GmB' 0.10

broader peak. The median Ks value of older polyploidy in
Medicago and Lotus had been estimated to be 0.7 to 0.9
[12,13,22]. In our study, the Ks value of older polyploidy
in soybean was much smaller, consistent with previous
studies (Table 2) [12,13,21]. Thus, optimized rates of Ks
per year should be applied for balanced estimation of coa-
lescence times to each case of comparison: soybean-soy-
bean, soybean-Medicago or Medicago-Medicago.

Most crop legumes belong to the Hologalegina and pha-
seoloid-millettioid clades [42]. The earlier duplication
between Medicago and Lotus is the duplication event in the
common ancestor of the Hologalegina clade, which
includes Medicago, Lotus, and Pisum. Soybean belongs to
the phaseoloid-millettioid clade, which contains Glycine,
Phaseolus, and Vigna. Taken together, our data support an
ancient duplication event in the common ancestor of the
Hologalegina and phaseoloid-millettioid clades.

Table 2: Ks estimations of ancient polyploidy and taxon divergence

http://www.biomedcentral.com/1471-2229/8/133

Evolutionary change of soybean and Medicago after
speciation

It has been suggested that the younger peak in Medicago
did not correspond to another polyploidy but a series of
tandem duplications because the peak was too broad
[21,40]. Also, there was no clear Ks peak suggesting large
scale duplication after the Medicago-Lotus split [22]. In this
study, only two Medicago Lx regions produced by ancient
polyploidy were detected, and no chromosomal region
generated by recent duplication was identified. Instead,
ten occurrences of extensive single gene duplication were
observed in one Medicago Lx region. The colinearity
between MtA and MtB was not high except for repetitive
Lxs and a few flanking genes (Figure 2). It is thought that
these duplicated regions were differentiated by a diploidi-
zation process.

A total of four soybean chromosomal regions were
anchored by three to seven Lx genes. Among the four Lx
regions, the level of similarity and sequence conservation
was high between regions produced by the recent duplica-
tion (Figures. 2, 3). These two pairs of Lx regions were gen-
erated by two rounds of polyploidy in soybean. With
respect to the conservation level of sequence and struc-
ture, both inter- and intra-pairs showed synteny (e.g.
GmA-GmB, GmA-GmB', GmA'-GmB, and GmA'-GmB').
The level of diploidization in soybean Lx regions gener-
ated by ancient polyploidy was lower than that of Medi-
cago. Moreover, the conserved QTLs among the four
regions- sucrose, oil, yield, and corn earworm resistance-
support their duplicated origin (Figure 1).

Until now, sequence-based analyses of the soybean
genome have been focused on regions produced by recent
polyploidy [15-17,43]. The comparative genomics
approach used in this paper furthered our understanding
of the soybean genome and allowed us to speculate on
chromosomal regions produced by both recent and
ancient duplication events. Furthermore, each pair of Lx
regions in soybean was close to an Lx region in Medicago.
Co-orthologs refer to genes generated by a lineage-specific
duplication [41]. Thus, GmA/GmA' and GmB/GmB' are
the co-orthologous chromosomal regions to MtA and
MtB, respectively (Figure 1). In this case, it is difficult to

Materials Mt-Mt paralogs2 Gm-Mt paralogs? Gm-Gm paralogs? Gm-Mt orthologs? References

ESTs 0.65-0.70 - 0.45-0.50 0.40-0.50 Blanc and Wolfe, 2004
ESTs 0.71 - 0.54 - Schlueter et al., 2004
39 Gene families - - 0.57+0.05 0.57+ 0.02 Pfeil et al., 2005
Lipoxygenases 0.75 0.62< 0.46 0.454 This study

aThe median Ks value between paralogs represents polyploidy events.

bThe median Ks value between orthologs denotes taxon divergence between soybean and Medicago.
¢4 The median Ks values between Gm-Mt paralogs and Gm-Mt orthologs are compared to rule out skewing estimates caused by differential
substitution rates. Thus, the ancient polyploidy predates the taxon divergence.
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Figure 4

Phylogenetic analysis of 34 Lx proteins. A parsimony
tree was generated using bootstrap analysis with 1,000 repli-
cates and branch swapping. Bootstrap values larger than 50
are denoted on each branch. The tree was rooted using Ara-
bidopsis LOX| (AtLOX]1) and rice LOX1(OsLOXI). Soybean
and Medicago Lxs in homologous regions represented as
black and white squares fall into two major clades. For con-
venience, each Lx gene is named according to its species,
chromosomal region and physical order instead of its
GenelD. The Lxs in GmA diverged earlier from Lxs in GmB
and MtB and later Lxs in GmB and MtB are separated, sug-
gesting duplication before taxon divergence.

conclude whether Medicago and soybean, are allo- or
autopolyploids. But it is clear that soybean and Medicago
share both of the genome, rejecting the hypothesis of
Medicago allopolyploid history after the Medicago-soybean
split.

Expansion and functional divergence of the Lx gene family
Phylogenetic analysis divided 34 Lx genes identified in six
Lx regions from soybean and Medicago into two clades
(Figure 4). We expect two distinct Lx genes in the most
recent common legume ancestor. This parsimony tree
showed that the Lx genes in the GmB region were closer to
the Lx genes in MtB than those of GmA, suggesting dupli-
cation prior to taxon divergence. After the split, tandem

http://www.biomedcentral.com/1471-2229/8/133

duplication of Lx genes occurred in MtB, whereas the soy-
bean Lx genes duplicated to GmA Lx/GmA' Lx and GmB
Lx/GmB' Lx. This evolution of the Lx gene family in the
homologous regions is diagrammatically represented in
Figure 5.

Duplicated genes have been reported to undergo non-
functionalization, neo-functionalization, or sub-func-
tionalization [44]. Among the 19 Lx genes in the four soy-
bean regions, nine were previously characterized and
confirmed functional (see Additional file 2). In addition,
the duplicated lipoxygenase genes had different activities
at different pH values and different substrate specificities,
suggesting differential functional specificities among
lipoxygenase isoforms [9,45]. Moreover, the patterns of
cellular and subcellular localization in pod walls were dis-
tinct among the isoforms, indicating independent func-
tions [46]. Specialized isoforms are expected to improve
the plant's flexibility to various environmental condi-
tions.

Retention of multiple copies of Lxs in soybean, Medicago,
and their common ancestor are reasonable from an evolu-
tionary perspective because lipoxygenases confer various
biotic and abiotic resistance traits to plants. Plant lipoxy-
genases have been reported to conferred resistance to
stresses such as herbivores and wounding [47,48]. Also,
clusters of genes related to resistance and disease response
have been reported in soybean [15,49]. In grape (Vitis vin-
ifera), the gene family encoding the grapevine phytoalexin
is comprised of 43 genes, 20 of which were previously
shown to be expressed [50]. Numerous Lx genes will
increase protein or mRNA dosage, leading to resistance in
plants. The beneficial effects of increased dosage of genes
involved in defense or resistance has been reported in var-
ious studies: resistance to glyphosate in plants, protection
against heavy metals in hamsters, and decreased suscepti-
bility to HIV infection in humans [51-53]. This mecha-
nism of gene family expansion and functional divergence
of duplicated genes may also be relevant to understanding
the evolution of other gene families.

A systematic approach is required for crop improvement
and modification because most crops have more than one
gene copy in their genomes. It is absolutely essential to
investigate the number of loci of a particular gene of inter-
est in the breeding of polyploid crops. Further under-
standing and insights into the paleopolyploid crop
genome will lead to more efficient crop improvement and
molecular breeding.

Conclusion

In this study, multiple Lx genes anchored in four soybean
regions and two Medicago regions were analyzed at the
sequence level. Differential evolutionary rates between
soybean and Medicago were revealed among the six
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regions, with Medicago showing a greater synomymous
substitution rate than soybean. This fact suggests that an
optimized coalescence estimation is needed for each com-
parison: Gm-Gm, Gm-Mt or Mt-Mt. The four soybean Lx
regions are comprised of two pairs of recently duplicated
regions, and each pair is co-orthologous to one region in
Medicago. These results support an ancient polyploidy in
the common ancestor of soybean and Medicago, which
preceded separation of the Hologalegina and phaseoloid-
millettioid clades. Based on the tetrad soybean genome
structure, four copies of duplicated genes or four homeol-
ogous regions in soybean are theoretically expected. Phy-
logenetic analysis showed that the Lx gene family basically
expanded by whole genome duplication. Moreover, Lx
genes underwent extensive tandem gene duplication.

Methods

Lipoxygenase BAC selection and mining of soybean super
contigs

Three specific PCR primers were designed to select BAC
clones that contained the target genes, Lx1, Lx2 and Lx3,
based on GenBank acc. numbers 102795, J03211, and
U50081, respectively. The primer sequences were: Lx1 for-
ward, 5'-TTA ATG CIT TCT TGG GCC CTA-3' and Lx1
reverse, 5'-CGC TCT CCC GTIT CCA TIT CC-3'; Lx2 for-
ward, 5'-GCT ATA AAT CAC GTT TCG TTA C-3' and Lx2
reverse, 5'-TAT GCC CTC CTC CTC TGT TC-3'; Lx3 for-
ward, 5'-GTAGTGTTGGTGGGTTGCAAAGATG-3' and Lx3
reverse, 5'-GCA AAC AAA GTG GAT GCT TCC ATG-3".

A pilot experiment was performed with G. max cultivar
Williams 82, prior to BAC selection to optimize PCR con-
ditions using a PTC-225-DNA gradient cycler from M]
research (Watertown, MA., USA). Williams 82 was used as
a positive control during the selection procedure. The
amplification reaction was 11 pl in volume and contained
100 ng of Williams 82 genomic DNA, 15 pmol of each
forward and reverse primer, 10.0 mM of ANTP mix, 1 pl of
10x buffer, 6.9 ul of dd-H,O, and 0.2 unit of Taqg DNA
polymerase (Vivagen, Sungnam, Korea). The PCR condi-
tions were 94°C for 2 min, 35 cycles of 94°C for 30 sec,
annealing temperature for 30 sec, 72°C for 30 sec, and a
final extension of 2 min at 72°C.

The Williams 82 G. max BAC clone library [54] was PCR-
screened using the same conditions as described above for
the genomic DNA of Williams 82. The final PCR screen
was conducted with 0.2 ul of the candidate BACs as a tem-
plate from a working copy of the library.

Soybean super contigs (scaffolds) were identified by
BLAST search with lipoxygenase genes against the soybean
genome sequence produced by the Soybean Genome
Project, DOE Joint Genome Institute http://www.phyto

zome.com/soybean.

http://www.biomedcentral.com/1471-2229/8/133
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Figure 5

Expansion of the Lx gene family in soybean and Medi-
cago homologous regions in relation to the evolution-
ary events in the six regions. No direct evidence of a
recent polyploidy event in Medicago was detected; instead,
tandem duplication of Lxs was observed in MtB. In soybean,
two pairs of Lx regions generated by two rounds of poly-
ploidy were identified and analyzed. Each pair of soybean
regions is co-orthologous to the region in Medicago, suggest-
ing co-orthologous regions produced by lineage-specific
duplication in soybean.

In silico mapping of BACs and super contigs

Genetic markers for Lx1, Lx2 and Lx3 were defined on the
consensus soybean genetic map (December, 2006; http://
soybase.org) and the sequences of the accessions from
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which the SNP-containing sequence tagged site was devel-
oped were compared with BAC clone sequences using
BLAST2  http://www.ncbi.nlm.nih.gov/blast. ~ Simple
sequence repeat (SSR) markers in BAC clones and scaf-
folds were identified by BLAST search against genome sur-
vey sequence (GSS) records restricted to soybean SSR-
containing clones http://www.ncbi.nlm.nih.gov/blast.
Thus, the genetic map positions of the selected BAC
clones and scaffolds were determined by the loci of lipox-
ygenase and SSR markers.

BAC sequencing and assembly

Six BACs, gmwl-45b2 (EU028318), gmwl-91g6
(EU028319), gmwl-6b18 (EU028314), gmwl-9c4
(EU028315), gmwl1-22a20 (EU028316) and gmwl-
2219 (EU028317), were sequenced using Genome
Sequencer (GS)-FLX. Sequence data were assembled using
Phred, Phrap, and Consed to diminish the number of
contigs. The remaining gaps were closed by hybrid assem-
bly [29], adding ABI-Sanger sequences from the end of the
contigs.

Sequence analysis and annotation
Repetitive sequences were screened using RepeatMasker

http://www.repeatmasker.org/.

Gene prediction of soybean and Medicago sequences was
performed using FgeneSH on an Arabidopsis matrix,
because the results were better suited for BLASTZ results
than that of the Medicago matrix http://www.soft
berry.com. Each predicted gene was annotated by BLASTP
searches against UniProt. Syntenic regions in M. truncatula
were detected using the BLASTN program with nucleotide
collection restricted to M. truncatula. These syntenic
regions were compared with Pipmaker [55], BLASTZ pro-
gram, and visualized using SynBrowse http://www.syn
browse.org and GBrowse http://www.gmod.org/ggb/

gbrowse.shtml.

Nucleotide substitution rates, dating of duplication events,
and phylogenetic analysis

The Ks values between putative homologues were calcu-
lated using the PAML package [56]. Sequences of lipoxy-
genases in the six Lx regions of soybean and Medicago were
compiled and aligned using ClustalX and sequence over-
hang at the 5'- and 3'-end of alignments were removed. A
parsimony tree was generated using bootstrap analysis
with 1,000 replicates and branch swapping in PAUP* 4.0
[57] and rooted with Arabidopsis and rice as out-groups.
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Additional material

Additional File 1

Assembly statistics of six BAC clones from GS-FLX. This data provided
show the assembly statistics of six BAC clones from GS-FLX and the
remaining gaps were closed by hybridization assemblies, adding ABI-
Sanger sequences amplified across the gaps.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-133-S1.doc]

Additional File 2

List of GenBank GenelDs corresponding to soybean Lx genes with
their phylogenetic relationships. A total of 13 soybean Lx genes were
searched on NCBI and nine of them were included in GmA, GmA', GmB,
and GmB'

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-133-S2.doc]

Additional File 3

Pairwise comparisons of Ks values between homologous genes. These
Ks values of common genes among the six homologous regions show dif-
ferential evolutionary rates between Medicago and soybean.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-8-133-S3.doc]

Additional File 4

Descriptions of predicted genes based on UniRef results within the six
Lx regions. This table provides descriptions of predicted genes and Lx
genes are highlighted with green color.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2229-8-133-S4.doc]
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