
Song et al. BMC Plant Biology 2014, 14:71
http://www.biomedcentral.com/1471-2229/14/71
RESEARCH ARTICLE Open Access
Genes associated with agronomic traits in
non-heading Chinese cabbage identified
by expression profiling
Xiaoming Song†, Ying Li†, Tongkun Liu, Weike Duan, Zhinan Huang, Li Wang, Huawei Tan and Xilin Hou*
Abstract

Background: The genomes of non-heading Chinese cabbage (Brassica rapa ssp. chinensis), heading Chinese cabbage
(Brassica rapa ssp. pekinensis) and their close relative Arabidopsis thaliana have provided important resources for studying
the evolution and genetic improvement of cruciferous plants. Natural growing conditions present these plants with a
variety of physiological challenges for which they have a repertoire of genes that ensure adaptability and normal growth.
We investigated the differential expressions of genes that control adaptability and development in plants growing in the
natural environment to study underlying mechanisms of their expression.

Results: Using digital gene expression tag profiling, we constructed an expression profile to identify genes related to
important agronomic traits under natural growing conditions. Among three non-heading Chinese cabbage cultivars, we
found thousands of genes that exhibited significant differences in expression levels at five developmental stages. Through
comparative analysis and previous reports, we identified several candidate genes associated with late flowering, cold
tolerance, self-incompatibility, and leaf color. Two genes related to cold tolerance were verified using quantitative
real-time PCR.

Conclusions: We identified a large number of genes associated with important agronomic traits of non-heading Chinese
cabbage. This analysis will provide a wealth of resources for molecular-assisted breeding of cabbage. The raw data and
detailed results of this analysis are available at the website http://nhccdata.njau.edu.cn.

Keywords: Non-heading Chinese cabbage, Expression profile, Differentially expressed genes, Protein function annotation,
Chromosome distribution, Agronomic traits
Background
Brassica rapa L. plants have a rich morphological and
genetic diversity, comprising many plant subspecies that
humans farm on an enormous scale worldwide. Examples
of agriculture crops include turnip, field mustard, and
Chinese cabbage. Non-heading Chinese cabbage (Brassica
rapa ssp. chinensis), with its five varieties, is an excellent
model to study the genetics and mechanisms underlying
phenotypic diversity. Of particular interest are its flowering
and self-incompatibility characteristics. In general, a higher
plant’s conversion from vegetative growth to flowering is a
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pivotal point in ontogeny and decides the timing and qual-
ity of its reproduction. Floral induction has become a focus
of research in Brassica vegetables [1-3], and non-heading
Chinese cabbage is an important tool in this regard.
Recent progress in molecular biology techniques has re-

vealed that floral induction is regulated through long-day,
autonomous, vernalization, and gibberellin-dependent gen-
etic pathways [4-6]. Early- and late-flowering mutants have
been identified in the model plant Arabidopsis, and many
key genes controlling flowering have also been isolated in
other plants, genes that include FLC, LFY, FT, and SOC1
[6-8]. However, there were few reports about the flowering
of the non-heading Chinese cabbage, or the genes that
regulate flowering.
Self-incompatibility is a genetic mechanism that pre-

vents self-pollination (selfing) and inbreeding with close
relatives. It promotes the divergence of species; any allele
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that is rare in the population has an advantage if residing in
a plant that cannot self-fertilize. In angiosperms self-
fertilization is prevented by the chemical recognition of
pollen by pistils, which depends on self-sterile (S)-alleles in
pollen or stigma, and has evolved independently at least
three times [9]. However, the shift from outcrossing to self-
ing is a common evolutionary trend in higher plants related
to the loss of function under natural selection of the S-alleles
in pollen or stigma [10]. Thus, the plant self-incompatibility
system is an excellent model for understanding the variabil-
ity in S loci. Shifts between outcrossing and selfing and
frequency-dependent selection leads to the long-term
maintenance of many alleles with different incompatibility
types [11], and alleles thus become widely dispersed
throughout different populations of species [9,12].
In non-heading Chinese cabbage production, the self-

incompatibility system is relied on for breeding, and also
makes the plant a model system for studying reproductive
biology and balancing selection [13]. With the recent de-
velopment of next-generation, high-throughput sequen-
cing technologies, the expression profiles of many species
have been extensively studied. In addition, digital gene ex-
pression tag profiling has been used to study changes in
gene expressions [14,15], giving a comprehensive snapshot
of changes in mRNA expression that occur during bio-
logical processes. Expression levels can be calculated by
the number of detected tags, and this information can fa-
cilitate our understanding of plant genetics and develop-
mental mechanisms.
As of yet there has been no report of an expression pro-

file for non-heading Chinese cabbage. To identify differen-
tially expressed genes (DEGs) among different non-heading
Chinese cabbage accessions in their natural environment,
we conducted an expression profile analysis for plants
growing under non-controlled conditions. Among the five
varieties of non-heading Chinese cabbage produced in
China, approximately 80% is Pak-choi (also known as bok-
choy). Therefore, we chose three accessions of Pak-choi
(NHCC001, NHCC002, and NHCC004) for investigating
the differences in expression profiles, at five important de-
velopmental stages. Relative to the accessions NHCC001
and NHCC002, NHCC004 bolts and flowers later, and
NHCC002 is the only one that is self-incompatible. The leaf
color of NHCC002 is lighter than that of NHCC001 and
NHCC004. We systematically and comprehensively evalu-
ated the expression profiles of these accessions, to identify
the DEGs at the five development stages, to analyze their
expression patterns, and to identify candidate genes associ-
ated with important agronomic traits.

Results and discussion
Expression profiling of non-heading Chinese cabbage
We used high-throughput sequencing to survey the gene
expression patterns of three non-heading Chinese cabbage
cultivars (NHCC001, NHCC002, and NHCC004) at five
development stages (five leaf, rosette, adult, bolting, and
flowering). A total of 55.45 million reads of raw tags were
sequenced. After filtering, we obtained approximately
17.47, 17.97, and 17.77 million reads of clean tags for
NHCC001, NHCC002, and NHCC004, respectively, of all
five developmental stages combined (Additional file 1:
Table S1). In these clean tags, 73.61% (12.85 million),
69.73% (12.53 million), and 68.18% (12.12 million) reads
from NHCC001, NHCC002, and NHCC004, respectively,
could be mapped to non-heading Chinese cabbage genes
modeled from the NHCC001 draft genome, and 63.00%
(11.00 million), 60.37% (10.84 million), and 57.98% (10.30
million) reads from the respective accessions could be
mapped to unique genes (Table 1).
A total of 29 101 genes were detected at the five develop-

mental stages of the three non-heading Chinese cabbage
accessions (Additional file 2: Figure S1). There were 15 251,
13 316, and 5869 expressed genes shared by all five devel-
opment stages in NHCC001, NHCC002, and NHCC004,
respectively. We also conducted a study of gene expression
in the different accessions at each stage. A total of 13 546,
15 281, 15 029, 16 333, and 12 704 co-expressed genes in
all three accessions were detected in the leaf, rosette, adult,
bolting, and flowering stages, respectively (Additional file 2:
Figure S2).
Identification of DEGs in non-heading Chinese cabbage
A total of 15 830 unique genes were found to be differ-
entially expressed among the three accessions in the five
development stages (Additional file 1: Table S2). The
number of DEGs per accession or developmental stage
is shown as a Venn diagram and in tables (Figure 1,
Additional file 2: Figure S3, Additional file 1: Table S3,
Table S4). To gain insights into the DEGs, we conducted
a chi-squared test, and the P values were corrected using
the false discovery rate (Additional file 1: Table S5). The
upregulated and downregulated genes are shown in a
scatterplot (Additional file 2: Figure S4).
We used the Cluster program (http://bonsai.hgc.jp/~

mdehoon/software/cluster/software.htm) to identify sub-
groups in the gene expression profiles that shared com-
mon features and had similar expression levels. We
hypothesized that DEGs gathered in one group might
have similar functions, or be involved in the same meta-
bolic processes. In our analysis, clusters were plotted
according to the DEG expression values. In Cluster, the
DEGs that had similar expression levels were clustered
together. By using these clusters, we could infer the
function of newly identified genes according to the
known genes in the same cluster, such as the cluster of
flowering and self-incompatibility candidate genes (Figure 2,
Additional file 2: Figure S5).

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm


Table 1 Alignment of the expression profile read to the genome of non-heading Chinese cabbage

Sample
accession

Developmental
stage

Total
reads

Mapped
reads

Uninq mapped
reads

Mapped
ratio (%)

Uniq mapped
ratio (%)

Average mapped
ratio (%)

Average uniq
mapped ratio (%)

NHCC001 Seedling 3 416 587 2 698 481 2 348 539 78.98 68.74 73.61 63.00

Rosette 3 524 418 2 530 708 2 226 602 71.80 63.18

Adult 3 606 773 2 607 373 2 118 040 72.29 58.72

Bolting 3 426 539 2 642 635 2 254 999 77.12 65.81

Flowering 3 500 555 2 375 503 2 049 847 67.86 58.56

NHCC002 Seedling 3 421 189 2 542 362 2 258 193 74.31 66.01 69.73 60.37

Rosette 3 622 963 2 571 338 2 280 414 70.97 62.94

Adult 3 648 700 2 604 740 2 164 281 71.39 59.32

Bolting 3 692 773 2 713 241 2 320 313 73.47 62.83

Flowering 3 587 470 2 099 277 1 820 960 58.52 50.76

NHCC004 Seedling 3 488 808 1 985 099 1 765 494 56.90 50.60 68.18 57.98

Rosette 3 396 774 2 434 589 2 115 424 71.67 62.28

Adult 3 706 078 2 642 722 2 136 807 71.31 57.66

Bolting 3 549 009 2 574 520 2 189 878 72.54 61.70

Flowering 3 628 344 2 484 967 2 092 015 68.49 57.66
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Functional annotation and pathway analysis of DEGs
The cellular component, molecular function, and bio-
logical process associated with each of the DEGs were
obtained using the Gene Ontology (GO) database. For
example, there were more genes related to antioxidant
activity, translation regulator activity, and reproduction
in NHCC001 than in NHCC002 at the seedling stage.
However, there were more auxiliary transport genes in
NHCC002 than in NHCC001 (Additional file 2: Figure
S6). The genes that belonged to the same orthologous
cluster were classified into one group, based on the
Clusters of Orthologous Groups (COG) database. Tak-
ing the DEGs of NHCC001 and NHCC002 at the seed-
ling stage as an example, the cluster results showed that
Figure 1 The analysis of the differentially expressed genes. a) Differen
developmental stage. b) Differentially expressed gene numbers for the five
most DEG genes belonged to the general function cat-
egory, followed by genes related to translation, ribosomal
structure, and biogenesis (Additional file 2: Figure S7).
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis was performed to elucidate the energy metab-
olism, signal transduction, and biological systems of
DEGs. We found that several DEGs are involved in several
important pathways for plant growth and development,
such as flowering genes and chlorophyll gene pathways,
described in detail below.

Analysis of flowering time genes
We identified nearly 150 genes that had a tendency to in-
crease from the adult to the bolting stages, corresponding
tially expressed gene numbers for the three accessions at each
developmental stages in the NHCC001 accession.
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Figure 2 Cluster graph of flowering-time candidate genes, in TPM.
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to the change from vegetative to reproductive growth.
These genes are mainly involved in: transcription regula-
tion pathways, such as for RNA-binding proteins; protein
biosynthesis, such as ribosomal protein L1/L13/S7; ubiqui-
tin signaling, such as ubiquitin protein, zinc finger
(C3HC4-type RING finger), serine/threonine protein
kinase, and glycine-rich protein GRP-3; and flower mor-
phogenesis (MADS-box). In contrast, nearly 220 genes
showed a tendency to decrease from the adult to the bolt-
ing stages. These genes are mainly involved in glutamine
metabolism (such as glycosyltransferase family 14 [GT14]
and sugar phosphate permease); the protein phosphatase
pathway (such as serine/threonine protein kinase and
serine/threonine protein phosphatase); transcription regula-
tion (such as RNA-binding proteins, meprin, and TRAF
homology domain-containing protein); protein biosynthesis
(such as ribosomal protein L1/L10/L2/L4/L5/S10/L21E/
S12/S3AE and zinc finger protein); and some transcription
factors (such as MAF1 [MADS AFFECTING FLOWER-
ING 1], CBF2 [C-REPEAT/DRE BINDING FACTOR 2]
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and TINY [a member of the DREB subfamily A-4 of ERF/
AP2 transcription factor family].
MAF1 was considered a potential flowering inhibitor

because it was specifically expressed in the vegetative
stages (leaf, rosette, and adult). This result is consistent
with Ratcliffe et al. [16] and He et al. [17]. CBF2 and
TINY were expressed rarely in the bolting stage and
not expressed in the flowering stage.
Seo et al. [18] found that overexpression of cold-

inducible CBFs could increase expression of FLOWERING
LOCUS C (FLC), an upstream negative regulator of SOC1,
thus delaying flowering. In addition, low temperature could
induce the expression of the CBFs [19]. Overexpression of
the CBF2 gene also leads to increased freezing tolerance in
Arabidopsis [20,21]. Because there is crosstalk between cold
response and flowering, we hypothesized that decreased ex-
pression of CBF2 was related to the conversion from vege-
tative to reproductive growth.
We also found some genes that are specifically related

to the late flowering of NHCC004. An example is FLM
(FLOWERING LOCUS M; CabbageG_a_f_g029765, hom-
ologous with Bra024350), a MADS-box transcription fac-
tor that is a negative regulator of flowering [22] expressed
in the bolting and flowering stages of NHCC004, but not
in NHCC001 or NHCC002 (Additional file 2: Figure S8a).
The results of qRT-PCR were in accord with this expres-
sion trend (Additional file 2: Figure S8b). This suggests that
FLM may be the reason for late flowering in NHCC004.
Gibberellin-insensitive gene (CabbageG_a_f_g018551)

was also found in the bolting stage of NHCC004, but
not detected in any stages of NHCC001 or NHCC002
(Additional file 2: Figure S8c). The qRT-PCR results for
this gene showed lower expression levels in NHCC001
and NHCC002 relative to that of NHCC004 at the bolting
stage (Additional file 2: Figure S8d). Many studies have
shown that gibberellin is required for flowering in Arabi-
dopsis during short days [23,24]. Increased expression of
gibberellin-insensitive gene in NHCC004 weakens the role
of gibberellin in promoting flowering. Therefore, high ex-
pression of flowering suppressor genes may be a reason
for late flowering in NHCC004.
The FT (FLOWERING LOCUS T) gene (Cabbage-

G_a_f_g035346, homologous with the Bra004117, respect-
ively), which promote flowering [25,26], were expressed
only at the flowering stage in NHCC004, while they were
expressed in the bolting and flowering stages in NHCC001
and NHCC002 (Figure 3). In the circadian pathway of
flowering, FT was negatively regulated by ELF3 [27]. Our
expression profiling analysis found that the ELF3 gene
(CabbageG_a_f_g020445) gradually increased and then
decreased in all three accessions. The expression of ELF3
peaked during the adult stage of NHCC001 and
NHCC002 and in the bolting stage of NHCC004. The
homologous genes, ELF4 (CabbageG_a_f_g013931) and
ELF6 (CabbageG_a_f_g052536), showed the same trend
(Additional file 1: Table S2). These results suggest that de-
layed expression of flowering genes might further explain
late flowering in NHCC004.
Specific genes at the flowering stage may be related to

the process of flower development and pollination. Our
findings indicate that the expression levels of some
genes, such as CabbageG_a_f_g015439 and CabbageG_
a_f_g018658, were significantly highest at the flowering
stage of all three accessions. CabbageG_a_f_g015439
gene, which encodes for ARK3 protein and is homolo-
gous to SLG (S locus glycoprotein), is involved in recog-
nition of self-pollen [28,29]. CabbageG_a_f_g018658
gene encodes for AGL6 (agamous-like MADS-box pro-
tein 6) and functions as a DNA binding and transcrip-
tion factor. Members of the MADS-box gene family
have important roles in flower development, and partici-
pate in determining the identity of floral meristems early
in flower development and of floral organ primordia
later in flower development [30].

Analysis of cold-tolerance genes
From expression profiling, we found that two cold-
regulated genes (CabbageG_a_f_g014059 and Cabbage-
G_a_f_g014057, homologous with Bra000265 and
Bra000263, respectively, of heading Chinese cabbage)
showed a higher expression level at the rosette stage
(transcripts per million [TPM] > 4000) than at the other
four stages (Figure 4).
Weather temperatures fluctuate significantly in Nanjing

during autumn and winter. For example, in 2009 the
temperature dropped from 10°C to 0°C over five days
(from October 15 to October 20). These dramatic changes
in the external temperature may be the reason for the high
expression of cold-regulating genes. To test this inference,
we studied the expression levels of these two genes using
quantitative real-time PCR (Figure 5). The results showed
that the relative expression values were >1000 after 12 h at
4°C treatment. In addition, the relative expression levels
were also changed after abscisic acid (ABA) and polyethyl-
ene glycol (PEG) treatments. In general, low temperature,
PEG, and ABA crosstalk to activate stress gene expression,
and the expression of most cold-related genes is also af-
fected by PEG or ABA treatments. Therefore, we suggest
that the high expression of these genes was closely linked
to cold resistance in non-heading Chinese cabbage.

Analysis of self-incompatibility genes
Three genes, CabbageG_a_f_g006792, CabbageG_a_f_g
011856, and CabbageG_a_f_g039867, were expressed at all
five stages and specifically existed only in NHCC002 (Add-
itional file 2: Figure S9). These genes encode serine/threo-
nine protein kinase, NAC domain-containing protein 82,
and dynein light chain type 1 family protein, respectively.



Figure 3 Expression levels of two candidate flowering genes in non-heading Chinese cabbage.
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Among them, CabbageG_a_f_g006792 and Cabbage-
G_a_f_g011856 showed significantly decreased levels at the
bolting and flowering stages compared with vegetative
stages. However, the CabbageG_a_f_g039867 transcript in-
creased at the bolting stage and declined at the flowering
stage. In the process of self-pollination, serine/threonine
protein kinases, such as S-locus receptor kinase (SRK) and
M-locus protein kinase (MLPK), are involved in recognition
and autophosphorylation in self-incompatible signaling
pathways [31-33]. Thus, changes in the expression levels of
CabbageG_a_f_g006792 could influence the activation of
serine/threonine protein kinase, thereby affecting the recog-
nition and rejection of self-pollen. NAC domain-containing
proteins are plant-specific transcriptional factors involved
in regulating several plant developmental processes, such as
flower and embryo development [34-36]. Thus, these
specifically expressed genes might be related to self-
incompatibility of NHCC002.
We also found that CabbageG_a_f_g031080 had higher

transcripts at all stages in accessions NHCC001 and
Figure 4 Cold-tolerance genes identified from differentially expressed g
b) CabbageG_a_f_g014059.
NHCC004, while it was expressed at low levels at the bolt-
ing and flowering stages in NHCC002 (Additional file 2:
Figure S9). This gene encodes ribosomal protein L13,
which is involved in the assembly of proteins. The down-
regulation of ribosomal protein L13 might be related to
the suppression of self-pollen development in NHCC002.
Compared with NHCC001 and NHCC004, 46 genes of
the NHCC002 accession showed lower transcript levels,
with zero TPM, even during flowering.
Interestingly, some genes encoded vesicle coat complex

and ATEXO70H7, which are related to secretory protein
trafficking and polarized exocytosis [37,38]. Exo70A1
participates in the growth of pollen tube tips and has been
identified as a negative regulator in the Brassica self-
incompatibility response [39,40]. We found that the expres-
sion levels of vesicle coat complex and ATEXO70H7 were
higher in NHCC001 and NHCC004 compared with
NHCC002 accession, given that the expression levels of
these proteins were nil at the flowering stage. The low
abundance of vesicle coat complex and ATEXO70H7
enes in non-heading Chinese cabbage. a) CabbageG_a_f_g014057;



Figure 5 The relative expression levels of two candidate cold-tolerance genes during treatments. a, b) Cold treatment; c, d) abscisic acid
treatment; and (e, f) polyethylene glycol. Error bars represent standard errors from three independent replicates.
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implied that they might have similar functions as ne-
gative regulators in the self-incompatibility response of
NHCC002.

Analysis of leaf color genes
We analyzed the genes associated with leaf color. These
genes have an important role in the control of chloro-
phyll biosynthesis, chloroplast structure, and plant devel-
opment. Moreover, they might affect crop yields by
regulating photosynthesis. Therefore, it is crucial for im-
proving crop production to identify leaf-color related
genes and uncover the genetic basis of the leaf color trait.
The chlorophyll content of the leaves was measured
using a portable chlorophyll meter (SPAD-502Plus,
Konica Minolta). The measurement results showed that
the chlorophyll indices of NHCC001 and NHCC002
were significantly different at the rosette stage. After
analyzing the genes involved in the chlorophyll gene
(KO00860) pathway of these two accessions, we found
that the light leaf color of NHCC002 is most likely due
to decreased chlorophyll synthesis, perhaps resulting
from lower chlorophyllase activity [41,42].
The CabbageG_a_f_g026085 gene, which encodes the

chloroplastic protein FLUORESCENT IN BLUE LIGHT,
was also expressed at lower levels in NHCC002. Further-
more, qRT-PCR showed the same expression pattern as
the expression profile (Additional file 2: Figure S10). It is
involved in the regulation of chlorophyll biosynthesis and
might be a negative regulator of tetrapyrrole biosynthesis
in chloroplasts [43,44]. This result implied that Cabbage-
G_a_f_g026085 could also be a candidate gene related to
chlorophyll biosynthesis in non-heading Chinese cabbage.

DEGs in the genomic colinear blocks between B. rapa and
A. thaliana
In our expression profile, 29 101 genes were expressed
and 28 638 (98.4%) of the expressed genes were mapped
to 10 chromosomes. In these expressed genes, 15 830
(54.4%) were identified as DEGs of different accessions
or developmental stages, and 15 567 (98.3%) genes were
located on the 10 chromosomes. To show the up- and
downregulation of DEGs in a more intuitive way, we la-
beled the DEGs on each chromosome with the regula-
tion information (Figure 6, Additional file 2: Figure S11).
A total of 581 colinear blocks were identified between

the genomes of non-heading Chinese cabbage and Arabi-
dopsis. Finally, 369 (63.5%) colinear blocks were obtained
after removing the blocks that contained fewer than 10
genes from consideration. Of the 15 830 DEGs, nearly half
of them (7504, 47.4%) were located in the colinear blocks
(Figure 7). In non-heading Chinese cabbage and heading
Chinese cabbage, 710 colinear blocks were identified. Four
hundred and twelve (58.0%) colinear blocks were obtained
after removing the blocks containing fewer than 10 genes.
A total of 23.1% (3652) of the DEGs were identified in the
colinear blocks (Additional file 2: Figure S12).
To further characterize the relationships among non-

heading Chinese cabbage, heading Chinese cabbage, and
Arabidopsis we analyzed the paralogous and orthologous
genes among them. There were 31 322, 20 770, and 23
171 paralogous gene pairs in the entire genomes of non-
heading Chinese cabbage, heading Chinese cabbage, and
Arabidopsis, respectively. For the orthologous genes, there
were 46 716 gene pairs between non-heading Chinese cab-
bage and Arabidopsis, whereas there were 64 975 gene
pairs between non-heading Chinese cabbage and heading
Chinese cabbage. Furthermore, we investigated the num-
ber of differentially expressed paralogous genes that
existed in non-heading Chinese cabbage, and we found
that 4092 (25.8%) genes had a paralogous gene in non-
heading Chinese cabbage (Additional file 1: Table S6). Of
these genes, 1,960 had only one paralog. The number of
the paralogs was >10 for 117 DEGs, and >50 for 16 DEGs.
Most of the genes that had >50 paralogs belonged to the

non-long terminal repeat retroelement reverse transcriptase.
We used the Pfam program (http://pfam.sanger.ac.uk/) [45]
to identify 3840 paralogs that belonged to 9183 DEGs.
Among these paralogs, most encoded proteins were leucine-
rich repeat protein, protein kinase domain protein, WD do-
main, and G-beta repeat (Additional file 2: Figure S13).
We also analyzed orthologous pairs of DEGs, identifying

13 932 genes that were orthologous between the non-
heading Chinese cabbage and heading Chinese cabbage.
Of these, 9012 genes had one ortholog in heading Chinese
cabbage, 314 genes had >10 orthologs in heading Chinese
cabbage, and one gene (CabbageG_a_f_g017292) had 54
orthologs in heading Chinese cabbage. While there was a
total of 11 512 orthologs (72.7%) between non-heading
Chinese cabbage and Arabidopsis (Additional file 1: Table
S7), 7368 genes had only one ortholog in Arabidopsis, which
decreased to 199 when the number of orthologs was >10.
Interestingly, the same gene (CabbageG_a_f_g017292) also
had a relatively high number of orthologs (i.e., 56) in Arabi-
dopsis. The same gene also had 37 paralogs in non-heading
Chinese cabbage. Although the explanation for the high
number of copy number variations for this gene is un-
known, we inferred that it might affect plant growth. There-
fore, we annotated its function, which revealed that it was a
disease resistance protein (TIR-NBS-LRR class).

Conclusions
In our analysis, we identified numerous DEGs related to
important agricultural traits. By comparing cultivars and
developmental stages, we found many genes associated
with flowering time, self-incompatibility, cold-tolerance,
and leaf color. Although the functions of most of the
other DEGs are not known, this study will further our
understanding of the expression pattern of these genes

http://pfam.sanger.ac.uk/


Figure 6 TPM fold-change of differentially expressed genes among three accessions on chromosome 1 in the seedling stage.
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and genetic improvement of non-heading Chinese
cabbage or other cruciferous vegetables, as well as basic
biological research. In particular, clarification of the regu-
latory networks involved in flowering will contribute to
the cultivation of new late-flowering varieties, which can
provide a wealth of resources for breeding. This detailed
10
 M

b
20

 M
b

30
 M

b
40

 M
b

50
 M

b
60

 M
b

70
 M

b
80

 M
b

90
 M

b
10

0 
M

b
11

0 
M

b

10 Mb 20 Mb 30 Mb 40 Mb 50 Mb 60 Mb 70 Mb 80 Mb 90 Mb 100 Mb 110 Mb 120 Mb 130 Mb 14

Genome size (no

G
en

om
e 

si
ze

 (
A

ra
bi

do
ps

is
)

Figure 7 Whole-genome colinear blocks between non-heading Chine
red or green dots representing the best hits across any two chromosomes
represent the differentially expressed genes present in the colinear blocks.
analysis of the expression profiles of non-heading Chinese
cabbage provides the first comprehensive review of the
expression patterns of five development stages, and has
unveiled numerous candidate genes that may underlie
morphological and genetic polymorphisms of non-heading
Chinese cabbage.
0 Mb 150 Mb 160 Mb 170 Mb 180 Mb 190 Mb 200 Mb 210 Mb 220 Mb 230 Mb 240 Mb 250 Mb 260 Mb 270 Mb 280 Mb

n-heading Chinese cabbage)

se cabbage and Arabidopsis thaliana. Syntenic blocks are formed by
in the same or opposite direction, respectively. The blue dots



Song et al. BMC Plant Biology 2014, 14:71 Page 10 of 13
http://www.biomedcentral.com/1471-2229/14/71
Materials and methods
Sample preparation
The non-heading Chinese cabbage accessions NHCC001,
NHCC002, and NHCC004 used for expression profiles
were cultivated in the field under a non-controlled envir-
onment. RNA was extracted at the five important plant
developmental stages: seedling, rosette, adult, bolting, and
flowering. During the first three stages, RNA for expres-
sion profiles was extracted from leaves. The RNA of the
bolting stage was extracted from an equal mixture of leaf
and buds, while leaves and flowers were used for RNA ex-
tractions during flowering. All the RNA was extracted in
accordance with the manufacturer’s instructions for the
RNeasy plant mini kit (Qiagen).

Digital gene expression tag profiling
The expression levels of genes for the three accessions at
the five development stages were obtained using digital
gene expression-tag profiling methods, as in a previous re-
port [15]. The number of times that a unique tag sequence
was detected represents the quantitative expression of the
corresponding transcript in tissues.
The Bowtie program (http://bowtie-bio.sourceforge.net/

index.shtml) was used to map sequencing reads to the
non-heading Chinese cabbage genome [46]. Finally, high
quality clean tags were compared with the genome se-
quences of non-heading Chinese cabbage and the expres-
sion level of each gene was quantified as TPM [47].
To evaluate the mRNA expression characteristics, we ana-

lyzed the TPM of each identified gene. The highly expressed
genes (defined as TPM> 100) accounted for >50% of the
total expression tags from all genes (Additional file 2: Figure
S14a) in the NHCC001 accession. The number of genes
with a TPM< 10 was ~55% of all genes, while the number
of genes with a TPM> 80 only accounted for ~10% of all
genes (Additional file 2: Figure S14b). Statistical analysis of
the other two accessions showed similar patterns, illustrat-
ing that most genes were expressed at a low level, and only
a handful of genes expressed at high levels accounted for
the majority of tag reads. This is in accord with the hetero-
geneous and redundant features of mRNA expression.
We also performed saturation analyses of sequencing

data. The data show that the more sequencing tags that a
gene had, the more likely it was to be expressed in a
certain range. When the number of tags reached a thresh-
old, the number of expressed genes approached saturation.
Our analysis shows that the number of expressed genes
was nearly saturated when tag number was >3 million
(Additional file 2: Figure S14c). The lowest number of tags
obtained in our study was 3.40 million for the rosette stage
of NHCC004. Therefore, our sequencing reads had
reached saturation for all the sample stages, assuring that
most of the expressed genes during plant growth and
development were detected in our study.
Identification of DEGs
The DEGs were identified mainly as previously described
[48]. The expressed genes were identified using IDEG6
software [49], and a general chi-squared test was used to
test the hypothesis. The false discovery rate was used to
correct the P-value [50], and the fold changes were also
calculated for identification of the differentially expressed
genes. To avoid the potential noise signal from high-
throughput sequencing, absolute fold change ≥2.0 and a
false discovery rate <0.01 were used to define the DEGs,
including the upregulated and downregulated genes. The
differential expression levels of the genes at the five stages
of the three accessions were compared and visualized
through scatter plots drawn by Perl scripts, and their ex-
pression pattern was displayed using the heatmap function
in the Cluster program (http://bonsai.hgc.jp/~mdehoon/
software/cluster/software.htm) and visualized using Tree
View software (http://jtreeview.sourceforge.net/) [51]. An
interaction network of the DEGs was constructed using
Cytoscape software (http://www.cytoscape.org/) according
to the expression level of the genes [52]. The numbers of
specific and common DEGs were plotted using the Venn
diagram function in the R software package [53].

Plant materials, growth conditions, and stress treatments
To verify the two candidate cold-related genes, the non-
heading Chinese cabbage cultivar ‘Suzhouqing’ (NHCC001)
was used for quantitative real-time PCR. Seeds were grown
in pots containing a soil: vermiculite (3:1) mixture in a
controlled-environment growth chamber programmed for
16/8 h at 25/20°C for day/night, relative humidity of 55-
60%. At the rosette stage, they were transferred to growth
chambers set at 4°C under the same light intensity and day
length as the cold treatments. The leaf samples were col-
lected at 0, 0.5, 1, 2, 4, 12, 24, and 48 h after cold treatment.
At the same time for acclimation, some plants were cul-
tured in 1/2 Hoagland’s solution in plastic containers, with
pH at 6.5. After 5 days of acclimatization, plants were cul-
tured in 100 μМ abscisic acid, 10% polyethylene glycol, or
left untreated. Leaf samples were collected 0, 0.5, 1, 2, 4, 12,
24, and 48 h after these treatments and then frozen in li-
quid nitrogen and stored at −70°C until further analysis.

RNA isolation and quantitative real-time PCR analysis
Total RNA was isolated from leaves using an RNA kit
(Tiangen, China) in accordance with the manufacturer’s
instructions. The RNA was reverse transcribed into cDNA
using the Prime Script RT reagent kit (TaKaRa, Japan).
The actin gene (AF111812) was used as an internal control
to normalize the expression level of the target gene among
different samples [54]. The specific primers were designed
according to the target gene sequences by Primer 5.0 soft-
ware (Additional file 1: Table S8). Quantitative real-time
PCR assays were performed with three biological and

http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net/
http://www.cytoscape.org/
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three technical replicates. Each reaction was performed in
a 20-μL reaction mixture containing diluted cDNA as
template, SYBR Premix Ex Taq (2×) (TaKaRa, Japan), and
gene-specific primers. Quantitative real-time PCR was
performed using MyiQ Single-Color Real-Time PCR De-
tection System (Bio-rad, Hercules, CA) with the following
cycling profile: 94°C for 30 s, and then 40 cycles at 94°C
for 10 s, 58°C for 30 s, and then a melting curve (61 cycles
at 65°C for 10 s) was generated to check the specific ampli-
fication. The relative quantitative method was employed to
analyze the relative gene expression level. RNA levels were
expressed relative to that of the actin gene (AF111812) as
2–ΔΔCT, where Ct is the cycle threshold, in accordance with
previous studies [55].
Functional annotation and pathway analysis
The annotations of DEGs in non-heading Chinese cab-
bage were obtained by searching the protein databases
Iprscan (http://www.ebi.ac.uk/Tools/pfa/iprscan/), Uni-
ProtKB (http://www.ebi.ac.uk/uniprot/) [56], TrEMBL
(http://www.ebi.ac.uk/uniprot/TrEMBLstats/) [57], GO
(http://www.geneontology.org/) [58], and KEGG (http://
www.genome.jp/kegg/) [59] and the annotations obtained
from these five protein databases were integrated using
Perl script. In addition, the biological processes and func-
tions of DEGs were analyzed using the COG (http://www.
ncbi.nlm.nih.gov/COG/) [60], and GO databases. The
COG database represents major phylogenetic lineages,
and each COG consists of individual proteins or groups of
paralogs from at least 3 lineages.
Mapping differentially expressed genes on the
draft genome
The distribution of all predicted genes, expressed genes,
and differentially expressed genes on chromosomes were
visualized using Perl scripts, and differently colored lines
represented each gene dataset. The orthologous and par-
alogous genes were identified using OrthoMCL software
(http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi) [61],
and the copy number of these genes was calculated using
Perl scripts. The syntenic relationships between species
was constructed by McScan (MATCH_SCORE: 40,
MATCH_SIZE: 5, GAP_SCORE:-2, EXTENSION_DIST:
40, E_VALUE: 1e-05; http://chibba.agtec.uga.edu/duplica-
tion/mcscan/) [62]. The all-against-all BLASTP comparison
provided the E-value and the pairwise gene information for
protein clustering. Paired segments were extended by iden-
tifying clusters of genes. This method was used to build the
genome synteny blocks of non-heading Chinese cabbage
compared with heading Chinese cabbage and Arabidopsis.
Furthermore, we filtered the synteny blocks that had <10
genes to obtain improved collinear analysis. Finally, the
DEGs that were located in the synteny blocks were marked
according to the physical position, and the collinear blocks
plus the marked DEGs were plotted using Perl scripts.
Additional files

Additional file 1: Table S1. Expression profile data at five development
stages of three non-heading Chinese cabbage accessions. Table S2. Expression
values at five development stages of three non-heading Chinese cabbage
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Statistical analysis of the differentially expressed genes between NHCC001 and
NHCC002 at the seedling stage. Table S6. Number of paralogous genes in
differentially expressed genes of non-heading Chinese cabbage. Table S7.
Number of orthologous genes in differentially expressed genes of
non-heading Chinese cabbage compared with Arabidopsis and heading
Chinese cabbage. Table S8. Primer sequences used for quantitative
real-time PCR amplification of actin and two cold-tolerance genes.

Additional file 2: Figure S1. Number of expressed genes in each
developmental stage. a) NHCC001; b) NHCC002; c) NHCC004. Figure S2.
Numbers of expressed genes for the three accessions at each
developmental stage. a) Seedling; b) rosette; c) adult; d) bolting; e)
flowering. Figure S3. Numbers of differentially expressed genes for the
five developmental stages in accessions NHCC002 and NHCC004.
Figure S4. Genes differentially upregulated or downregulated in the
seedling stage among the accessions. The red dots represent the
upregulated genes, and the green dots represent the downregulated
genes. Figure S5. Cluster graph of self-incompatibility candidate genes, in
TPM. Figure S6. GO annotation of the differentially expressed genes.
Figure S7. COG of the differentially expressed genes. Figure S8. Expression
levels of two candidate flowering genes. a, c) Transcription per million, by
expression profile; and (b, d) relative expression levels, by qRT-PCR.
Figure S9. Self-incompatibility genes identified from differentially expressed
genes in non-heading Chinese cabbage. Figure S10. The expression levels
and pathways of chlorophyll genes involved in non-heading Chinese
cabbage. Figure S11. TPM fold-changes of differentially expressed
genes among the three accessions at each stage on chromosome.
(I.e., on chromosome 1 for the rosette, adult, bolting, and flowering stages.).
Figure S12. Whole-genome colinear blocks between non-heading Chinese
cabbage and heading Chinese cabbage. Syntenic blocks are formed by
red or green dots representing the best hits across any two chromosomes
in the same or opposite directions, respectively. The blue dots represent the
differentially expressed genes present in the colinear blocks. Figure S13.
Pfam domain annotation for the differentially expressed genes belonging to
the paralogous genes and other differentially expressed genes. Figure S14.
Statistical analysis of expression profile data. a) Distribution charts of TPM;
b) statistical charts for the gene numbers in each TPM interval region;
c) sequencing saturation analysis chart.
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