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Abstract

Background: Genetic male sterility (GMS) in cotton (Gossypium hirsutum) plays an important role in the utilization
of hybrid vigor. However, the molecular mechanism of the GMS is still unclear. While numerous studies have
demonstrated that microRNAs (miRNA) regulate flower and anther development, whether different small RNA
regulations exist in GMS and its wild type is unclear. A deep sequencing approach was used to investigate the
global expression and complexity of small RNAs during cotton anther development in this study.

Results: Three small RNA libraries were constructed from the anthers of three development stages each from fertile
wild type (WT) and its GMS mutant cotton, resulting in nearly 80 million sequence reads. The total number of
miRNAs and short interfering RNAs in the three WT libraries was significantly greater than that in the corresponding
three mutant libraries. Sixteen conserved miRNA families were identified, four of which comprised the vast majority
of the expressed miRNAs during anther development. In addition, six conserved miRNA families were significantly
differentially expressed during anther development between the GMS mutant and its WT.

Conclusions: The present study is the first to deep sequence the small RNA population in G. hirsutum GMS mutant
and its WT anthers. Our results reveal that the small RNA regulations in cotton GMS mutant anther development
are distinct from those of the WT. Further results indicated that the differently expressed miRNAs regulated
transcripts that were distinctly involved in anther development. Identification of a different set of miRNAs between
the cotton GMS mutant and its WT will facilitate our understanding of the molecular mechanisms for male sterility.

J

Background

Cotton is one of the most important economic crops in
the world. Male sterility is a simple and efficient pollin-
ation control system that has been widely used in hybrid
cotton breeding. In cotton breeding, two major male
sterile systems are used to produce hybrid seeds, namely
cytoplasmic male sterility (CMS) and genetic male sterility
(GMS). Both systems have a maternally (former) or
nuclear (later) inherited trait that renders them inability to
produce or release functional pollen, so they can be used
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as maternal plants to produce hybrid seeds. The molecular
mechanism of male sterility is currently a research hotspot
in plant science.

Many studies have demonstrated that CMS is often
associated with unusual open reading frames (ORFs)
found in mitochondrial genomes. For example, accumu-
lation of the cytotoxic peptide ORF79 in Boro-Taichung
(BT)-type cytoplasmic male sterile rice (Oryza sativa)
with Chinsurah Boro II cytoplasm causes CMS. The
ORF79 protein is expressed by a dicistronic gene,
atp6-orf79, which exists in addition to the normal
atp6 gene in the BT-type mitochondrial genome [1].
Nuclear-encoded-fertility restorer genes can suppress
CMS-inducing ORFs and restore male fertility [2].
GMS has been also extensively studied at the gene
and protein expression levels with an exclusive focus
on protein coding genes. Up to now, very few studies
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have been on the relationship between male sterility
and protein non-coding genes.

As a class of non-coding genes, small non-coding
RNAs (ncRNAs) play an essential role in regulating the
molecular machinery of eukaryotic cells by controlling
transcriptional and post-transcriptional mechanisms [3].
These processes include chromatin formation and mainten-
ance, defense against selfish and parasitic entities such as
transposable elements and viruses, as well as native protein
coding gene expression [4,5]. Regulatory ncRNA in plants
can be divided into two primary categories, i.e., microRNAs
(miRNAs) and short interfering RNAs (siRNAs). While
siRNAs result primarily from exogenous sources, miRNAs
are a class of endogenous small regulatory ncRNAs with
lengths ranging from 20—24 nucleotides (nt) that negatively
regulate gene expression at the post-transcriptional level
through perfect or near-perfect complementarity with
target mRNAs for cleavage or inhibition of translation
[6-8]. Some known miRNA loci form clusters in the
genome and these miRNA clusters are probably produced
by gene duplication and the miRNAs in a given cluster are
often related to one another [9-11].

miRNAs are key post transcriptional regulators that
control various biological and metabolic processes in
eukaryotes, many of which are conserved and have more
recently evolved species-specific diversity [12,13]. miRNAs
also have important regulatory functions in specific
biological processes during the life cycle of plants, such as
controlling tissue differentiation and development, the
phase switch from vegetative to reproductive growth, and
responses to different biotic and abiotic stresses [14-16]. A
growing number of new plant miRNAs have been identified
in recent years. To date, more than 1,000 miRNAs have
been annotated in Arabidopsis, rice, and other plant
species [17]. However, the number of miRNAs in plants
is apparently not saturated because new miRNAs are
continually identified in different species. In Upland cotton
(G. hirsutum), only 54 miRNAs have been reported.

Anthers are highly specialized organs for nutrient storage
and reproductive development. Their maturation and de-
velopment involves meticulous gene regulation at the tran-
scriptional and post-transcriptional levels [18]. In anthers,
small ncRNAs are essential for sporophyte development in
the somatic diploid phase of flowering plants and small
RNA pathways are present and functional in angiosperm
male gametophytes [19,20]. In Arabidopsis, over-expression
of miR167 leads to male sterility [21]. Even though there is
no direct evidence that any miRNAs are causative genes for
male sterility in plants, we hypothesize that differential
expression of some miRNA genes are involved in regulation
of male sterility.

As the first step towards the understanding of their
regulatory mechanisms and networks of target genes in
male sterility in plants, expression of miRNAs between a
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cotton GMS mutant (‘Dong A’) and its fertile wild type
(WT) was compared using a deep sequencing approach
developed by Solexa (Illumina Inc) in the present study.
The male sterility of the GMS mutant ‘Dong A’ is con-
trolled by one pair of recessive genes [22], and it has the
same genetic background with its wild type (WT). There-
fore, they are ideal genetic materials for studying cotton
anther development and male sterility. In the present
work, the expression patterns of miRNAs and the critical
small RNA pathways of the GMS ‘Dong A’ and its WT
were analyzed and compared at three different stages of
male gametophyte development, followed by an integrated
bioinformatics analysis to identify novel and candidate
miRNAs. Furthermore, the expression profiles of miRNAs
were analyzed by miRNA clustering, which has been widely
used to study miRNA expression levels in various species
[23-25]. By further comparing the expression patterns
between selected miRNAs and their corresponding target
genes, we have gained a better understanding of the
molecular mechanism of miRNAs in anther development
and genetic male sterility of cotton.

Results

Phenotypic analysis of impaired anthers in the cotton
male-sterile mutant

To determine the morphological defects of the cotton
GMS mutant, we compared the anthers of the mutant
and its fertile wild type (WT). At 0 day post anthesis
(DPA), the mutant showed an abnormal floral phenotype
with no pollen grains and smaller anthers than the WT
(Figure 1A and B). The pollen grains in the WT and the
mutant were stained with 2% I,-KI to detect starch activity
during the flowering period. There were many viable
pollen grains in the WT, while there was no viable pollen
in the mutant observed (Figure 1C). Therefore, the mutant
is completely sterile.

Distribution of small RNAs during cotton anther
development
Based on previous studies that the peak of male sterility
mainly occurs in the uninucleate microspore stage of
anthers in ‘Dong A’ GMS mutant [26], early anther devel-
opment stages were chosen to identify possible miRNAs
that may be involved in events leading to male sterility. In
this study, anthers were selected from two earlier stages,
i.e., meiosis stage (WT: Mar-F-1; mutant: Mar-S-1) and
tetrad stage (WT: Mar-F-2; mutant: Mar-S-2), together
with the uninucleate microspore stage (WT: Mar-F-3;
mutant: Mar-S-3) from the GMS ‘Dong A’ mutant and
its fertile wild type to construct six small RNA libraries
(i.e., anthers from the three stages of the two genotypes).
The datasets from the six libraries were used to
query the ncRNA sequences deposited in the National
Center for Biotechnology Information Gene Bank
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Figure 1 Flowers and anthers of the WT and the GMS mutant. From left to right: (A) Flower of G. hirsutum ‘Dong A’ (left) and GMS mutant of
‘Dong A’ (right); (B) anthers of the WT (left) and the GMS mutant (right) 1day post anthesis (DPA); (C) results of pollen stained with 2% I,-KI from
0 DPA flowers in the WT (left) and the GMS mutant (right) (10 x 40 view).

(http://www.ncbinlm.nih.gov/) and the Rfam 9.1 database
(http://rfam.janelia.org/) to separate the small RNAs
that matched non-coding sequences, such as ribosomal
RNA (rRNA), transfer RNA (tRNA), small nuclear
RNA (snRNA), and small nucleolar RNA (snoRNA). The
distribution of these fragments (<5% of the total reads) is
listed in Table 1.

Almost 80 million small RNA sequences with lengths
ranging from 18-30 nt were obtained in these six small
RNA libraries. The majority of the small RNAs in both
the WT and mutant libraries were 21-24 nt (Figure 2),
which is within the typical size range for dicer-derived
products and in agreement with most previously
reported results. Of these, 24 nt small RNAs were the
most abundant.

Variations in small RNA expression in the WT and GMS
mutant during anther development

The total numbers of miRNAs and siRNAs in the three
WT libraries were greater than those of the three corre-
sponding GMS mutant libraries (Additional file 1). The

number of unique miRNAs in the three WT libraries
was different from that in the three GMS mutant libraries.
Moreover, the number of unique miRNAs in the Mar-F-1
library was twice that of the Mar-S-1 library and the
number of unique siRNAs in the Mar-F-1 library was
also significantly greater than that in the Mar-S-1 library
(Additional file 1).

Analyzing miRNA variations in the three anther devel-
opmental stages between the WT and its GMS mutant,
we found that the Mar-S-1 and the Mar-F-1 libraries
comprised 35.74% and 52.13% of the unique miRNAs,
respectively; the Mar-S-2 and the Mar-F-2 libraries
comprised 45.11% and 43.12%, respectively; and the
Mar-S-3 and the Mar-F-3 libraries comprised 45.96%
and 39.39%, respectively. Only 12.13%, 11.77% and
14.65% of the unique miRNAs were shared between the
WT and its GMS mutant during the same three anther
developmental stages, respectively (Figure 3). Therefore,
most of the unique miRNAs found in the GMS mutant
anthers were different from those in the WT anthers at
the corresponding stage.

Table 1 Summary of small RNA sequences from the WT and the GMS mutant libraries

Small RNA Library

Mar-F-1 Mar-F-2 Mar-F-3 Mar-S-1 Mar-S-2 Mar-S-3
rRNA 308795(2.25%) 533737(3.26%) 185686(1.43%) 68630(0.63%) 236981(1.81%) 453064(3.34%)
tRNA 30091(0.22%) 92144(0.56%) 98208(0.76%) 12589(0.12%) 41200(0.31%) 116915(0.86%)
snoRNA 934(0.01%) 1198(0.01%) 836(0.01%) 466(0%) 839(0.01%) 1100(0.01%)
snRNA 2096(0.02%) 4793(0.03%) 3662(0.03%) 1060(0.01%) 2027(0.02%) 3248(0.02%)
Total reads 13741122 16347976 12981571 10839275 13106653 13570780
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Figure 2 Size distribution of small RNA sequences derived from the WT and mutant libraries. Wild: the total small RNA sequences in the three
WT libraries; Mutant: the total small RNA sequences in the three GMS mutant libraries. All reads were of high quality, ranging from 18-30 nt in length.

The above results indicated that various small RNA
regulations were already present during the anther
development of the ‘Dong A’ GMS mutant, as compared
to its fertile wild type. These different small RNA varieties
and diverse small RNA regulations may target different
genes that influence the anther development and therefore
male sterility.

Identification of conserved cotton miRNAs
Aligning the small RNA sequences to known cotton
miRNAs resulted in 405,829 and 192,554 matches for
the Mar-F-1 and Mar-S-1 libraries, respectively. In the
Mar-F-2 and Mar-S-2 libraries, there were 496,607 and
402,146 matches for the WT and the mutant, respectively.
In the Mar-F-3 and Mar-S-3 libraries, there were 1,108,399
and 767,638 matches for the WT and the mutant,
respectively (Additional file 2).

Sixteen conserved cotton miRNA families comprising
3,373,236 individual candidate miRNA reads were identi-
fied in the six small RNA libraries, with the Gh-miR167

and Gh-miR166 families being the most abundant, followed
by the Gh-miR172 and Gh-miR156 families (Figure 4A).
Of all the conserved cotton miRNA reads, Gh-miR167
dominated the WT and the mutant libraries, accounting
for 25.8% (in the three WT libraries) and 34.5% (in the
three GMS mutant libraries), respectively (Figure 4B).
Next is Gh-miR166, which accounted for 20.7% and
12.9% in the WT and mutant libraries, respectively. In
contrast, some other miRNA families showed very low
expression abundance in the anthers, with very lower
read counts. The varied abundance of these miRNA
families suggests that the miRNA genes are differentially
transcribed during anther development.

Analyzing miRNA expression between WT and its
GMS mutant anthers revealed that Gh-miR394, Gh-
miR396, Gh-miR398, Gh-miR399, and Gh-miR482 were
differentially expressed during the meiosis stage, three of
which (i.e.,, Gh-miR394, Gh-miR398, and Gh-miR399) were
also differentially expressed during the tetrad stage and two
of which (i.e., Gh-miR398 and Gh-miR482) together with

WT and GMS mutant.

W Mar-5-1 speaifict218)
W Mar-5-1 & Mar-F-1(74)
B Mar-F-1 specific(318)

W Mar-5-3 specifci2 73)
B Mar-5-3 & Mar-F-3(87)
B Mar-F-3 specific(2 34)

Figure 3 Distribution of unique miRNAs among the six small RNA libraries. Mar-F-1 and Mar-S-1: meiosis stage anthers from WT and GMS
mutant; Mar-F-2 and Mar-S-2: tetrad stage anthers from WT and GMS mutant; Mar-F-3 and Mar-S-3: uninucleate microspore stage anthers from

W Mar-F-2 specific(318)
W Mar-F-2 & Mar-5-2(83)
B Mar-5-2 specific(304)
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Figure 4 Relative abundance and differential expression levels of the identified cotton conserved miRNA families. (A) The sequence
counts reflect the relative abundance of each miRNA family between the WT and GMS mutant. (B) The differential miRNA expression levels are
presented as percentages of the total sequence count (WT + Mutant) for each family.

Gh-miR827 were differentially expressed during the
uninucleate microspore stage (Additional file 3). Thus,
Gh-miR398 was in common in all the three stages and
Gh-miR394, Gh-miR399, and Gh-miR482 were each
differentially expressed between the ‘Dong A’ WT and the
GMS mutant during two anther developmental stages.

Degradome library construction and validation of
conserved miRNA targets

In cotton, conserved miRNA targets were previously
identified mainly via bioinformatics prediction [27] and
only a few conserved miRNA targets have been experi-
mentally validated [28]. In this study, in order to identify
miRNA targets, a degradome library derived from
anthers of the WT and GMS mutant representing three
stages of development was constructed and sequenced,
resulting in the generation of 24.6 million raw reads.
After removal of low quality sequences and adapter
sequences, 24.4 million clean reads were obtained and 98%
were 20 or 21 nt in length as expected (Additional file 4)
in that normally length distribution peak of degradome
fragment is between 20 and 21 nt [29]. Of unique
signatures, 9.5 million distinct reads of 20 and 21 nt in

length were obtained and 5.68 million (59.8%) signatures
(referred as mapped reads) were perfectly mapped to
reference sequences in the cotton transcript assemblies
database (DFCI-Cotton Gene Index, release 11.0),
which represented 81.3% (95,966) of the annotated
unique cotton sequences. These data indicate that the
degradome library was of high quality with good genome
coverage in identifying degraded mRNA targets that
should contain the sequence profile resulting from miRNA
directed cleavage.

By sequence alignments, a total of 896 distinct transcripts
targeted by 145 unique miRNAs were detected in our
degradome library (Additional file 5). Gene ontology (GO)
categories based on biological processes revealed that these
miRNA-target genes were related to 32 biological processes
(as shown in Additional file 6); the five most frequent
terms are regulation of cellular process, metabolic
process, response to stimulus, macromolecule metabolic
process, and primary metabolic process, indicating the
importance of these miRNAs in gene regulations during
cotton anther development.

As shown above, many targets of conserved miRNAs
were captured by the degradome analysis, which provided
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experimental evidence to support previous predictions.
The results of degradome analysis revealed that Gh-
miR156, Gh-miR166, Gh-miR167, Gh-miR172, Gh-
miR396, and Gh-miR398 directed cleavages of SBP-box
(TC238023, Figure 5a), class III HD-Zip like protein
(TC237127, Figure 5b), auxin response factor 4
(TC256045, Figure 5c¢), AP2 (TC275039, Figure 5d),
ACC oxidase 3 (TC280456, Figure 5e), and Cu/Zn
superoxide dismutase (TC237725, Figure 5f) genes, re-
spectively, which are key genes involved in hormone sig-
nals, cell patterning, and anti-oxidant metabolism. These
identified miRNA targets using degradome sequencing are
present in the form of target plots (t-plots) that plot the
abundance of the signatures relative to their position in
the transcripts [30]. In each of these t-plots, a clear peak
for the absolute number of tags is found at the predicted
cleavage site for Gh-miR156, Gh-miR166, Gh-miR167,
Gh-miR172, Gh-miR396, or Gh-miR398 (Additional file 7),
indicated that there are correspondences between the
cleavage positions and significant sites on the t-plots.

Validation of miRNA and target expression through
TagMan microRNA assays

To examine miRNA expression during three stages of
anther development as well as validate the sequencing
results, Gh-miR156a, Gh-miR166a, Gh-miR167, Gh-
miR172, Gh-miR396a and Gh-miR398 were assayed to
validate if these miRNAs had significant differences in
expressions between the WT and GMS mutant anthers
(Additional file 8). The miRNA expression patterns
were similar to the sequencing results, indicating that
the small RNA sequencing results were reliable.

To test if any correlation between miRNAs and their
targets existed, the expression patterns of identified
miRNA targets based on quantitative RT-PCR (qRT-PCR)
were compared (Figure 6). If a miRNA degraded its target
mRNA transcripts, their expression levels could be
negatively correlated. As expected, the expression levels of
most miRNA were inversely correlated with these of the
corresponding mRNAs. During the three anther develop-
mental stages, Gh-miR156 expressed at a relatively higher
level in the GMS mutant than in the WT, while its target
gene encoding a SBP-box (TC238023) expressed in the
reverse way, as expected (Figure 6). Unexpectedly, as com-
pared with the GMS mutant, this target gene expressed at
a proportionally higher level at the uninucleate stage of
the WT anthers, during which stage the Gh-miR156 level
was relatively lower (Figure 6). The relationship between
Gh-miR167 and its target (TC256045) encoding an auxin
response factor 4(ARF4)and between Gh-miR398 and its
target (TC237725) encoding Cu/Zn superoxide dismutase
followed a similar trend in the first and third stages
(Figure 6). As compared with the WT, the GMS mutant
anthers had higher expression levels of the two miRNAs
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and lower expression of their target genes at the meiosis
and uninucleate stages. On the contrary, the GMS mutant
anthers at the tetrad stage had similar (in Gh-miR167) or
lower (in Gh-miR396 and Gh-miR398) expression levels
of the miRNAs, but their target genes had significantly
higher expression levels, as compared with the WT
(Figure 6). Similarly to Gh-miR156, Gh-miR167 was up-
regulated in the uninucleate microspore stage of the GMS
mutant anthers as compared with the WT, while its target
gene (TC256045) encoding for ARF4 expressed at a much
lower level (Figure 6).

A reverse trend was noted between Gh-miR166 and its
target gene coding for class III HD-Zip like protein
(TC237127) and between Gh-miR172 and its target gene
coding for AP2 (TC275039) in the GMS mutant as com-
pared to the WT. The expression levels of Gh-miR166
and Gh-miR172 in the GMS mutant were significantly
lower than in the WT during the three stages of the
anther development, while the reverse was true for their
target genes (Figure 6). It should be pointed out that, the
negative correlation in expression levels between miRNAs
and their target genes existed except for Gh-miR166, but
the linear correlation coefficients (r= 0.64 to 0.98) were
not statistically significant due in part to only three anther
developmental stages sampled. The non-linear relationship
of expression levels between miRNAs and their target
genes may also indicate that there are other mechanisms
regulating expression of the target genes.

Analysis of novel miRNA candidates

Given the fact that the sequencing of the Upland cotton
genome is incomplete, and information on genomewide
cotton small RNA population is unknown, accurate
identification of non-conserved miRNA in cotton is a
difficult task. Following a BLASTn search and hairpin
structure prediction (See Materials and Methods), 110
putative unique G. hirsutum miRNAs were detected in
the six small RNA libraries (Additional file 9), including
33 in the Mar-F-1 library, 19 in the Mar-F-2 library, 45
in the Mar-F-3 library, 6 in the Mar-S-1 library, 5 in the
Mar-S-2 library, and 2 in the Mar-S-3 library (Table 2).
All of these newly identified miRNAs met the criteria for
miRNA annotation [31].

Comparing the expression of these novel miRNAs
between WT and GMS mutant anthers, 43, 22 and 56
novel miRNAs were significantly differentially expressed
in the meiosis, the tetrad and the uninucleate microspore
stages, respectively (Additional file 10). Identification of
target genes for these novel miRNAs suggests that they
may participate in various aspects of anther develop-
ment. For example, novel miRNA Mar-F-1-m0031 was
identified to target gene encoding a transport inhibitor
response 1 (TIR1, a receptor of IAA, Additional file 11),
which can directly bind to auxin through the formation of
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(See figure on previous page.)

Figure 5 Target plots (t-plots) of identified cotton conserved miRNA targets using degradome sequencing. The abundance of each
signature is plotted as a function of its position in the transcript. The red colored italicized nucleotide on the target transcript from the 3" end
indicates the cleavage site detected in the degradome library. The number next to the arrow in the alignment between the miRNA and the target is
the cDNA position corresponds to the detected cleavage site. The X-axis of each t-plot represents the cDNA position range with the sequenced tags
coverage. TP10M is normalized abundance in the formula TP10M = raw abundance/(total genome match — (t/r/sn/snoRNA))*10,000,000.
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Table 2 Novel miRNAs identified from the six small RNA

libraries (Continued)

libraries
Name Count miRNA Sequence Fold
energy

Mar-F-1-m0001 42 CGCUAUCCAUCCUGAGUUUCA -50.60
Mar-F-1-m0002 8 UCUUGUACUGCAUCAUAACUU —55.90
Mar-F-1-m0004 58 AGAGAUUGCAUUUCCUCUUCCA —29.40
Mar-F-1-m0006 12 UAACUGAAGAGUUUGAUCAUGG —-90.50
Mar-F-1-m0011 24 UGCAAAUCCAGUCAAAAGUUA —33.90
Mar-F-1-m0013 21 GGGAAUUUCUGAUUGUCGGGG —46.30
Mar-F-1-m0017 34 UGCUCACUUCUCUUCUGUCAGC —57.60
Mar-F-1-m0018 78 UUCCAUCUCUUGCACACUGGA —44.60
Mar-F-1-m0019 13 CCAAGAGGAUUGAAGGCCAUG —39.30
Mar-F-1-m0022 11 GAAGCGCCUGGCAAGUUAGAC —42.80
Mar-F-1-m0024 72 CGAGCCGAAUCAAUAUCACUC —40.10
Mar-F-1-m0025 30 AGCUGCUUGGCUAUGGAUCCC —46.10
Mar-F-1-m0026 9 AUGACCAUUCAAGAAAGUGCU —59.25
Mar-F-1-m0027 82 GUAGUUGAACGACGUUUAUCUA —3540
Mar-F-1-m0029 121 GGAGCAUCAUCAAGAUUCACA —48.11
Mar-F-1-m0030 1765 UUACUUUAGAUGUCUCCUUCA —4892
Mar-F-1-m0031 52 UCCAAAGGGAUCGCAUUGAUC —58.70
Mar-F-1-m0032 14 ACGUUAUGGGCAUGGUAUGGA -50.92
Mar-F-1-m0033 12 CAUGACUUUUAGCGGCGUUUG —-32.80
Mar-F-1-m0035 6 UGGUUUUCAAGUGGGAUUUGCUG  —60.90
Mar-F-1-m0038 136 UUCAGAAACCAUCCCUUCCUU —58.60
Mar-F-1-m0039 3138  ACAGCUUUAGAAAUCAUCCCU —52.50
Mar-F-1-m0040 12 GCUCUCUAUGCUUCUGUCAUC —55.00
Mar-F-1-m0041 9 AUAUGUUAGAUCAAAGAGUAA —49.50
Mar-F-1-m0042 162 GGCUGUGGUUGAUUCGGCAAGA —37.55
Mar-F-1-m0043 73 AAUGGAGGAGUUGGAAAGAUU —37.39
Mar-F-1-m0044 14 AGUGGAUUGGGCUACAGUUUCUU  —27.10
Mar-F-1-m0048 6 AUAAAAUACUGAUGUGACAUA —33.90
Mar-F-1-m0051 9 ACGGUUUUAAGUUUUAACUGA —2842
Mar-F-1-m0052 9 GACGGUUUUAAGUUUUAACUG —2842
Mar-F-1-m0053 12 UUGGCGAACAAAUCAGUAGGAGU  —20.80
Mar-F-1-m0054 8 ACGACAGAAAAAAGGAUUGAUCA  —30.30
Mar-F-1-m0055 21 AAGUGGGAUGGGUGGAAAGAUU —40.90
Mar-F-2-m0006 12 GGAGGAUCUCCAGGACUUGGCUU  —36.69
Mar-F-2-m0014 219 GAUUUGGGGCAAAGACGGGAU —42.80
Mar-F-2-m0016 7 CUGGAUGCAGAGGUUUAUCGA -51.70
Mar-F-2-m0019 11 GUGAUUGGGCUAGGGUCUAGGCA  —2884
Mar-F-2-m0020 9 AAAACUGGACUGUUGUAUUGGUU  —39.70
Mar-F-2-m0022 8 UUAGAUUCAUUGGCUGAGUUA —95.50
Mar-F-2-m0034 65 AACCAAUGACUAUUCAUGAUUCC  —25.30
Mar-F-2-m0035 7 GGGAGAAAUUAGAUUGCCGA -1833
Mar-F-2-m0039 10 AAGCUUGCUAGGCUCAAAGCCCA  —20.00
Mar-F-2-m0043 11 GUUCGAUUCUCGGAAUGCCC —56.80
Mar-F-2-m0046 14 GGAAGGGAUAUAACUCAGCGGUA  —28.60
Mar-F-2-m0051 12 AAAGGGAUGAUUUCUAAAGCU —47.85

Mar-F-2-m0055 10 UAUGUUAGAUCAAAGAGUAAAUU  —48.90
Mar-F-2-m0058 18 UGCCUGGCUCCCUGUAUGCCU —42.10
Mar-F-2-m0064 8 AUACGACUAGCGCGACUCGA -83.97
Mar-F-2-m0065 10 AAGAGUCAGAUUGCAUUUUGC —-2540
Mar-F-2-m0067 11 AGGUACAGAGUCUGUUGGCAU —47.80
Mar-F-2-m0069 294 GAUGGGUGAGGGGGUAAGACA -52.80
Mar-F-2-m0071 8 AAGAGAGAAAGAGAGGCCUGGA -30.62
Mar-F-3-m0001 16 ACUAAAAAAUGGGCAAAUUAG —-70.85
Mar-F-3-m0002 12 CUUUGGAGGGGAGAUUAGAGC —61.05
Mar-F-3-m0006 8 AGGGAAGGUUAGAUAUUUAUA —-77.80
Mar-F-3-m0008 46 UAGAGAUUGCAUUUCCUCUUCC -29.40
Mar-F-3-m0014 10 CGUGGUGAUCAGUUGGACCUUU —2340
Mar-F-3-m0018 6 GGCAGCGGUUCAUCGAUCUCU —28.70
Mar-F-3-m0029 5 UUUAAUUUCCUCCAAUAUCUUA —46.64
Mar-F-3-m0031 23 UGCCUGGCUCCCUGAAUGCCA -53.30
Mar-F-3-m0032 103 UAGCCAAGGAUGACUUGCCUG —54.30
Mar-F-3-m0035 18 UGAUAUUGGCCUGGUUCACUC —44.99
Mar-F-3-m0036 10 CUCUAUGGUAGAAUCAGUCGGGG  —42.60
Mar-F-3-m0038 458 UUCCACAGCUUUCUUGAACUU —62.70
Mar-F-3-m0041 909 GGAAUGUUGUCUGGCUCGAGG —-50.90
Mar-F-3-m0043 35 AGAUCAUGUGGCAGUUUCACC —4564
Mar-F-3-m0044 7 AGAGCUUUCUUCAGUCCACUC —82.60
Mar-F-3-m0048 111 UUGGUGCGGUUCAAUCAGAUA —-50.80
Mar-F-3-m0049 20 CGAAUGAUCUCGGACCAGGCU -3576
Mar-F-3-m0050 154 AUCAUGUGGCAGUUUCACCUG —44.00
Mar-F-3-m0056 4369 UCUUGACCUUGUAAGACCUUU —48.30
Mar-F-3-m0058 10 GGAAUGUUGGCUGGCUCGAAG —52.60
Mar-F-3-m0064 38 UGAAUGAUUUCGGACCAGGCU —40.80
Mar-F-3-m0065 28 UGGUGCAGGUCGGGAACUGAU -76.37
Mar-F-3-m0067 65 UUCCACGGCUUUCUUGAACUU -51.20
Mar-F-3-m0070 22 UGCAUUCUGAUGUAUGGGGAC —69.07
Mar-F-3-m0080 14 UUUAAUAUUGUUUGGAUAUUGU  —-32.70
Mar-F-3-m0087 5 CGGCAAGUUGUCUUUGGCUAC -52.00
Mar-F-3-m0091 12 CAGGUGUAGCAUCAUCAAGAU —63.81
Mar-F-3-m0092 30 UCAGGUCAUCUUGCAGCUUCA -111.30
Mar-F-3-m0093 53 CGCUAUCUAUCCUGAGUUUCA -61.50
Mar-F-3-m0095 26 UUGAAGACCCAUUUGCAACCAA —24.80
Mar-F-3-m0110 15 CUCUUGUUGGGCAAAUGAGCAU -22.10
Mar-F-3-m0113 6 UGGGAACUUGAAGAUGAGGCU —-29.40
Mar-F-3-m0115 15 AGGAGGAGCAGGAAGCAGUAACU  —56.90
Mar-F-3-m0120 6 UUUCAACAUAGUAGAGGGACU —-102.07
Mar-F-3-m0124 11 UAUAUGGCUUAAAACAGGCUCC —-78.30
Mar-F-3-m0127 21 UCUUUCCUACUCCUCCCAUUCC -55.10
Mar-F-3-m0141 10 AUGGACAUCCAAGGGGGAGUGUU  —50.46
Mar-F-3-m0146 15 UCCCUUUGGAUGUCUUCUUGC -75.70
Mar-F-3-m0164 22 UGGCUUCUAGACAGUGGAUGCA —2340
Mar-F-3-m0178 24 UGUUGGCUCGGUUCACUCAGA —61.50
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Table 2 Novel miRNAs identified from the six small RNA

libraries (Continued)

Mar-F-3-m0183 21 AUGCACUGCCUCUUCCCUGGC -50.60
Mar-F-3-m0185 160 UGGAGGCAGCGGUUCAUCGAUC -36.30
Mar-F-3-m0198 7 AAGAGUCAGAUUGCAUUUUG —2540
Mar-F-3-m0200 9 AGAGGUGAUCAUGGGCCGGG -21.20
Mar-F-3-m0205 32 CAGCCCUGGUGUUGGACAUUC —46.00
Mar-5-1-m0013 9 GGGGCUGCAUUGAAGUGAAGGCU  -76.70
Mar-S-1-m0014 7 UUCCACAGCUUUCUUGAACUG —49.30
Mar-S-1-m0035 12 ACAGGACAGGACAGGACAGGACA  —68.99
Mar-5-1-m0039 13 UGGCGUAUGAGGAGCCAUGCA -51.90
Mar-5-1-m0097 18 AUAUGGCUUAAAACAGGCUCCA —-78.30
Mar-5-1-m0110 8 AGAGGAGAAGAAAAUUCACUAUA  —4565
Mar-S-2-m0027 7 AUUGGUGAUUGACAUUUUUAUCU  —33.10
Mar-S-2-m0040 67 GGAAUGGAGGAGUUGGAAAGA —47.59
Mar-5-2-m0043 6 UCUUUGAUCUAAUAUACAGG —40.30
Mar-5-2-m0046 7 AGUGUAAGACCUGUCUGGGACA —28.50
Mar-5-2-m0051 6 CUGAGGUUGGGUCGGACGACA -30.02
Mar-S-3-m0014 6 UCCAUGGUGGAGAUUGCUCUU -30.00
Mar-S-3-m0041 16 UGUUGAAGGUCGAUGGGUUAA —39.70

Millions of unique small RNA sequences of 18-30 nt
in length were detected, including 110 novel miRNAs,
thus enriching the number of known unique small
RNAs in cotton. Sixteen conserved miRNA families
were detected in this study. Many canonical miRNAs
are conserved among mosses, eudicots, and monocots,
and some have conserved functions among land plants
[33]. For example, the mature canonical Gh-miR167 in
cotton is identical to those in poplar and Arabidopsis.
These conserved miRNAs may play an important role
in cotton anther development, as many of their targets
mediate biological pathways, such as auxin responses
and cell patterning, as implicated in the regulation of
anther development, based on previous studies [34].

Both Gh-miR167 and Gh-miR166 were predominantly
expressed during anther development in ‘Dong A’ WT and
its GMS mutant (Figure 4), an indication of important
roles in regulating cotton anther development. In this
study, Gh-miR167 and Gh-miR166 were identified to target
ARF4 and class III HD-Zip like protein, respectively. As
compared with the wild type, Gh-miR167 was expressed at
a relatively higher level in the uninucleate microspore stage,
which led to down-regulation of ARF4 by ten-fold in the
GMS mutant anthers (Figure 6). The much lower expres-
sion level of ARF4 may affect the auxin response pathway
in the GMS mutant, which was consistent with the lower
content of IAA in the uninucleate microspore stage of the
GMS mutant anthers (Additional file 12). In Arabidopsis,
miR166 is thought to target mRNAs that encode a class III
HD-Zip-like protein that plays a critical role in shoot apical
meristem initiation and leaf polarity and pattern formation
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[35,36]. However, the relationship between male sterility
and the lower level of Gh-miR166 in the GMS mutant
anthers relative to WT anthers is currently unknown
and needs further studies.

miR156 and miR172 target SQUAMOSA PROMOTER
BINDING PROTEIN transcription factors (SBP-box)
and APETALA2 (AP2), respectively, which have been
predicted to play important roles in anther development
[37,38]. miR156 directly represses the expression of SBP-
box transcription factors that play an important role in
juvenile-to-adult transition throughout the plant kingdom
[39]. It has been shown that miR156 directly promotes the
transcription of miR172 via SBP-box, and miR172 acts
downstream of miR156 to promote adult epidermal
identity [40]. Furthermore, the miR156-regulated SBP-box
is a direct upstream activator of LEAFY, FRUITFULL,
and APETALA1 [41]. In this study, Gh-miR156 and
Gh-miR172 were moderately expressed in ‘Dong A” WT
and its GMS mutant (Figure 4). Compared to these of the
WT, the anthers from the three anther developmental
stages of the GMS mutant had higher expression levels of
Gh-miR156 and lower expression of its target SBP-box. In
contrast to the fact that over-expression of miR172
resulted in male sterility in Arabidopsis and rice [20,38],
we detected lower level of expression of Gh-miR172 and
higher level of expression of its target AP2 in the GMS
mutant anthers at the three anther developmental stages
(Figure 6). Therefore, the relationship between miR156/
miR172 and male sterility in the GMS mutant is likely
different and needs further studies.

Gh-miR396 was identified to target ACC oxidase 3
(TC280456), a key branch-point enzyme involved in
ethylene biosynthetic process [42]. In anther develop-
ment, ethylene is important for male gametophyte ger-
mination and anther dehiscence [43,44] and it has been
reported that fertile male gametophyte development is
accompanied by two peaks of ethylene production in
anther tissues and the mature pollen is characterized by
a high content of ethylene [45]. In the current study,
Gh-miR396 was differentially expressed between ‘Dong
A’ WT and its GMS mutant anthers in the meiosis stage,
and it had a higher level of expression in the GMS mutant
anthers in the uninucleate microspore stage. This is
consistent with the relatively lower level of expression
of its target gene ACC oxidase 3 (Figure 6). However,
whether the opposite expressions of Gh-miR396 and
its target gene in the GMS mutant anthers leading to a
significant reduction in ethylene synthesis remains to
be studied.

Gh-miR398 targets mRNA (TC237725) that encodes
Cu/Zn superoxide dismutase (Cu/Zn SOD), which plays
an important role in plant antioxidant metabolism [46].
In plants, the prominent role of reactive oxygen species
(ROS) has been revealed in induction, signaling, and
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execution of programmed cell death (PCD) [47]. ROS
can trigger release of cytochrome ¢, which is a ROS-
derived PCD feature shared among mammalian, plant
and yeast mitochondria [48]. Previous studies revealed
that excessive accumulation of 05> and H,0,, and a
significant reduction in ROS-scavenging enzyme activity
coincide with male cell death in cytoplasmic male sterile
of cotton [49]. Budar and Pelletier reasoned that the
difference in SOD gene expression between the cotton
male sterile line and its maintainer may result in an
imbalance in ROS metabolism and male sterility [50]. In
the present study, we showed the existence of different
underlying miRNA pathways that may regulate enzymatic
activities in the WT and its GMS mutant. Surprisingly,
Gh-miRNA398 was up-regulated by twenty-fold and its
target gene Cu/Zn SOD was reversely much lower
expressed in the uninucleate microspore stage of GMS
mutant anthers, as compared to the WT anthers (Figure 6).
Up-regulation of cytochrome ¢ by threefold was observed
in the corresponding stage of the GMS mutant anthers
(Additional file 13). The decreased Cu/Zn SOD activity
and elevated expression level of cytochrome ¢ in the GMS
mutant anthers may lead to a transient oxidative burst
and significant ROS accumulation. However, more studies
are needed to understand the underlying mechanisms that
lead to male sterility in the GMS mutant.

Conclusion

Using a deep sequencing strategy, a number of miRNAs
expressed during three anther development stages of
cotton were identified. The differential expression of
the miRNAs between the GMS mutant and its WT
indicates that miRNAs are distinctly involved in cotton
anther development and male sterility. Further studies
of these differentially expressed miRNAs and their
targets in the anthers will provide a better understanding
of the regulatory mechanisms underlying male sterility
in cotton.

Methods

Plant materials and anther collection

Upland cotton (G. hirsutum) ‘Dong A’ (WT) plants and the
GMS mutant in the ‘Dong A’ background were grown
under regular field conditions at the experimental farm
of the Cotton Research Institute in China Agricultural
Academy of Science. Previous study revealed that when
the longitudinal length of buds reach 5.0mm, 6.5mm,
and 9mm, respectively, the pollen mother cell of the GMS
mutant enter the meiosis, tetrad and uninucleate stages
[51]. According to this sampling criterion and combined
with microscopic examination, developing anthers at these
three different growth stages were collected during
early mornings. The excised anthers were frozen in liquid
nitrogen and stored at —80°C for analysis.
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Small RNA sequencing and library construction
Total RNA was extracted from anthers using the pBiozol
Total RNA Extraction Reagent (BioFlux), in accordance
with the manufacturer’s instructions. The RNA was then
precipitated with ethanol, dissolved in diethypyrocarbonate
(DEPC) water and stored at —80°C. All RNA samples were
examined for protein contamination (Ajgy/Asg ratios) and
reagent contamination (A,g/Asz0 ratios) using a Nanodrop
ND 1000 spectrophotometer (NanoDrop, Wilmington, DE).
The samples from the WT and GMS mutant anthers
were quantified and equalized so that equivalent amounts
of RNA were analyzed. The extracted total RNA was
resolved on denatured 15% polyacrylamide gels. Gel
fragments with a size range of 18—-30 nt were excised, and
the small RNA fragments were eluted overnight with 0.5 M
NaCl at 4°C, and precipitated with ethanol. These 18—-30 nt
small RNAs were given 5" and 3' RNA adapters that were
ligated with T4 RNA ligase. The adapter-ligated small
RNAs were subsequently transcribed into cDNA by Super-
Script II Reverse Transcriptase (Invitrogen) and amplified
with the polymerase chain reaction, using primers that were
annealed to the ends of the adapters. The amplified cDNA
products were purified and recovered. Finally, Solexa
sequencing technology was employed to sequence the
small RNA samples (BGI, Shenzhen, China).

Analysis of sequencing data

Raw sequence reads were produced using an Illumina
1G Genome Analyzer at BGI (Shenzhen, China) and
processed into clean full-length reads through the BGI
small RNA pipelines. During this procedure, all low
quality reads were removed, such as reads with 3’ and 5’
adapter contaminants, those without insert tags, and
those with poly A sequences. The remaining high-quality
sequences were trimmed of their adapter sequences, and
those larger than 30 nt or smaller than 18 nt were
discarded. All high-quality sequences, even those with
only a single unique read, were considered significant and
used for further analysis and the sequences were deposited
in NCBI with an accession number of GSE43531.

A chi-square test was performed to determine the
statistical significance of the differences between the
WT and GMS mutant small RNA libraries following a
previously described method [52].

Identification of novel miRNAs

To identify potentially novel miRNAs among the six
small RNA libraries, cotton transcript assemblies
(http://occams.dfciharvard.edu/pub/bio/tgi/data/Gossypium)
from the Dana Farber Cancer Institute were chosen to
map unique small RNA sequences. The characteristic
hairpin structure of miRNA precursors was used to
predict possible novel miRNAs. The miRNA prediction
software, mireap, was also used to predict novel miRNA
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based on the secondary structure, the Dicer cleavage
site, and the minimum free energy (http://sourceforge.net/
projects/mireap/).

Identification of miRNAs and their targets by degradome
sequencing

The small RNAs were aligned to miRNA precursors/
mature miRNAs in the miRBase (http://www.mirbase.
org/index.shtml, release 15.0). The following criteria
were used to determine the sequence counts of miRNA
families in the different tissue samples: (1) if there was
cotton miRNA information in the miRBase, the small
RNAs were aligned to the corresponding cotton miRNA
precursor/mature miRNA; and (2) if there was no cotton
miRNA information in the miRBase, the small RNAs were
aligned to the miRNA precursors/mature miRNAs of all
plants in the database.

Most plant miRNAs facilitate the degradation of their
mRNA targets by slicing precisely between the tenth and
eleventh nucleotides (nt) from the 5 end of the miRNA.
As a result, the 3’ fragment of the target mRNA
possesses a monophosphate at its 5’ end. This important
property has been used to validate miRNA targets [53].
In this study, in order to dissect miRNA-guided gene
regulation in the WT and GMS mutant anthers, a
degradome library suitable for miRNA target identification
was constructed as described previously [29]. Briefly, total
RNAs, which were extracted from the WT and GMS
mutant anthers representing three stages of development,
respectively, were mixed at an equal molar ratio as one
sample. Approximately 200 pg of the mixed total RNA
was used for polyadenylation using the Oligotex mRNA
mini kit (Qiagen). Using T4 RNA ligase (Takara), a 5
RNA adapter was added to the cleavage products, which
possessed a free 5'-monophosphate at their 3’ termini. The
ligated products were then purified using Oligotex mRNA
mini kit (Qiagen) for reverse transcription to generate
the first strand of cDNA using an oligo dT primer via
SuperScript II RT (Invitrogen). After the cDNA library
was amplified for 6 cycles (94°C for 30 s, 60°C for 20 s,
and 72°C for 3 min) using Phusion Taq (NEB), the PCR
products were digested with restriction enzyme Mme 1
(NEB). A double-stranded DNA adapter was then ligated
to the digested products using T4 DNA ligase (NEB).
The ligated products were selected based on size by
running 10% polyacrylamide gel and purified for the
final PCR amplification (94°C for 30 s, 60°C for 20 s,
and 72°C for 20 s) for 20 cycles. The PCR products
were gel purified and used for high-throughput sequencing
using Illumina HiSeq 2000.

Low quality sequences and adapters were removed
before sequence analysis and the clean sequences were
deposited in NCBI with an accession number of GSE43389.
Unique sequence signatures were aligned to the database
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of cotton transcript assemblies in Cotton Gene Index
(Release 11.0, http://occams.dfci.harvard.edu/pub/bio/
tgi/data/Gossypium) using SOAP software (http://soap.
genomics.org.cn/). The CleaveLand was used to detect
potentially cleaved targets based on degradome sequences.
The 20 and 21 nt distinct reads were subjected to the
CleaveLand pipeline for small RNA targets identification as
previously described [54]. Briefly, the 20 and 21 nt distinct
reads were first normalized to give“reads per million”
(RPM). Subsequently, the degradome reads were mapped
to the cotton annotated cDNA (DFCI-Cotton Gene Index,
release 11.0) and the cDNA hit number of each degradome
read was recorded. Raw abundances in the target library
was normalized according to the formula: normalized
abundance (TP10M) = raw abundance/(total genome
match — (t/r/sn/snoRNA))*10,000,000. All alignments
with scores not exceeding 4 and having the 5’ end of the
degradome sequence coincident with the tenth and
eleventh nucleotides of complementarity to the small
RNA were retained. To evaluate the potential functions
of miRNA-targeted genes, gene ontology (GO) categories
(http://www.geneontology.org/) were used for assignment
of the identified target genes according to the previously
described method [55].

The gRT-PCR of miRNAs

qRT-PCR reactions were carried out in final volumes of
20 ul containing 10 pl 2xTagMan Universal PCR Master
Mix, 1 pl 20xTagMan MicroRNA Assay primers and
probes, 7.67 pl nuclease-free water, and 1.33 ul product
from RT reactions using a ABI 7500 Real-Time PCR
system (Applied Biosystems). The reactions were incu-
bated in a 96-well plate at 95°C for 10 min, followed by
40 cycles of 95°C for 15 s and 60°C for 60 s. Cotton 18S
was used to normalize the amounts of gene-specific
RT-PCR products [56].

Additional files

Additional file 1: The number of total miRNA and siRNA in six small
RNA libraries.

Additional file 2: Cotton conserved miRNA families in six small
RNA libraries.

Additional file 3: The number of significant differentially expressed
cotton conserved miRNA in the six small RNA.

Additional file 4: Length distribution of small RNAs in
degradome library.

Additional file 5: The number of distinct transcripts targeted by
unique miRNAs detected in degradome library.

Additional file 6: GO analysis of miRNA target genes identified in
the WT and GMS mutant anthers representing three stages of
development.

Additional file 7: The significant sites on the t-plots.

Additional file 8: Comparison of the qRT-PCR results of the
identified cotton miRNAs with the Solexa sequencing results of the
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corresponding miRNAs. (a), (0), (e) Solexa sequencing results of miRNAs;
(b), (d), () gRT-PCR results of miRNAs. F-1 and S-1: meiosis stage of the
wild and mutant anthers; F-2 and S-2: tetrad stage of the wild and
mutant anthers; F-3 and S-3: uninucleate microspore stage of the wild
and mutant anthers. Relative expression levels (RE.Ls) were calculated
using 18S as a control.

Additional file 9: Novel miRNAs identified from six small RNA
libraries.

Additional file 10: The number of significant differentially
expressed novel cotton miRNA in the six libraries.

Additional file 11: Target plots (t-plots) of identified novel miRNA
(Mar-F-1-m0031) targets using degradome sequencing. The
abundance of each signature is plotted as a function of its position in the
transcript. The red colored italicized nucleotide on the target transcript from
the 3" end indicates the cleavage site detected in the degradome library.

Additional file 12: Measurment of IAA contents in the uninucleate
microspore stage of WT and GMS mutant anthers using high
performance liquid chromatography. F-3 and S-3: uninucleate
microspore stage wild type and mutant anthers.

Additional file 13: The qRT-PCR results of cytochrome c in anthers
of the WT and GMS mutant.
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