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Abstract

Background: The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition,
especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoy!
phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the A12 position of
an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by
small gene families consisting of 1-4 members. In addition to the classic oleate A12-desaturation activity, functional
variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in
a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse
their differential expression profile and potentially diversified functionality.

Results: We report here the characterization and functional expression of an exceptionally large FAD2 gene family
from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time
quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were
demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and
CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head,
respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5
and CtFAD?2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons
and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1
substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans
configuration, or a carbon triple (acetylenic) bond at the A12 position.

Conclusions: In this study, we isolated an unusually large FAD2 gene family with 11 members from safflower. The seed
expressed FAD2 oleate A12 desaturase genes identified in this study will provide candidate targets to manipulate the
oleic acid level in safflower seed oil. Further, the divergent FAD2 enzymes with novel functionality could be used to
produce rare fatty acids, such as crepenynic acid, in genetically engineered crop plants that are precursors for
economically important phytoalexins and oleochemical products.

Background

Safflower (Carthamus tinctorius L.) is an ancient oilseed
crop that is currently grown for its high quality edible
oil used in cooking, salad dressings and margarines, and
to a lesser degree as a bird seed. The characteristics of
oils are highly dependent on their fatty acid compo-
sition. Oleic acid (C18:1*°) and linoleic acid (C18:24%'?)
are the two major fatty acids found in safflower seed oil,
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together accounting for about 90% of the total fatty
acids. Conventional safflower oil is characterised by its
relatively high level of linoleic acid content about 70%
compared to most other oilseed crops [1]. In the past six
decades, breeders have exploited safflower’s natural
genetic diversity to modify the oleate/linoleate ratio for
particular end use purposes. Numerous breeding lines
with high levels of either oleic acid (75-84%) or linoleic
acid (71-89%) have been selected. The relative propor-
tions of these two major fatty acids determine relevant
technological and nutritional properties of edible oils
[2]. Nutritionally, both oleic acid and linoleic acid can
lower total serum cholesterols, however, oleic acid has
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higher oxidative stability compared to linoleic acid as it
contains one less double bond. Therefore raising oleic
acid content at the expense of linoleic acid has been set
as an important research objective for the improvement
of many oilseed crops, including safflower, to provide
highly stable cooking oils without the need for hydro-
genation, a process that can result in the formation of
nutritionally undesirable trans fatty acid [3,4]. Beyond
food applications, high oleic oils also have significant
existing and potential industrial uses, such as in
improved biodiesel, lubricants, and hydraulic oils
because of the high oxidative stability needed in these
products. Purified oleic acid is also a valuable industrial
chemical feedstock, and can be cleaved to form deriva-
tives such as azelaic acid that can be used in the formula-
tion of a range of industrial products and polymers [5-7].
The distinct fatty acid compositions found in seed sto-
rage oil and membrane lipids are the result of an intricate
metabolic network that regulates fatty acid biosynthesis
and flux through both prokaryotic and eukaryotic
pathways [8,9]. It is understood that the chloroplast A12-
desaturase (FADG6) is necessary for desaturating 16:1 and
18:1 fatty acids to 16:2 and 18:2 on all 16:1- or 18:1-con-
taining chloroplast membrane lipids including phosphati-
dyl glycerol (PG), monogalactosyldiacylglycerol (MGDG),
digalactosyldiaclyglycerol (DGDG), and sulfoguinovosyl-
diacylglycerol (SQDG) [9]. The enzyme primarily respon-
sible for the synthesis of linoleic acid from oleic acid in
seed storage lipids is the microsomal oleoyl phosphatidyl-
choline desaturase (FAD2) that introduces a double bond
at the A12 position of oleic acid on phosphatidylcholine
(PC), forming linoleic acid on the endoplasmic reticulum
(ER) [10-12]. Variants of the FAD2 enzyme are also known
to have diversified functionalities in fatty acid modifica-
tion, catalysing hydroxylation [13,14], epoxidation [15],
and the formation of acetylenic bonds [15,16] and conju-
gated double bonds [17-20]. Some functionally divergent
FAD2 enzymes are multi-functional, such as the bifunc-
tional hydroxylase/desaturase from Lesquerella fendleri
[21], and tri-functional acetylenase from Crepis alpina,
which can also catalyse the formation of both trans and
cis double bonds at the A12 position of oleic acid [22].
Membrane integrity and function, determined by struc-
ture and fluidity, are largely affected by lipid composition
and the degree of fatty acid desaturation in plants [23].
Because the FAD2 enzyme is the key step in the accumu-
lation of polyunsaturated fatty acids it plays an essential
role in the biophysical characteristics of cell membranes
and is often induced in response to various environmental
stimuli such as extreme temperatures [8], high salt [24],
and pathogen attack [25]. The expression of FAD2 lead-
ing to the production of polyunsaturated fatty acids is
also important to the specific signal transduction path-
ways, such as jasmonic acid pathway that is known to
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be a critical factor in plant defence system and male
fertility [26-28].

Since the cloning of first plant FAD2 gene in Arabi-
dopsis thaliana [11], its orthologous DNA sequences
have been isolated and characterised from many diffe-
rent plant species, including soybean [29], rape [30],
cotton [31-34], peanut [35,36] and flax [37]. Only a
single FAD2 gene exists in Arabidopsis, but in most
other plant species FAD2 is encoded by small gene fa-
milies. For example, FAD2 is encoded by three distinct
family members in soybean [29,38] and by four members
in cotton [31-34]. Here we report the discovery, isolation
and characterisation of an unprecedentedly large FAD2
gene family from safflower. Phylogenetic analysis of
eleven full length ¢cDNAs and their distinct genomic
structural features indicated that they are non-allelic and
have likely evolved through gene duplication at several
hierarchical levels. Their distinct expression patterns
were revealed by real time quantitative PCR (RT-qPCR)
of different safflower tissues. Functional divergence of
the FAD2 family members was explored by heterologous
expression in yeast and transient expression in Nicotiana
benthamiana.

Results

Cloning and sequencing analysis of multiple members of

safflower CtFAD2 gene family

Two different full length cDNAs, designated as CtFAD2-1
and CtFAD2-2, were isolated from the lambda cDNA li-
brary derived from safflower developing embryos, using
Arabidopsis FAD2 DNA sequence as a probe. The Arabi-
dopsis FAD2 DNA sequence was also used to “blast”
search the Expressed Sequence Tags (ESTs) database
generated by the Compositae Genome Project (CGP,
http://compgenomics.ucdavis.edu/compositae_index.php).
From the total 41,317 safflower ESTs at the time we
searched, at least eleven distinct FAD2 cDNA sequence
contigs were identified and designated. In addition to
CtFAD2-1 and CtFAD2-2 that had already been isolated
from the developing embryo cDNA library, a further 9
partial cDNAs were designated as CtFAD2-3 through
to CtFAD2-11, respectively. Gene specific primers were
designed from each of the partial cDNA sequences, and
the full length cDNA were obtained by conducting 3’ and
5’ rapid amplification of cDNA ends (RACE) reaction on
RNAs derived from various safflower plant tissues, inclu-
ding leaf, root, hypocotyl and flower head. The amplified
fragment was subcloned into the pGEM-Teasy vector and
sequenced from both directions. Sequence comparisons of
the 3’ and 5’ ends with the corresponding ESTs showed
overlapping regions that matched with each other. Sub-
sequently full length ¢cDNAs encoding the 9 distinct
partial FAD2 ESTs were obtained by assembling the
RACE product with corresponding ESTs. Each cDNA
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contains an uninterrupted coding region that shares ex-
tensive sequence homology with each other, and unique
5" and 3’ untranslated region (UTR) sequences. The pu-
tative polypeptides were varied between 372-388 amino
acids. The sequence similarity among these 11 CtFAD2
coding regions at both nucleotide and amino acid levels
is listed in Table 1. It was also revealed that the puta-
tive polypeptides of the 11 CtFAD2 genes share about
50%-65% sequence identity to orthologous FAD2 enzymes
in other plants.

To elucidate phylogenetic relationship of safflower FAD2
genes, the 11 deduced polypeptide sequences were aligned
with orthologous FAD2 sequences and a neighbour-joining
tree was constructed using Vector NTL As shown in
Figure 1, CtFAD2-1 and CtFAD2-10 are aligned next to
each other and to other seed expressed FAD2s, such as
sunflower HaFAD2-1 and cotton GhFAD2-1. CtFAD2-2 is
aligned together with other constitutively expressed genes,
such as sunflower HaFAD2-2 and HaFAD2-3. CtFAD2-3,
4, 5, 6 and 7 form a new branch, most likely to have re-
cently become divergent. Interestingly it is embedded deep
in a clade with functionally divergent FAD2 fatty acid
modifying enzymes, such as fatty acid acetylenases and
epoxygenases. CtFAD2-11 is also aligned together with fatty
acid acetylenases from several plant species, including the
sunflower vFAD2 that was induced by fungal elicitors [39].

The alignment of the putative polypeptide sequences
of CtFAD2s together with the selected plant orthologs is
given in (Additional file 1: Figure S1). Similar to other
plant FAD2, the putative polypeptides of CtFAD2s
contain an aromatic amino acid-rich motif, at the
C-terminus, which is both necessary and sufficient for
maintaining localization in the ER [40]. Consistent with
other plant membrane bound fatty acid desaturase
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enzymes, the putative polypeptides deduced from all
eleven safflower CtFAD2 cDNAs contain three highly
conserved histidine-rich motifs that have been impli-
cated in the formation of the diiron-oxygen complex
used in biochemical catalysis [41]. The first histidine
motif is HECGHH in majority of CtFAD2 putative poly-
peptide sequences, except CtFAD2-5 and -6 that have
HDCGHH, HDLGHH, respectively. The last amino acid
His (H) has been converted to a Gln (Q) in CtFAD-8
(HECGHQ). We have compared this motif in 55 plant
FAD2 enzymes and the H to Q substitution is also
present in a diverged FAD2 homologue from Lesquerella
lindheimeri with predominantly fatty acid hydroxylase
activity [42]. The second histidine motif is highly con-
served as HRRHH in several safflower FAD2s, including
CtFAD2-1, 2, 8, 9 and 10. It is noteworthy that at +3 of the
motif an Asn (N) substitution was found in CtFAD2-11,
consistent with a number of functionally divergent FAD2s,
including Crepis alpina CREP1 (ABC00769), C. palaestina
Cpal2 (CAA76156) and sunflower vFAD2 (AY166773.1),
Calendula officinalis FAC2 (AF343064.1), Rudbeckia hirta
acetylenase (AY166776.1). Either a Ser (S) or Thr (T) sub-
stitution spotted at this position in CtFAD2-3, 4, 5, 6 and 7.

In CtFAD2-1, 2, 9, 10 the amino acid immediately pre-
ceding the first histidine box is an Ala (A), consistent
with other plant FAD2 A12 oleate desaturase enzymes.
Ala substitution by Val (V) occurred in CtFAD2-5, while
other six CtFAD2 enzymes have Gly (G) in this position.
It was proposed by Cahoon et al. [39] that Gly substitu-
tion of Ala at this position has been consistently found
in functionally divergent FAD2 enzymes, except A12
hydroxylase. It is noted that only CtFAD2-11 has a
DVTH motif, in the -5 to -2 positions of the third Histi-
dine box, which fits with the (D/N)VX(H/N) motif

Table 1 Sequence identity of the coding region DNA and deduced amino acids in safflower CtFAD2 genes

Deduced amino acids

CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2- CtFAD2-
1 2 3 4 5 6 7 8 9 10 11
Nucleotide  CtFAD2-1 - 70.3% 53.2% 52.5% 53.5% 50.9% 54.1% 59.7% 59.5% 80.1% 56.4%
acid CtFAD2-2  70.0% 54.5% 55.0% 54.2% 51.7% 57.8% 60.6% 62.5% 69.5% 58.6%
CtFAD2-3  62.0% 62.0% - 97.1% 62.0% 61.8% 63.1% 52.7% 50.9% 51.2% 56.8%
CtFAD2-4  62.7% 63.3% 95.1% - 61.4% 61.4% 63.3% 53.1% 50.9% 50.9% 56.9%
CtFAD2-5  61.9% 60.3% 69.7% 70.6% - 63.2% 62.0% 51.4% 51.3% 51.7% 53.9%
CtFAD2-6  60.6% 59.9% 68.8% 69.6% 72.0% - 63.1% 49.3% 50.8% 50.1% 56.2%
CtFAD2-7  622% 65.8% 69.4% 69.3% 66.6% 68.2% - 51.7% 49.2% 51.4% 60.7%
CtFAD2-8  65.2% 66.2% 63.1% 62.8% 60.8% 61.7% 61.2% - 58.8% 58.1% 56.40%
CtFAD2-9  64.9% 66.2% 59.5% 59.5% 58.3% 59.2% 59.5% 63.5% - 59.3% 55.9%
CtFAD2-10 78.9% 72.0% 60.7% 62.0% 59.8% 61.0% 60.7% 64.3% 64.1% - 57.2%
CtFAD2-11  60.0% 62.9% 64.1% 64.4% 62.4% 64.1% 62.7% 63.9% 60.9% 61.7% -
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Figure 1 (See legend on next page.)
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Linum usitatissimum).

Figure 1 Phylogenetic comparison of safflower CtFAD2 gene family and orthologous FAD2s from other plants. The phylogenetic tree
was generated by Vector NTI (invitrogen). Included in the alignment were FAD2 desaturases (DES), hydroxylases (OH), epoxygenases (EPOX),
acetylenases (ACET), and conjugases (CONJ). The GenBank accession numbers of the amino acid sequences represented in the phylogenetic tree
are: atDES, AAM61113.1; IcDES, ACR15954.1; pfOH:DES, AAC32755.1; plOH, ABQO1458.1; coCONJ, AAK26632.1; haACET, ABC59684.1; rhACET,
AAO38035.1; dsACET, AAO38036.1; caACET, ABC00769.1; cpEPOX, CAA76156.1; sIEPOX, AAR23815.1; dcACET, AAO38033.1; dcDES:OH, AAK30206.1;
VACET,AAO38034.1; hhACET, AAO38031.1; boDES, AAC31698.1; haDES-2, AAL68982.1; haDES-3, AAL68983.1; haDES-1, AAL68981.1; ntDES,
AAT72296.2; 0eDES, AAW63040; siDES, AAF80560.1; ghDES-1, CAA65744.1; ptDES, XP_002297660.1; rcOH, AAC49010.1; cpDES, AAS19533.1; ghDES-4,
AAQ16653.1; ghDES-2, CAA71199.1; jcDES, ADB93805.1; IuDES, ACF49507.1. (at, Arabidopsis thaliana; Ic, Lepidium campestre; pf, Physaria fendleri; pl,
Physaria lindheimeri; co, Calendula officinalis; ha, Helianthus annuus; rh, Rudbeckia hirta; ds, Dimorphotheca sinuate; ca, Crepis alpine; cp, Crepis
palaestina; sl, Stokesia laevis; dc, Daucus carota; fv, Foeniculum vulgare; hh, Hedera helix; Bo, Borago officinalis; nt, Nicotiana tabacum; oe, Olea
europaea; si, Sesamum indicum; gh, Gossypium hirsutum; pt, Populus trichocarpa; rc, Ricinus communis; cp, Cucurbita pepo; jc, Jatropha curcas; lu,

proposed to occur in all plant acetylenases [43]. The five
amino acids immediately behind the third histidine box
of CtFAD2-1, 2, 10, are LFSTM as for other known plant
FAD2 A12 oleate desaturases. In contrast, CtFAD2-9 has
an LFSYI motif at this position with two amino acid sub-
stitutions at +4 and +5 position. In CtFAD2-3, 4 and 7,
the S at the +3 position is substituted by Pro (P), which
is also exclusively present in other FAD2 fatty acid con-
jugases, including those from Calendula officinalis
(FAC2, Genbank AAK26632) and Trichosanthes kirilowii
(Genbank AAO37751).

It was shown that the Serine-185 of soybean seed-
specific GmFAD2-1 sequences is phosphorylated during
seed development [44], as a regulatory mechanism for its
enzymatic activity. Among the 11 safflower FAD2 enzymes
only CtFAD2-1, the seed-specific FAD2, has the Serine cor-
responding with that in soybean FAD2-1. It is tempting to
predict that the same posttranslational regulatory mechan-
ism of FAD2 expression through phosphorylation of target
site including the Serine-185 may play an important role in
modulating microsomal Al2 oleate desaturation during
safflower seed development and oil accumulation.

Genomic structures and evolutionary studies of the
CtFAD2 gene family in safflower

In the context of elucidating the gene structure of FAD2
from safflower, an intron that is situated in the 5 UTR
of FAD2 genes was isolated. From each of the 11

Table 2 The features of CtFAD2 gene introns

safflower FAD2 cDNA sequences, the typical splice site
(AG:GT) was predicted and PCR primers were designed
for amplification of such an intron from genomic DNA.
The predicted 5’ intron was obtained from 8 of the 11
CtFAD?2 genes, including CtFAD2-1, -2, -3, -4, -5, -7, -10
and -11. The major features of the primary DNA
sequences of these CtFAD2 introns are summarised in
Table 2. The intron was not amplified from CtFAD2-6, -8
and -9, likely because the 5" UTR in which the introns
reside is incomplete in our clones. All of the eight intron
sequences were located within the 5" UTR, at positions
that varied between 11 to 38 bp upstream of the putative
start codon, the first ATG. The intron length varied
between 114 to 3,090 bp and was 1,144 bp for CtFAD2-1,
similar in size to the introns identified in FAD2 genes
from Arabidopsis (The Arabidopsis Information Re-
source, http://www.arabidopsis.org), cotton [45] and se-
same (Sesamum indicum) [46]. The variations in the
relative positions and the substantial differences in the
sizes of the 5-UTR introns are distinguishing structural
differences among safflower FAD2 genes, which could be
important in differential expression of the genes. The
large intron present in the 5'-UTR of FAD2 genes could
play an important role in expression regulation, as it has
been reported to have positive effects on the expression
of reporter genes in sesame [46]. The equivalent intron
has also been shown to be an effective target for post-
transcriptional gene silencing of FAD2 in soybean [47].

Position Length AT content CG content 5°E/l boundary 3’I/E boundary
CtFAD2-1 -13 1144 64.5% 35.5% AGGTGCAT TTGCAGGT
CtFAD2-2 -12 3090 65.8% 34.2% AGGTGAGA TTGCAGGT
CtFAD2-3 -1 114 73.7% 26.3% AGGTATGA ATGCAGGT
CtFAD2-4 -1 124 75.0% 25.0% AGGTAAGT GCGCAGGT
CtFAD2-5 33 96 69.8% 30.2% AGGTACCT TITCAGGT
CtFAD2-7 -29 242 61.6% 384% AG:GTATAC TTIGCAGGT
CtFAD2-10 -38 2247 68.9% 31.1% TGGTTCGT TTACAGGT
CtFAD2-11 -22 334 62.5% 37.5% AGCTCACA GTCTTT.GT
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The putative splice sites, at both 5" exon/intron and 3’
intron/exon, are conserved as AG:GT in most of the eight
CtFAD2 genes, except the 5 exon/intron (TG:GT) in
CtFAD2-10, and both the 5" exon/intron (AG:CT) and 3’
intron/exon (TT:GT) in CtFAD2-11. However, the intron
sequences themselves are all highly divergent without any
significant homology among them. These intron sequences
are AT-rich with AT content between 61% and 75%,
consistent with other dicot intron sequences. Analyzing
the intron sequences by the PLACE program (http://www.
dna.affrc.go.jp/PLACE/) identified several putative cis-
regulatory elements. For instance, a few motifs, such as
ABRE and SEF4, commonly present in seed-specific pro-
moters were located in the seed-specific CtFAD2-1.
Likewise, an AG-motif that is often present in the pro-
moter of defence-related genes induced by various stresses,
such as wounding or elicitor treatment, was located in the
CtFAD2-3 gene that is specifically expressed in the hypo-
cotyls and cotyledons of young safflower seedlings.

Analysis safflower CtFAD2 gene family by Southern blot
analysis

The complexity of the FAD2 gene family in safflower
was also examined by low stringency Southern blot ana-
lysis and confirmed that safflower FAD2 is encoded by a
complex multigene family (Figure 2). The restriction
fragment patterns derived from various restriction
enzymes are consistent with there being more than 10
FAD?2 genes in safflower. The variation in the intensity
of hybridization signals reflects the relative levels of
sequence similarity with the probe DNA used.

Expression profile of CtFAD2 genes in different tissues

To determine tissue expression patterns of the various
CtFAD2 genes, RT-PCR analysis was carried out with
total RNA extracted from cotyledon, hypocotyl, root and
leaf tissues derived from young seedlings, as well as
flower tissues and developing embryos of safflower geno-
type SU. No product was detectable after 40 cycles of
amplification in control reactions without reverse tran-
scriptase, demonstrating the absence of genomic DNA
in RNA samples.

As shown in Figure 3, CtFAD2-1 is specifically expressed
in developing seeds, with little if any expression detected
in the somatic tissues examined. CtFAD2-2 is expressed at
low levels in seeds as well as in all other tissues examined.
CtFAD2-4, -5, -6, -7, -8, -9 showed no expression in deve-
loping embryos. Low, yet detectable levels of CtFAD2-10
and -11 expression were observed in developing seeds,
especially in the late development stage. CtFAD2-4, -6, -7, -9
and -11 showed high expression in young seedling tissues
including cotyledons and hypocotyls. CtFAD2-5 and -8 ap-
pear to be root-specific and CtFAD2-10 is mostly expressed
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Figure 2 Southern blot analysis of genomic structure in
safflower genotype SU. Genomic DNA samples were digested with
eight different restriction enzymes prior to separation on agarose
gel. These enzymes include Accl (1), Bglll (2), BamHI (3), EcoRI (4),
EcoRV (5), Hindlll (6), Xbal (7) and Xhol (8). The blot was probed with
radio-labeled entire coding region of CtFAD2-6 and washed at low
stringency conditions.

in flower tissues, with relatively low levels detected in other
tissues.

Expression of safflower CtFAD2 genes in Saccharomyces
cerevisiae

Expression in yeast (Saccharomyces cerevisiae) cells has
been successfully used for studying the functional pro-
perties of several plant FAD2 A12 oleate fatty acid desa-
turases [19,48,49] because it has a simple fatty acid
profile, contains ample oleic acid that can serve as pre-
cursor for FAD2 enzymes, and lacks an endogenous
FAD2 activity. As shown in Figure 4, polyunsaturated
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Figure 3 RT-qPCR expression analysis of 11 safflower CtFAD2 genes in various safflower plant tissues, including cotyledon (coty),
hypocotyls (hypo), root, leaf, flower and immature embryos of three progressing developmental stages, early (em-1), middle (em-2)
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fatty acids including C16:2 and C18:2 were not produced
in the control yeast cells transformed with the empty
pYES2 vector. By reference to the standard gas chro-
matogram of C16:2 and C18:2 fatty acid methyl esters
(FAMESs) having retention time of 8.513 min and 11.293
min, respectively, C18:2 was found to be present in the
yeast lines expressing CtFAD2-1 (Figure 4B), CtFAD2-2
(Figure 4C), CtFAD2-10 (Figure 4E), and C16:2 was seen
in yeast lines expressing CtFAD2-9 (Figure 4D) and

CtFAD2-10 (Figure 4E). This result indicated that
CtFAD2-1, CtFAD2-2 and CtFAD2-10 are Al2 oleate
desaturases that convert oleic acid to linoleic acid. It
appears that CtFAD2-9 is a A12 palmitoleate desaturase
that prefers C16:1 to C18:1 substrate, leading to specific
production of C16:2. As shown in Figure 4F and
Figure 4G, the expression of CtFAD2-11 resulted in two
minor, yet distinct peaks, at retention time of 10.642
min and 11.293 min, respectively. The latter peak is
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Table 3 Fatty acid composition of yeast cells expressing selected CtFAD2 genes
vector CtFAD2-1 CtFAD2-2 CtFAD2-9 CtFAD2-10 CtFAD2-11

C14:0 13£0.15 1.2+0.02 1.2+0.06 1.1£0.06 1.0+£0.01 0.6+£0.01
C14:1 0.3+£0.06 0.3+£0.01 0.3+£0.01 0.2+0.01 0.3+0.02 0.2+0.00
C16.0 23.6+1.62 23.0+0.04 22.0+0.46 21.3+£0.59 22.3+0.03 184+0.34
c16:1 36.0£1.77 37.2£0.16 36.6+£0.07 34.3+0.54 34.8+0.21 37.3+£0.16
c16:2 0.0 0.3+0.02 1.6£0.09 1.2+0.03 0.0
180 7.7£0.74 74+0.12 74+0.07 89+0.13 8.1+£0.09 7.5+0.07
c18:1 29.6+£0.99 264+0.24 31.0£0.51 31.3£0.25 254+0.07 33.3+£0.26
184" 1.4+0.20 1.6+£0.02 1.5+0.04 1.3+0.08 1.3£0.01 1.9+0.01
182 0.0 2.8+0.14 0.1£0.11 0.0 5.5+0.09 0.3+0.02
(18289120 00 00 00 00 05+003
n=3
corresponding to FAME of linoleic acid (18:289@12(2)
and the former peak was identified as FAME of its A12
trans isomer (C18:2°®"12(E)) by GC-MS of their pyrroli- A )
dide adducts, and 2,4-dimethyloxazoline (DMOX) modi- g
fication (Additional file 1: Figure S2). The fatty acid g § . Control
composition of yeast cells expressing CtFAD2-1, -2, -9, -10 3 3 . H 3
and -11 is shown in Table 3. As shown in the Table 3, the ;2; ° ; © g
expression of CtFAD2-9 produced 1.6% C16:2, without < @ g
any C18:2. No new peaks were detected in yeast cells 08
expressing CtFAD2-3, -4, -5, -6, -7, and -8.

To examine whether any CtFAD2 have fatty acid

hydroxylase activity, FAMEs prepared from the yeast
cells expressing each of the 11 CtFAD2 genes were
reacted with a silyating reagent that can convert hy-
droxyl residues into TMS-ether derivatives from which
the mass spectrum can be examined. However, none of
hydroxyl derivatives of common fatty acids, such as rici-
noleic acid synthesised from oleic acid, was detected in
any of the yeast cell lines expressing CtFAD2 genes, indi-
cating the absence of fatty acid hydroxylase activity in
the CtFAD2 enzymes. Further tests for potential epoxy-
genase and acetylenase activities that use linoleic acid as
substrate have also been carried out in these transgenic
yeast cell lines, by supplementing free linoleic acid in
the yeast culture upon the induction by galactose. No
novel peaks representing epoxy or acetylenic fatty acids
were detected (data not presented).

Transient expression in N. benthamiana leaves

The function of CtFAD2-11 was initially assessed by
expression in S. cerevisiae, and two novel fatty acids
were identified by GC-MS as 18:2%°@12(® and 18:2%°
(@12E) respectively. Consistent with the results obtained
from yeast, constitutive expression of CtFAD2-11 driven
by 35S CaMV promoter in N. benthamiana leaves,
co-expressed with 35S5:P19 yielded a novel product that
is not present in N. benthamiana leaf when infiltrated
with 355:P19 alone (Figure 5A). The methyl ester of this

CtFAD2-11

C18:2492)122)

E <— Crepenynate

< Cig2@126)

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
3 Standards
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Figure 5 Fatty acid analysis of N. benthamiana leaves
transiently expressing CtFAD2-11. (A) negative control expressing
355:P19 alone. (B) co-expression of 355:P19 and 35S:CtFAD2-11,
showing two novel peaks representing the products of CtFAD2-11,
C18:2899120 3nd crepenynic acid. (C) fatty acid standard, including
the crepenynic acid.
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Table 4 Fatty acid composition of N. benthamiana leaves
transiently expressing CtFAD2-11

Control CtFAD2-11

C16:0 174048 2374257
Q161 034022 0.3+0.05
162 0.8+0.12 0.6+0.09
163 7.240.15 554081
180 334033 534072
C18:14° 1.040.09 3.8+030
c1814" 054033 124036
182490120 00 04007
182 12.0+0.65 11.6+0.84
183 56.840.19 458+4.01
20:0 050.10 1.0£0.19
2011 02+0.15 04+0.04
C18:2"¢ 00 0.5+0.06
n=3

new product displayed a GC retention time (8.642 Min)
that was identical to that of a methyl 18:249%12(E)
(Figure 5B). The novel 18:249@12(E) gccounted for 0.4%
of the fatty acids of leaves transiently expressing
CtFAD2-11 (Table 4). In addition, another new peak that
was not observed in the yeast cultures was detected at re-
tention time of 10.642 min (Figure 5B). The total ion
chromatogram and mass spectrum of this new fatty acid
were consistent with that of crepenynic acid (9-octadecen-
12-ynoic acid) (Additional file 1: Figure S3), demonstrat-
ing that the CtFAD2-11 polypeptide had Al2-acetylenase
activity as suggested by its close sequence alignments with
known A12 fatty acid acetylenases. As shown in Table 4,
crepenynic acid accounts for 0.5% of total fatty acids in N.
benthamiana leaves expressing CtFAD2-11.

It is notable that the expression of CtFAD2-11 transi-
ently in the N. benthamiana cells resulted in a signifi-
cant increase of saturated and monounsaturated fatty
acids at the expense of polyunsaturated fatty acids
including linoleic acid and a-linolenic acid (ALA), rela-
tive to the untransformed control (Table 4). Overall, the
results from the yeast and N. benthamiana expression
experiments indicated that CtFAD2-11 functioned pri-
marily as a A12 oleate desaturase lacking stereo-specifi-
city, producing both linoleic acid and its trans-Al2
isomer. In addition, it could also further desaturate the
A12 double bond of linoleic acid to form the acetylenic
bond of crepenynic acid.

The other 10 CtFAD2 genes have also been expressed
in N. benthamiana leaves, but we did not observe pro-
duction of any additional novel fatty acids compared to
the controls (data not presented).
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Discussion

We report here the cloning of 11 distinct safflower CtFAD2
genes, which does not include at least three more partial
severely truncated EST sequences that are also present in
the CPG safflower EST database. Furthermore, due to the
current lack of safflower genomics information it remains
unclear whether there are additional unexpressed FAD2
members. Taken together, this is to our knowledge the lar-
gest FAD2 gene family in any species examined to date. In
spite of their high conservation of putative amino acid
sequences, individual CtFAD2 genes have clear distingui-
shing features, especially with respect to their N- and
C-terminal ends, 5" and 3’ UTR regions, and the size, loca-
tion and sequence of an intron located at the 5" UTR.

FAD?2 is among the best-studied plant fatty acid desatur-
ase gene families, in terms of both molecular and bioche-
mical investigations. Although only a single representative
was identified in Arabidopsis [11], FAD2 appears to exist
as complex gene families in most other plant genomes
studied so far. Two distinct FAD2 genes have been
described in soybean [29], flax [50,51] and olive [49]; three
genes in sunflower [52] and Camelina sativa [53]; and four
genes in cotton [31-34]. In the amphitetraploid Brassica
napus, 4-6 different FAD2 genes have been identified in
each diploid sub-genome [30].

Although comparable studies are lacking, it seems that
safflower is unusual with respect to FAD2 gene family
evolution. Safflower is a self-pollinating diploid plant
species that is most closely related to a wild diploid spe-
cies C. palaestinus and extensive genome duplication or
re-arrangement has not previously been reported in saf-
flower [54]. In the absence of genomic data, it is not
known whether the significant amplification in gene
copy number observed for FAD2 also occurs for other
gene families in safflower. However, our own limited
observations of other safflower lipid biosynthesis genes
do not show evidence for such expansive gene family
size (unpublished data).

The complex FAD2 family cannot be attributed to
alternative splicing as Fad2 genes do not contain introns
in the coding region sequence. Instead, gene duplication
is more likely responsible for creating the FAD2 family
complexity in safflower. Topology of the gene tree show
that gene duplications have probably occurred at several
hierarchical levels, i.e. at various times during evolution.
For example, the CtFAD2-3, -4, -5 are more closely
related to each other than they are to other safflower
FAD?2 sequences, indicating that more recent gene dupli-
cations are responsible for the emergence of this clade.
It is not known how many FAD2 genes were generated
after the speciation of safflower, in other words, are
unique to the C. tinctorius species. Analysis of FAD2
genes from taxonomically closely related plant species,
such as those from the genus Centaurea within the
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Asteraceae family, could perhaps provide a better picture
of exactly when the duplication events occurred.

Genetic redundancy is a prime feature of plant gen-
omes, providing the opportunity for additional divergent
functions to evolve while retaining the original function
of vital genes. To persist over long periods of evolution-
ary time, new gene duplications must be positively
selected for, otherwise they can degenerate to pseudo-
genes by accumulating nonsense mutations, frame shifts
and even insertion/deletion events. Once becoming a
pseudogene, the likely fate is to continue to accumulate
mutations at the maximum rate and become increas-
ingly divergent. The fact that all the 11 CtFAD2 genes are
expressed and translated is evidence that at least these
duplicated FAD2 genes are positively selected in safflower.
As the current research focused on the expressed FAD2
genes, it is plausible that other duplicated FAD2 genes
might have lost expression and functionality through gene
pseudogenization or gene deletion.

The production of linoleic acid through the A12 desa-
turation catalyzed by FAD2 is central to the functionality
of biological membrane systems, cellular signalling, ther-
mal adaptation, and energy storage [55]. When plants
are subject to adverse environmental conditions, a wide
range of cellular response occurs, including the adjust-
ments of unsaturation levels of membrane fatty acids.
Plant membrane integrity and function, determined by
structure and fluidity, are significantly affected by lipid
composition, particularly the degree of fatty acid desa-
turation [23]. Abiotic environmental stresses such as
cold, heat, drought and salt are able to induce changes
in fatty acid composition. Expression of FAD2 is also
regulated by adverse environmental factors, suggesting
the possible involvement of FAD2 in plant response to
abiotic stress [24]. During recent years a number of
FAD2-divergent genes have been identified in other
members of the Asteraceae family that safflower belongs
to, such as marigold (Calendula officinalis), Crepis
alpina and sunflower (Helianthus annuus) [15,39,56]
and have been associated with synthesis of divergent
fatty acid structures that may play roles in resistance to
biotic stresses. For example, the epoxygenated fatty acids
were found to be potent inhibitors for the germination
and enlargement of spores of rice blast fungus [57].
Other unusual fatty acids, acetylenic fatty acids, are
involved in the biosynthesis of polyacetylenes that act as
phytoalexins in numerous Asteraceae species including
safflower and therefore play a significant role in plant
disease resistance [58-60].

It is intriguing how the divergent FAD2 gene family
members with similar fundamental properties carry out
specific functions. The intrinsic characteristics of various
FAD?2 genes, as exemplified by some conserved motifs,
are likely determining their distinct expression patterns
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and abilities to respond to environmental stimuli, and
diversified functionalities. It has been demonstrated
through site directed mutagenesis that very few amino
acid changes are required to change the enzymatic func-
tion of a FAD2 gene. For instance, as few as four amino
acid changes in a FAD2 fatty acid desaturase were
required in order to obtain hydroxylase activity, and
conversely, substitution of six amino acids could convert
a fatty acid hydroxylase into a fatty acid desaturase [21].
The Al12 acetylenase from Crepis alpina deviates from
A12 desaturase in 29 positions [15], but it has not been
determined how many of these changes are required to
facilitate the functionality alteration. It is suggested that
a switch from desaturase to acetylenase might involve
more extensive changes in sequence than that required
to interchange between a fatty acid desaturase and a
fatty acid hydroxylase. The origins of specificity leading
to acetylenases and desaturases are not currently evident
from comparisons at the primary sequence level, and
residues promoting acetylenase activity have yet to be
located. Interestingly, a Gly replaces Ala at the amino
acid immediate preceding the first His box in all the
known acetylenases, in contrast to a typical fatty acid
desaturase or hydroxylase. It is suggested that this residue
may facilitate acetylenase chemistry by alleviating steric
hindrance by providing substrate pocket spatial flexibility
to permit the conversion of a “kinked” substrate (cis-ene)
into a straight chain product (acetylene) [61].

We have identified that, although a large functional
FAD?2 gene family exists in safflower, only FAD2-1 has
exclusively high expression in developing safflower
seeds. It appears that this gene plays the major role in
producing the very high levels of linoleic acid present in
seed storage oils of the wild-type (high-linoleic) saf-
flower. FAD2-2, the presumed house-keeping micro-
somal A12 oleate desaturase has a generally constitutive
expression throughout the plant. It is interesting to note
that in this study we have found that CtFAD2-2 has sig-
nificantly higher expressioin in cotyledonary tissues of a
young seedling, compared to all other safflower tissues
examined. Although likely contributing to the overall
oleate desaturase activity in safflower vegetative tissues
(where Fad6 also plays a significant role), CtFAD2-2
presumably plays only a secondary role in linoleic acid
production in the seed oil.

The expression of CtFAD2-9 in yeast led to the spe-
cific synthesis of palmitolinoleic acid (C16:2°%'?), pre-
sumably produced by the desaturation of palmitoleic
acid. It is well established that the initial desaturation of
a C16 saturated fatty acid, palmitic acid occurs in the
plastids by the action of the stearoyl-ACP A9-desaturase
to form palmitoleic acid that could be exported to the
cytosol and incorporated into phospholipids for further
desaturation by a FAD2 oleate Al12-desaturase [12]. To
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our knowledge, the safflower CtFAD2-9 is the first
described FAD2 enzyme specific for the production of
palmitolinoleic acid. Palmitolinoleic acid does not nor-
mally accumulate in abundance in plant tissues as it is
quickly converted to hexadecatrienoic acid (C16:3) by
abundant Al5-desaturase in vegetative tissues, and in
seed tissue there is limited availability of C16:1 substrate.
In olive leaves and mesocarp tissues, increased accumu-
lation of palmitolinoleic acid was observed in respond to
wounding [62]. It was suggested that the increase of
palmitolinoleic acid in wounded olive mesocarp is a
result of enhanced demand for substrates for the synthe-
sis in the chloroplast of hexadecatrienoic acid that could
be used as precursors via the lipoxygenase pathway of
signal molecules involved in plant defence and wounding
[63]. However, the involvement of C16 polyunsaturated
fatty acids in the oxylipin biosynthesis is less docu-
mented compared to its C18 counterparts. It remains to
be revealed what the specific evolutionary drive is for
CtFAD2-9 that specifically produces palmitolinoleic acid
in safflower.

Among the 11 safflower CtFAD2 genes, CtFAD2-10 is
the first characterised FAD2 gene with preferential
expression in safflower heads prior to seed set. However
this is similar to the situation in cotton where of the four
different genes encoding FAD2 isolated one member,
ghFAD2-1, was specifically expressed in both developing
flower buds and seeds [33]. It is known that jasmonic
acid derived from ALA plays a significant role as a
chemical signal controlling stamen and pollen develop-
ment, especially in the final stages of pollen development
and anther dehiscence in Arabidopsis [28]. As the pre-
cursor of ALA, therefore, the enhanced production of
linoleic acid by FAD2 may play an essential role in
flower development. It is likely that the retention of
CtFAD2-1 as a strong Al2-desaturase for synthesis of
seed storage lipids has freed up the duplicated CtFAD2-
10 for diversification into a specialised flower-specific
form. Evolutionary modifications of the CtFAD2-10 gene
that favoured flower expression at the expense of seed
expression would be unlikely to have any negative fitness
consequences given the retention of CtFAD2-1 seed ex-
pression and the relatively inconsequential impact that
moderate variations in oleic-linoleic ratios in seed lipids
would be expected to have on fitness.

We demonstrated that the CtFAD2-11 A12 acetylenase
is a tri-functional enzyme that could desaturate both ole-
ate and linoleate. It produces a mixture of A12(Z) and
(E) isomers of C18:2 from oleate in yeast cells. In plant
cells, CtFAD2-11 could also produce crepenynic acid
(C18:2A9(Z),—0ctadecen-12—ynoate) from linoleate, as demon-
strated by transient expression in a N. benthamiana leaf.
Such a multi-functionality has previously been reported
in Crepis alpina where CREP1 could produce both cis
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and trans isomers of C18:2 fatty acid, in addition to pro-
ducing crepenynic acid in transgenic Arabidopsis [22].
When expressed in yeast, CtFAD2-11 produces a higher
level of C18:2°°@12® than linoleic acid, consistent with
the expression of CREP1 in Arabidopsis seeds [22].
C18:229@12E) has been identified as an apparent meta-
bolic dead end as it cannot be converted further into cre-
penynic acid. The cis and trans FAD2-mediated A12
oleate desaturation likely have very similar catalytic
mechanisms but differ in substrate binding properties.
Compared to a normal FAD2 oleate cis-A12 desaturase,
CtFAD2-11 might have an altered substrate interaction
geometry at the active site. A less restrictive binding
pocket could allow a small rotation of the substrate and
permit the formation of an E/Z mixture. It was previ-
ously demonstrated that a C18:2°°'2@ s produced by
abstraction of the pro-R hydrogens at C12 and C13,
whereas and C18:2*°@'2®) is produced by scission of the
(12R,13S) hydrogens [22].

It appears that the Al2 trans-double bond is a
co-product of acetylenic fatty acid production by a spe-
cialised FAD2 enzyme in both safflower and Crepis. The
trans desaturation of oleate to form C18:24#12(E) pqg
also been shown by another functionally divergent FAD2
enzyme, the A12 fatty acid conjugase from tung (Aleur-
ites fordii), which displayed trans-A12 oleic acid desatu-
rase activity, in addition to its conjugase activity [19].
The production of a trans double bond, accompanied by
the production of other unusual fatty acids, such as
calendic acid (C18:3%®"10®112(Z)y i Calendula, and
dimorphecolic acid (9OH-18:2*'°®"12®) in Dimorpho-
theca sinuate by divergent FAD2 fatty acid modifying
enzymes has also been reported [20,45,64].

In the transient expression system of N. benthamiana
leaves, we have observed that the expression of CtFAD2-
11 resulted in an increase in the relative proportions of
saturated and monoenoic fatty acids at the expense of
polyunsaturated fatty acids. This is consistent with what
has previously been observed in the expression of acety-
lenases and epoxygenases in Arabidopsis and cotton
[65,66]. The production of vernolic acid, by modest
seed-specific expression of the C. palaestina A12-epoxy-
genase (Cpal2) gene in Arabidopsis and cotton seeds led
to enhanced oleic acid accumulation at the expense of
linoleic acid compared to the wild type seeds. The subse-
quent co-expression of C. palaestina Al12 desaturase
(Cpdes) with Cpal2 was shown to restore the normal
oleate desaturation and therefore further raised the ver-
nolic acid level. This highlights that substrate availability
is one factor controlling diverged FAD2 desaturase acti-
vity. Potential alternative mechanisms for the reduced
levels of linoleic acid in N. benthamiana leaves expres-
sing the CtFAD2-11 gene could include a degree of
homology-based post-transcriptional silencing of A12-
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desaturase members of the FAD2 gene family that are
operational in the leaf, or the possible formation of
potentially ineffective heterodimers between CtFAD2-11
and the FAD2 A12-desaturase proteins [67].

Based on sequence alignments CtFAD2-11 is most
closely related to the sunflower vFAD2 that is characterized
as a fungal elicitor-inducible A12 fatty acid acetylenase and
could produce both crepenynate and (14Z)-dehydrocrepe-
nynate when expressed in developing soybean somatic
embryos [39]. Divergent FAD2 genes with the same cata-
lytic functionality as the sunflower vFAD2 have also been
isolated from numerous plant species, including the Ell12
from parsley (Petroselinum crispum L.), C. officinalis and
English ivy (Hedera helix L.) [39]. Although sharing higher
sequence homology to vFAD2 than C. alpina CREP1, when
expressed in N. benthamiana CtFAD2-11 was shown to
have the same functionality as CREP1, it did not have the
additional synthesis of (14Z)-dehydrocrepenynic acid typ-
ical of the vFAD2-like genes.

Accumulation of acetylenic fatty acids or any other
unusual fatty acids that would be synthesized by diver-
gent forms of FAD2 enzymes was not observed in vari-
ous tissues of safflower, consistent with previous findings
with C. alpina and H. annuus flower tissue even though
gene expression was detected [39,68]. Identifying the
function and control mechanisms of such cryptic expres-
sion of unusual fatty acids is a poorly explored aspect of
fatty acid metabolism. It is likely that acetylenic fatty
acids are synthesized in low amounts and are rapidly
metabolized for the formation of secondary bioactive
molecules. Crepenynic and dehydrocrepenynic acids are
believed to be intermediates in the biosynthetic pathway
of biologically active polyacetylenic compounds that are
known to occur in safflower as well as some other mem-
bers of the Asteraceae, Apiaceae, and Araliaceae families
[59,60,69,70]. However, many of the genes necessary for
the formation of the putative antifungal polyacetylenes
need to be discovered and the in vivo functions of func-
tionally divergent FAD2(s) in the polyacetylene pathway
remain to be established.

In addition to the above mentioned safflower FAD2
genes, another six CtFAD2 genes, from CtFAD2-3
through to CtFAD2-8, are highly expressed in rapidly
expanding tissues such as cotyledons, hypocotyls, and
roots in the young safflower seedlings. It is not apparent
why multiple FAD2 genes would be expressed in young
seedling tissues in safflower, although enhanced FAD2
expression and increased linoleic acid production was
previously observed in sunflower cotyledons immedi-
ately upon germination [52,71]. However, these CtFAD2
genes are possibly more likely to be performing reactions
other than oleate desaturases, considering that their pri-
mary sequence features are more closely associated with
functionally divergent FAD2 homologs and they were
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unable to synthesise linoleic acid when expressed in
yeast.

Conclusions

The identification and initial characterization of the 11 full
length FAD2 c¢DNAs and their corresponding structural
genes provides an insight into the principal determinants
of synthesis of linoleic acid in safflower seed oil. It also
presents an unprecedented opportunity to fully under-
stand the fundamental functions and diversity of FAD2
proteins and their differing fatty acid modifications within
a single plant species. Characterization of the biochemical
properties of each FAD2 gene will lend further insight into
their potential roles. Identifying the specific structural
attributes of the diverged FAD2 enzymes that control their
regio- and chemo- selectivity would be greatly accelerated
by availability of a structure-function characterization of
the microsomal fatty acid desaturases, an elusive goal that
would have a wide ranging impact on lipid metabolic
research. Defining the phenotype of transgenic plants with
RNAi down regulation of each FAD2 gene will contribute
to the clarification of the pathways attributed by FAD2
members. Ultimately, the use of divergent FAD2 enzymes
to produce novel fatty acids, such as crepenynic acid, in
genetically engineered crop plants may not only provide
opportunities for protection from disease or pests to the
plant but also allow for the synthesis of economically valu-
able oleochemical products.

Methods

Plant materials and growth conditions

Seed of wild type (high-linoleic) safflower (Carthamus
tinctorius L.) was sourced from a commercial birdseed
supplier in Australia and was designated as genotype
SU. SU safflower plants were grown from seed in the
glasshouse in a perlite and sandy loam potting mix
under a day/night cycle of 16 hrs (25°C)/8 hrs (22°C).
Plant tissues including leaves, roots, cotyledons and
hypocotyls were sampled from young germinating
safflower seedlings. Flowering heads were obtained at
the first day of flowering and developing embryos were
harvested at three stages representing early, middle and
late seed development. Samples were immediately
chilled in liquid nitrogen and stored at -80°C until DNA
and RNA extraction.

Total RNA extraction and cDNA synthesis

Total RNA isolation was performed from 100 mg of frozen
safflower tissues using RNeasy® Plant total RNA kit (Qia-
gen, Hilden, Germany) as described by manufacturer’s
protocol. RNA concentration was determined by Nano-
Drop™ spectrophotometer ND1000 (Thermo Fisher Sci-
entific, Victoria, Australia) and concentrations were
equalized before analysis. Quality and relative quantities
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were also visualized by standard RNA formaldehyde agar-
ose gel (1%, w/v). Total RNA was then treated with RQ1
RNase-free DNase (Qiagen, Hilden, Germany) to remove
contaminating genomic DNA. First-strand cDNA was
synthesized from 400 ng of DNA-free total RNA using
the SuperScript III First-Strand Synthesis System (Qiagen,
Hilden, Germany) with oligo(dT),q primer, following the
manufacturer’s instructions.

Construction and screening of cDNA library derived from
safflower developing embryos

To isolate FAD2 cDNAs a lambda cDNA library was
constructed using safflower developing embryos. A mix-
ture of immature embryos of different developmental
stages were harvested and ground to powder in liquid
nitrogen and RNA extraction was carried out using TRI-
zol following the manufacturer’s instruction (Invitrogen,
Carlsbad, CA, USA). Poly(A)-containing RNA was iso-
lated using Qiagen mRNA purification kit (Qiagen,
Hilden, Germany). First strand oligo(dT)-primed cDNA
was synthesised and converted to double stranded using
Stratagene cDNA synthesis kit, according to the manu-
facturer’s instructions (Stratagen, La Jolla, CA, USA).
The blunt-ended cDNA was ligated with EcoRI adaptors,
phosphorylated, and size fractionated by gel-filtration in a
Chroma spin+TE-400 column (Clontech, CA, USA). The
recombinants were propagated in the E. coli strain XL-1
Blue MRF using a Stratagene Predigested AZAP II/EcoRI/
CIAP cloning kit (Invitrogen, Carlsbad, CA, USA).

To identify the FAD2 ¢cDNAs, the cDNA library was
screened using a DNA fragment corresponding to the
coding region of Arabidopsis FAD2 following the proto-
col previously described [31]. Positive plaques were puri-
fied through two successive rounds of screening and the
purified phagemids containing putative FAD2 cDNAs
were excised as outlined in the Stratagene AZAPII cDNA
Synthesis Kit instruction manual (Invitrogen, Carlsbad,
CA, USA). Sequence analysis of the FAD2 sequences
were identified by the NCBI Blast program (http://www.
ncbi.nlm.nih.gov/BLAST/). The open reading frame was
predicted by using Vector NTL

Isolation of the full length and the open reading frame
(ORF) of FAD2 genes expressed in non-seed tissues

We have also interrogated the Composite Genome Project
(CGP) expressed sequence tag (EST) database of safflower
(http://cgpdb.ucdavis.edu/cgpdb2.), which was screened
by “Blast” for similarity with Arabidopsis FAD2 sequence
(AT3G12120). Putative safflower FAD2 ESTs were com-
pared and the longest EST clones of the strongest hits
from different contigs were selected for extension into full
length by performing 3’ Rapid Amplification of cDNA
Ends (RACE) using Bioline one step RT-PCR kit following
Manufacturers’ instructions (Bioline, London, UK). A
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gene-specific primer (GSP) was used for each of the
selected ESTs, in combination with a poly(dT) primer with
a Notl site at its 3’ end. A second round of PCR was per-
formed using a nested GSP in combination with the poly
(dT) primer. GSPs for 3' RACE were listed in Additional
file 1: Table S1. The one-step reverse transcriptase PCR
reactions were performed using 200 ng of RNA as tem-
plates starting with an initial reverse transcription reaction
at 50°C for 30 min, followed by 95°C for 3 min, and 40
cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for 1 min,
and a final extension at 72°C for 10 mins. Cloning of the
5 end of the CtFAD2-6 cDNA was performed with 5’
RACE System Kit (Invitrogen, Carlsbad, CA, USA) follo-
wing manufacturers’ instruction. Only the CtFAD2-6
mRNA was reverse transcribed to cDNA using a gene-
specific primer GSP1, 5- ACCTAACGACAGTCATGA
ACAAG -3'. A gene-specific primer GSP2, 5'- GTGAGG
AAAGCGGAGTGGACAAC -3’ was used in the first PCR
amplification. A hot start at 95°C for 4 min before adding
the polymerase, 33 cycles of denaturation at 94°C for 45 s,
annealing at 55°C for 1 min and extension at 72°C for 2
min. The amplification products were fractionated on 1%
agarose gel from which the DNA fragments with expected
sizes were purified and subcloned into the vector pGEM-
Teasy® (Promega, Madison, W1, USA) and identity con-
firmed by DNA sequencing using an ABI 373 sequencer.

The ORFs of FAD2 genes were amplified using the same
One-step RT-PCR kit (Bioline, London, UK) on total
RNAs derived from several safflower plant tissues and
PfuUltra II Fusion HS DNA Polymerase (Stratagen, La
Jolla, CA, USA). The primers (Additional file 1: Table S2)
used to amplify the ORFs were designed based on the
DNA sequences located in the 5" and 3’ UTR of each gene.
The amplified PCR products were cloned to vector
pGEM-Teasy™ (Promega, Madison, WI, USA), and veri-
fied by DNA sequencing. The cloned amplification pro-
ducts were addressed with the gene name FAD2 and a
suffix representing the first letter of the genus (C for
Carthamus) and species (t for tinctorius).

DNA isolation and Southern blot analysis

The genomic DNA of safflower genotype SU was iso-
lated from fully expanded leaves using CTAB buffer fol-
lowing the method described by Paterson et al. (1993).
Further purification was carried out using CsCl gradient
as previously described [31]. About 10 pg safflower
genomic DNA was digested with seven different restric-
tion enzymes, namely Accl, Bg/ll, BamHI, EcoRl, EcoRV,
HindIll, Xbal and Xhol.

Genomic DNA digested with each restriction enzyme
was electrophoresed through 1% agarose gel. The gel was
soaked in 0.5 M NaOH, 1.5 M NacCl for 30 min and blot-
ted onto a Hybond-N" nylon membrane (Amersham,
UK). The filters were probed with a-P*?> dCTP-labeled
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safflower FAD2 DNA fragment. The hybridization was
performed in 6x SSPE, 10% Denhardt’s solution, 0.5%
SDS, 100 ug/mL denatured salmon sperm DNA overnight
at 65°C. After a brief wash in 2x SSC/0.1% SDS at 50°C,
the filter was washed three times in 0.2 x SSC/0.1% SDS
at 50°C for 20 min each prior to autoradiography.

The isolation of 5 UTR intron of CtFAD2 genes

In order to isolate the DNA sequences of an intron that is
situated at the 5" UTR of CtFAD2 genes, the typical splice
site (AG:GT) was predicted in the 5" UTR of each CtFAD2
c¢DNA sequence, and PCR primers were designed based
on the flanking sequences of predicted splice site. The pri-
mers are listed in Additional file 1: Table S3. Genomic
DNA isolated from safflower genotype SU was used as the
template. The amplification was accomplished in 50 pL
reactions with 100 ng of genomic DNA, 20 pmol of each
primer, and a Hotstar (Qiagen, Hilden, Germany) supplied
by the manufacturer. PCR temperature cycling was per-
formed as follows: 94°C for 15 min for one cycle, 94°C for
30 s, 55°C for 1 min, 72°C for 2 min for 35 cycles; 72°C for
10 min using the Kyratec supercycler SC200 (Kyratec,
Queensland, Australia). The PCR products were cloned
into pGEM-T Easy® (Promega, Madison, WI, USA) fol-
lowing manufacturer’s instructions, prior to DNA se-
quence determination.

Real-Time quantitative PCR

Gene expression analysis was performed by RT-qPCR
using BIORAD CFX96™ Real-time PCR detection system
and iQTM SYBR® Green Supermix (BioRad, Hercules,
CA, USA). Primers with Tm (melting temperature) of
about 65°C and 19-23 bp in length were designed for gene-
specific amplification of a product about 100-200 bp frag-
ments (Additional file 1: Table S4). PCR reactions were car-
ried out in 96-well plates. All reactions were performed in
triplicates. Reaction mix (10 uL per well) contained 1 x
iQTM SYBR® Green Supermix (BioRad, Hercules, CA,
USA), 5 uM forward and reverse primers, and 400 ng of
¢DNA. The thermal cycling conditions were 95°C for 3
min, followed by 40 cycles of 95°C for 10 s, 60°C for 30 s
and 68°C 30 s. The specificity of the PCR amplification
was monitored by melting curve analysis following the final
step of the PCR from 60°C through 95°C at 0.1°C/sec.
Additionally, PCR products were also checked for purity
by agarose gel electrophoresis and confirmed by sequen-
cing. A constitutively expressed p-ketoacyl-acyl-carrier pro-
tein (ACP) synthase II (KASI) gene was used as an
endogenous reference. KASII is responsible for the elo-
ngation of C16:0-ACP to C18:0-ACP in the de novo fatty
acid biosynthesis in plants. The suitability of safflower
KASII gene as an internal reference gene was validated by
its high expression stability in various tissues and
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developmental stages (unpublished data). The data were
calibrated relative to the corresponding gene expression
level following the 2™*““* method for relative quantification
[72]. The data were presented as means + SD of three reac-
tions performed on independent 96-well plates.

Expression of CtFAD2 genes in Saccharomyces cerevisiae
The DNA fragment containing the entire open reading
frames of safflower CtFAD2 cDNAs were excised from
pGEM-Teasy vector as an EcoRI fragment and re-ligated to
the corresponding site of the vector pENTR11 (Invitrogen,
Carlsbad, CA, USA) and then cloned to the destination
expression vector pYES2-DEST52 using the Gateway®
Cloning recombination technology (Stratagen, La Jolla,
CA, USA) that has GAL1 promoter for inducible gene
expression. The gene sequences in these plasmids were
each verified by DNA sequence determination. The result-
ing plasmids and the pYES2-DEST52 vector lacking cDNA
insert were introduced into bakers’ yeast (Saccharomyces
cerevisiae) YPH499 cells by lithium acetate-mediated trans-
formation. Expression of these CtFAD2 genes in yeast cells
with or without exogenous fatty acid substrate feeding was
essentially as previously described [73]. Each experiment
was carried out in triplicate.

Transient expression of CtFAD2 in Nicotiana benthamiana
leaves

Each of the CtFAD2 ORFs was cloned in sense orientation
into a modified pOREO4 binary vector between the double
CaMV-35S promoter and an Agrobacterium tumefaciens
NOS terminator containing polyadenylation signal se-
quence [74]. A vector constitutively expressing the viral
suppressor protein, P19, was obtained from Dr Peter
Waterhouse’s lab. Previous research indicated that the ex-
pression of transgenes could be significantly enhanced by the
co-expression of P19 to prevent host transgene silencing in
N. benthamiana leaf-based transient assay [16,75,76]. A.
tumefaciens strain AGL1 harbouring the 35S:CtFAD2 was
grown at 28°C with shaking in LB broth supplemented with
the 50 mg/L kanamycin for two days prior to pelleting by
centrifugation and resuspension in 1 mL of infiltration buffer
containing 5 mM MES, 5 mM MgSO, and 100 uM acetosyr-
ingone and cultured at 28°C with shaking for an additional
three hours. The 10x dilution of each culture was then
diluted by 10 times with the infiltration buffer and mixed
with equal volume of the 355:P19 culture and infiltrated into
the underside of the fully expanded N. benthamiana leaves
as described by Voinnet et al. [16]. Following a period of 5
days further growth at 24°C, the infiltrated leaf regions were
excised and immediately subjected to fatty acid analysis.

Fatty acid analysis
Fatty acid methyl esters (FAME) were prepared by tran-
sesterification of the total fatty acids in yeast cells,
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obtained as cell pellets after centrifugation of cultures
[73], or in N. benthamiana leaf, by adding 750 pL of 1 N
MeOH-HCI (Supelco) at 80°C for minimal 2 hrs, then
added 500 pL of 0.9% NaCl. FAMEs were extracted with
300 pL of hexane, and analysed by GC with Agilent
7890A GC on a 30-m BPX70 column essentially as
described before [77] except that the ramping program
changed to initial temperature at 150°C, holding 1 min,
ramping 3°C/min to 210°C, the 50°C/min to 240°C for a
final holding 2 min. Confirming double bond positions
in the FAME by 2,4-dimethyloxazoline (DMOX) modifi-
cation and GC-MS analysis were carried out same as
previously described [77], except with a Shimadzu
GC-MS QP2010 Plus on a 30-m BPX70 column. The
column temperature was programmed as an initial
temperature at 150°C for 1 min, ramping at 5°C/min to
200°C then 10°C/min to 240°C with holding for 5 min.
Mass spectra were acquired and processed with GCMS
solution software (Shimadzu, Version 2.61). The free
fatty acids and FAME standards were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

Additional file

Additional file 1: Figure S1. Sequence alignment of the putative
polypeptides derived from the 11 safflower CtFAD2 and orthologous
plant FAD2s. atDES, AAM61113.1; IcDES, ACR15954.1; pfOH:DES,
AAC32755.1; plOH, ABQO1458.1; coCONJ, AAK26632.1; haACET,
ABC59684.1; rhACET, AAO38035.1; dsACET, AAO38036.1; caACET,
ABC00769.1; cpEPOX, CAA76156.1; SIEPOX, AAR23815.1; dcACET,
AAO38033.1; dcDES:OH, AAK30206.1; fvACET,AAO38034.1; hhACET,
AAO38031.1; boDES, AAC31698.1; haDES-2, AAL68982.1; haDES-3,
AAL68983.1; haDES-1, AAL68981.1; ntDES,AAT72296.2; 0eDES, AAW63040;
SiDES, AAF80560.1; ghDES-1, CAA65744.1; ptDES, XP_002297660.1; rcOH,
AAC49010.1; cpDES, AAS19533.1; ghDES-4, AAQ16653.1; ghDES-2,
CAA71199.1; jcDES, ADB93805.1; luDES,ACF49507.1. Figure S2. Mass
spectral identification of DMOX derivatives of C18:22%@12®) and 18287
@22 from S, cerevisae expressing safflower CtFAD2-11. Figure $3. Mass
spectral identification of DMOX derivatives of crepenynic acid
(9-octadecen-12-ynoic acid) from N. benthamiana leaves transiently
expressing safflower CtFAD2-11 (A). methyl crepenynate standard.
Table S1. Oligonucleotide primers used in the 3/RACE of multiple
CtFAD2 genes in safflower Table S2. Oligonucleotide primers used for
amplification of the entire coding region of CtFAD2 genes in safflower.
Table S3. Oligonucleotide primers used for the amplification of 5/UTR
intron of CtFAD2 genes in safflower. Table S4. Oligonucleotide primers
used for RT-qPCR in the expression profile study of safflower CtFAD2
genes.
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