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Abstract

Background: Vegetative buds provide plants in temperate environments the possibility for growth and
reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place
within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within
the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and
development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds
resume shoot growth associated to flower formation and development. Gene expression has been previously
monitored at specific stages of bud development but has never been followed along the two growing seasons.

Results: Gene expression changes were analyzed along the bud annual cycle at eight different time points.
Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression
differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non
dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells
together with the over abundance of transcripts belonging to stress response pathways. Differential expression
analyses performed between consecutive time points indicated that major transcriptional changes were associated
to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key
regulators of reproductive development were grouped in three major expression clusters corresponding to:

(i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and
initiation and (jii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (WFLC2) and
other transcripts with similar expression patterns could participate in dormancy regulation.

Conclusions: This work provides a global view of major transcriptional changes taking place along bud
development in grapevine, highlighting those molecular and biological functions involved in the main events of
bud development. As reported in other woody species, the results suggest that genes regulating flowering could
also be involved in dormancy regulatory pathways in grapevine.
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Background

Woody perennial plant species have specific morphological
and physiological constraints when compared with annual
plants, leading to different reproductive and somatic devel-
opmental strategies. Polycarpic woody plants develop ter-
minal or axillary buds with embryonic shoots from which
complete branches can develop after specific signals [1]. To
elude unfavorable environmental conditions, these buds
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become dormant providing the possibility to resume
growth under viable conditions. Three dormancy states
have been distinguished in buds: (i) Paradormancy, induced
by distal organs of the plant; (ii) Endodormancy, due to sig-
nals internal to the bud itself and (iii) ecodormancy, when
bud growth is prevented by environmental factors such as
low temperatures [2,3].

Bud para/endodormancy transition (also known as
endormancy onset) is generally triggered by environmen-
tal factors. Among them, day length and temperature are
stable annual cues regulating this process in many plant
species in temperate regions. Endo/ecodormancy transi-
tion (or endodormancy release) requires the completion
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of a chilling period that leaves the bud in an ecodormant
stage, susceptible to initiate bud break upon a period of fa-
vorable temperatures [4-7]. Regulation of endodormancy
onset and release involves plant hormones such as auxins,
ethylene, abscisic acid and gibberellins which could also
interact with sugars signaling [4,6]. Epigenetic regulation
throughout chromatin modification has also been pro-
posed to be involved in dormancy regulatory processes
based on differential expression of several chromatin
modifying proteins [5].

In woody species that set dormant terminal buds, ces-
sation of vegetative growth precedes the onset of dor-
mancy and the terminal bud differentiates directly from
the shoot apical meristem (SAM). Thus, bud formation
is concomitant with dormancy onset [6-8]. In other
woody species, including grapevine, axillary buds be-
come dormant when perceiving the environmental sig-
nals triggering the dormancy onset, whereas SAM ceases
growth when environmental conditions become unfavor-
able [9,10].

Little is known about the molecular events underlying
bud dormancy in woody species. Photoperiodic regulation
of dormancy could involve Phytochromes (PHY) and the
circadian clock since over-expression of PHYA prevents
short day (SD)-photoperiod endodormancy induction in
Populus [11,12]. In addition, it has been proposed that sig-
naling pathways regulating dormancy onset and release
may share genetic components with flowering regulation,
for example members of the Flowering Locus T (FT)/ Ter-
minal Flowerl (TFL1) and the MADS-box gene families
[5]. Both FT'and TFLI homologs are repressed in Populus
and leafy spurge by environmental factors inducing dor-
mancy [5,11,12]. Moreover, over-expression of PHYA in
transgenic Populus prevents FT and TFLI homologs re-
pression and the onset of dormancy [12]. Finally, both
genes are up regulated by the chilling temperatures caus-
ing endodormancy release [13].

Some members of the MADS-box transcription factors
family, such as Flowering Locus C (FLC) and Short Vege-
tative Phase (SVP), involved in the temperature regula-
tion of flowering response in Arabidopsis [14,15], could
participate in the regulation of bud dormancy in woody
perennial species. FLC homologs are up regulated during
endodormancy and their expression decreases after dor-
mancy release both in Poncirus and leafy spurge [16,17].
Similarly, SVP homologs, known as Dormancy Asso-
ciated MADS-box (DAM) genes, have also been involved
in growth cessation and terminal bud formation in
woody perennial plants such as peach, raspberry, kiwi,
apricot, leafy spurge, Poncirus or Populus [18-24]. The
peach evergrowing (evg) mutant, has been shown to carry
a deletion of six SVP-like genes (PpDAMI-6) resulting
in a complete lack of dormancy of the terminal shoot
meristems [18]. Considering these evidences, it has been
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proposed that FLC and SVP-like genes could act by
repressing FT expression, as they do during flowering in
Arabidopsis [15]. This would provoke growth cessation
and/or endodormancy [5,17].

In grapevine, winter dormant buds develop from basal
axillary buds of lateral shoots. These shoots initiate from
prompt buds in the same growing season. Dormant buds
are complex bract-protected organs constituted by a pri-
mary bud and one or two additional secondary buds
[9,10,25]. Growth and development of these buds are
initially prevented by paradormancy signals from the
apex. However, these latent buds maintain active pro-
cesses of cell division and differentiation until perceiving
(at the end of the summer) the SD photoperiods and
temperatures drop that would trigger the onset of dor-
mancy in grapevine [2,25]. Endodormancy has been
shown to end when buds have already experienced
enough chilling [25,26]. However, buds remain ecodor-
mant until temperature is permissive. When ecodor-
mancy is released, buds swell and the shoot apical
meristems (SAMs) in the primary bud follows a program
of organ differentiation and growth that gives rise to the
new season shoots [10,27]. In Northern hemisphere, the
para/endodormancy transition starts in August and the
dormant state is released during November [28]. Flower-
ing induction in grapevine takes place in latent buds
during the first growing season, whereas flower meris-
tems and flower organs will develop during the second
growing season in the consecutive year after bud break
[10,29,30]. Processes of inflorescences and flowers initi-
ation and development have been widely reviewed in
grapevine [31-33].

Recent works have studied transcriptional characterization
of bud responses to chilling [34], photoperiod [35] and dor-
mancy breaking treatments [36,37]. Their results have led to
the identification of candidate genes with a dual role in flow-
ering and dormancy in Vitis riparia [34,35] and to propose
of a role for oxidative stress as part of the dormancy releas-
ing mechanisms [36-38].

In this study we have followed the grapevine bud tran-
scriptome along the complete annual cycle which
includes two growing seasons. Bud transcriptome ana-
lyses identified three major phases of transcriptome
change, mainly associated to dormancy. Furthermore,
the expression of members of the MIKC-type MADS-
box gene family [39], the SPL (Squamosa Promoter Bind-
ing Protein-Like) family, the FT-TFLI1 family [31] and the
VFL gene (the grapevine Floricaula/Leafy ortholog) [40],
was also analyzed during bud development.

Results and discussion

Bud transcriptome variation along the annual cycle
Grapevine bud development is modulated by environ-
mental factors such as temperature and day length [25].
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In our experimental conditions, Tempranillo cv. latent
buds are formed during the first growing season in the
young sprouting stems between April and May (APR-
MAY) and experience active developmental processes
involved in the set up of the vegetative and reproductive
growth until the end of the summer of the following
year (Figure 1) [32]. Flowering induction takes place
within latent buds around the middle of June (JUN) and
inflorescence primordia differentiate from lateral meris-
tems developed by the shoot apex. Inflorescence meris-
tems proliferate to generate inflorescence branch
meristems in complex inflorescence primordia along July
(JUL) and August (AUG) [40]. In our growing condi-
tions, Tempranillo buds are endodormant in the second
half of September (SEP) and endodormancy is released
by the end of November (NOV), although buds remain
in an ecodormant stage from DEC to MAR [41]. Once
winter is over, ecodormancy is released and inflores-
cence branch meristems proliferate to produce flower
meristems in April (APR) swelling buds that initiate the
second growing season [40].

High throughput transcriptional analysis was performed
along bud development on bud samples collected at 8 dif-
ferent time points during the annual cycle (see Methods).
Principal Components Analysis (PCA) was performed on
the whole expression dataset (Additional file 1) to verify
correlation among different biological replicates and to
identify main sources of gene expression variation. The
results of the PCA plot showed consistency across
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biological replicates, as shown in Figure 2. The first two
principal components (PC1 and PC2) explained 77.5 per-
cent of the total variability in gene expression (62.2 per-
cent and 15.3 percent respectively). PCl seems to
represent the time course evolution of bud developmental
stages and appears to be reset to the original status with
bud swelling, since APR bud samples of the second season
were neighboring to MAY bud samples of the first season
(in the same quadrant), revealing a high transcriptome
similarity between those two stages. PC2 highlights major
transcriptome differences between JUN, JUL and SEP
samples and the remaining time points.

To investigate the biological basis of the principal
components, transcripts with the highest contribution to
each component in the analysis were identified accord-
ing to the absolute value of their component score (CS)
for PC1 and PC2 (Additional files 2 and 3). Figure 3A
shows the expression profiles of transcripts mostly con-
tributing to PC1. Transcripts with negative CS values
(547 transcripts, blue color) are up-regulated in non-
dormant buds and show declining expression during
endodormancy and the lowest expression during ecodor-
mancy. Transcripts with positive CS values (204 tran-
scripts, orange color) follow the opposite trend
(Figure 3A). Functional enrichment analyses indicated
that the transcripts up-regulated in non-dormant buds
were characteristic of actively proliferating and growing
cells (Figure 3B). Among them, transcripts related with
cell division, cell growth and differentiation (cell-cycle
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Figure 1 Bud developmental evolution along the year. A) Environmental change in temperature and day length. B) Pictures depicting

grapevine axillary buds along the year, corresponding to May, June and July, dormant buds from September to March, and during bud break in
April. Temperatures are shown as monthly minimum average (blue line), monthly maximum average (orange line) and monthly average (yellow
line). Day length (grey line) is shown as light hours per day. Assignments of bud stages were based on previous data on cv. Tempranillo [4041].
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Figure 2 Bi-dimensional loading score plot of sample replicates resulting from PCA analysis. X axis represents PC1 that explains 62.2% and
Y axis represents PC2 that explains 15.3% of the total variability for gene expression. Samples belonging to the same time-point are represented
by the same color.

regulation, microtubule-driven movement, chromatin as-  biosynthesis, flavonoid biosynthesis and aromatic com-
sembly, cell growth, peptidase-mediated proteolysis and  pounds glycosidation) showed high CS value.
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Figure 3 Top-scored transcripts for Principal Component 1. A) Expression profiles of the transcripts with positive component score values
(orange lines) and negative component score values (blue lines). Each single line represents the average of mean-centered expression values for
an individual transcript. B) Functional categories over-represented in each cluster. Color code is the same as in A. Absolute values of the log
transformed P-values were used for the bar diagram representing statistical signification, only categories with P-values < 0.05 were shown. BF,
bud formation; Fl, flowering induction; END, endodormancy; ECD, ecodormancy; GR, growth resumption.
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Figure 4 Differential expressions between consecutive bud time points. The histogram represents the number of differentially expressed
transcripts between each consecutive sample pair, sense of the bars indicates whether transcripts were differentially expressed in the earlier
versus later stage (on the left side in blue) or in later stage versus the earlier one (on the right side in red). Numbers correspond to the number
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(orange color) were those related to stress responses (stil-
benoid biosynthesis, "HSP-mediated protein folding",
temperature stress response, as well as CCAAT transcrip-
tion factor family) [42]. These functions could be related
to bud responses to dehydration and temperature changes
that take place together with dormancy, as previously
reported in Populus [24]. Furthermore, the observed up-
regulation of genes involved in ABA catabolism could be
related to the decay of this hormone previous to dor-
mancy release [5]. Finally, an increase in the expression of
starch catabolism genes together with a down-regulation
of genes encoding photosynthetic proteins, also observed
in Populus [24], is in agreement with the physiological
state of dormant buds.

Regarding PC2, the enriched functional categories con-
tributing to its negative values were those related to stress
responses characteristic of JUN, JUL and SEP samples,
whereas the functional categories associated with its posi-
tive values were those related to cell proliferation that
show higher expression in non-dormant buds (Additional
file 4). Therefore, PC2 could represent the transcriptional
effects of the stress experienced by buds from JUN to SEP
with respect to the remaining stages.

In summary, our results suggest that active growth,
dormancy and stress responses are major contributors to
the gene expression variability observed along the bud
annual cycle. Processes characteristic of actively prolifer-
ating and growing cells are up-regulated in non-dormant
buds and decline during bud dormancy together with
the up-regulation of stress response pathways.

Transcriptome changes in bud developmental transitions
In order to identify the developmental stages represent-
ing major transcriptome changes during the annual cycle
of the bud, we performed a pair wise differential expres-
sion analysis between consecutive time points. The num-
ber of differentially expressed genes varied strikingly
among sample pair comparisons (Figure 4). Major
changes were observed between JUL and SEP (involving
3139 transcripts), SEP and NOV (involving 2002 tran-
scripts) and MAR and APR (involving 5658 transcripts).
Interestingly, these transitions could be associated, re-
spectively, to the proposed timing for para/endodor-
mancy, endo/ecodormancy and ecodormancy/bud break
transitions [28,41]. These results supported the conclu-
sions of the PCA experiment, suggesting that the transi-
tions between bud dormancy and active growth explains
most of the variation in bud gene expression profiles.

In order to identify biological functions involved in the
three major bud transcriptional changes we performed
studies of functional categories enrichment (Figure 5).
The para/endodormancy transition (JUL to SEP)
(Figure 5A) was characterized by a major reduction in
enriched functional categories that mostly contributed
to PC1 in Figure 3. Among them, categories related to
cell proliferation (including regulation of cell cycle, chro-
matin assembly and microtubule organization and bio-
genesis) and cell growth and death, were down regulated
from JUL to SEP. These results are consistent with the
shutdown of those processes during bud dormancy that
has been described in other systems [24,43]. Cell wall
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(See figure on previous page.)

Figure 5 Functional categories over-represented in the pair wise comparisons. Bar chart summarizes the significantly enriched functional
categories between stages flanking these transitions. The sense of the bars indicate whether transcripts were differentially expressed in the earlier
versus later stage (on the left side) or in later stage versus the earlier one (on the right side). Absolute values of the log;o transformed P-values (of
the enrichment analysis) were used for plotting, only categories with P-values lower than threshold (0.05) were shown.

organization and biogenesis, also linked to cellular pro-
cesses, was significantly reduced with endodormancy.
Modification of the cell wall, mainly xyloglucans metab-
olism and cell wall proteins, was an enriched category in
JUL samples but not in SEP. However, cell wall biosyn-
thesis (mainly including cellulose biosynthesis tran-
scripts) appeared as a significant category in SEP.
Metabolism of carbohydrates was in some aspects
related to cell wall metabolism, thus 1,3-B-glucan catab-
olism predominated in JUL while in SEP carbohydrate
metabolism was mainly represented by starch and su-
crose metabolism. These results could be related to the
required sealing of plasmodesmata with callose to lower
their size exclusion limit, a process dependent on 1,3-f3-
glucansynthase and 1,3-B-glucanase activities. Addition-
ally, cell wall composition must be modified to reduce

water and molecules movement among cells during this
stage [44].

Representation of photosynthesis-related functional
categories also decreased during para/endodormancy
transition, in agreement with results reported in Populus
[24]. Lipid metabolism (including fatty acid biosynthesis,
glycerolipds metabolism and oxylipins) was also under-
represented in this transition. This change could be
related to the formation of lipid bodies (LBs) which store
triacylglicerols and improve freezing tolerance previous
to endodormancy, as has been reported in other systems
[44]. However, as far as we know, no cytological evi-
dence on the formation of LBs exists in grapevine buds.

Other significant functional categories that were
under-represented from JUL to SEP were those related
to stress responses (mainly abiotic and temperature),

I MADS-box family
I SPL family

FT-TFL1 family
M LFY

represents mean-centered expression values.

Figure 6 Hierarchical clustering of expression profiles of key regulators of reproductive development along bud development. MADS-
box gene family (blue boxes), SPL gene family (green boxes), FT-TFL1 gene family (orange boxes) and the VFL gene (red box). Color scale (on top)
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chaperone-mediated protein folding and aquaporins
(mainly TIP). In Populus, genes responsible for adapta-
tion to dehydration and low temperatures have been
shown to be expressed in response to SD even in the ab-
sence of those stresses [24]. In leafy spurge, genes re-
sponsive to cold stress were also up-regulated in fall and
winter [43]. Within the signaling pathways functional
category, 129 transcripts were down-regulated between
JUL and SEP. Among them, salicylic acid-mediated sig-
naling was significantly enriched, what could be related
to stress responses as well as elicitation of phytoallexin
biosynthesis [45].

The transcription factor functional category was also
significantly enriched among transcripts down-regulated
in this comparison. Among them, a significant enrich-
ment was also proven for the ERF subfamily (9 tran-
scripts), within the AP2-like [46] transcription factor
family, most of them related to ethylene regulated
responses. In Populus, the temporal expression of some
ERF-like transcripts at the beginning of SD photoperiods
has suggested a role for ethylene in the regulation of
dormancy [24]. In fact, Populus, leafy spurge and potato
have a transient peak in ethylene or ethylene perception
associated with endodormancy induction [5].

Only a few functional categories were significantly
enriched among transcripts showing up-regulation from
JUL to SEP. Apart from those concerning cell wall
organization and biogenesis and carbohydrate metabol-
ism that were previously described, functional categories
related to metabolism of nucleotides and nucleic acids
and protein metabolism were also significant. Among
them, enrichment of RNA metabolism and translation
initiation could reveal the existence of mechanisms rely-
ing on stored mRNAs transcripts ready to be translated,
as described in dry angiosperm seeds [47].

The endo/ecodormancy transition (SEP to NOV)
(Figure 5B) was characterized by a further decline in
transcripts participating in cellular processes as well as
primary and secondary metabolism functional categor-
ies, similar to what was observed in the para/endodor-
mancy transition. Functional categories related to cell
wall metabolism and biogenesis (mainly based on bio-
synthesis of cellulose, catabolism of pectins and modifi-
cation of pectins and xyloglucans) were still relevant in
SEP and further down-regulated in NOV. Moreover,
carbohydrate metabolism-related transcripts that were
down-regulated in SEP versus NOV corresponded now
to oligosaccharides metabolism and glucans catabolism.
A parallel situation has been reported in Vitis riparia
during the chilling period required for endodormancy
release [34]. Stress responses were also under-
represented from SEP to NOV, especially categories
related to oxidative stress. An activation of the oxidative
stress response machinery preceding endodormancy
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release would be in agreement with previous reports
showing that oxidative stress affecting mitochondrial
function could participate in endodormancy release in
grapevine [36,37].

On the other hand, the SEP to NOV transition was
marked by an enrichment of ABA catabolism, in agree-
ment with the role of ABA in endodormancy and its
decay during endo/ecodormancy transition [5]. ABA
levels correlate with bud dormancy in several species
and decay throughout the transition to ecodormancy.
Both in Populus and leafy spurge, ABA content peaked
after few weeks of SD and decayed later [24,43]. More-
over, an ABA-related transcript has also been reported
to be down-regulated during the chilling period required
for endodormancy release in grapevine [34]. Buds of
NOV also showed an enrichment of stilbenoid biosyn-
thesis that in grapevine usually responds to biotic and
abiotic elicitors [48]. Finally, enrichment of nicotinate
and nicotinamide metabolism in NOV as well as nucleo-
tide and amino acid transport might suggest the initi-
ation of certain metabolic activity paralleling the endo/
ecodormancy transition. Interestingly, the ERF subfamily
of transcription factors that was significantly enriched in
JUL versus SEP was also found in NOV versus SEP.
Moreover, five of these transcripts were common in JUL
and NOV, suggesting common functions before para/
endodormancy and after endo/ecodormancy transitions.

The ecodormancy/budbreak transition (MAR to APR)
(Figure 5C) was characterized by down-regulation of
specific functional categories involved in starch and
sugar catabolism or signaling and stress responses
mainly related to previous periods. Similar underrepre-
sentations were also observed in transcription factor
families known to be involved in stress adaptive
responses such as HSF [49], NAC [50] and WRKY [51]
families, as has been reported in other species [19,43]. In
contrast, bud break in APR was characterized by the
presence of most functional categories that were
enriched in JUL before bud para/endodormancy transi-
tion. Those categories were related to cellular processes
required for cell proliferation (chromatin assembly,
microtubule organization and biogenesis, cell cycle regu-
lation) and cell growth (cell growth and death, cell wall
organization and biogenesis, photosynthesis and primary
and secondary metabolism). Up-regulation of cell wall
organization and biogenesis and carbohydrate metabol-
ism categories (mono, oligo and polysaccharides and
more specifically glucans and 1,3-f-glucan catabolism),
could also be related to restoring cell wall properties and
cell communication throughout callose hydrolysis at
plasmodesmata. Induction of 1,3-B-glucanase after the
application of dormancy-release agents has also been
reported in grapevine [38]. Secondary metabolism cat-
egories included enrichment of flavonoid biosynthesis
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(mainly anthocyanins) as well as aromatic compound
and shikimate metabolism as probable flavonoid precur-
sors. Interestingly, the significantly enriched hormone
signaling functional categories were those related to
auxin and salicylic acid, that likely have a role in cell
proliferation and expansion [52] as well as in the re-
sponse to biotic stress [45].

Expression profiles of key regulators of reproductive
development

Flowering induction in grapevine takes place in latent
buds at the beginning of the summer whereas flower
meristem differentiation and flower development take
place in the second growing season [10,30-33]. To iden-
tify putative genes involved in flowering induction and
flower development, we examined in detail the expres-
sion profiles of reproductive development key genes
such as VFL, the MIKC-type MADS-box, the SPL and
the FT-TFLI gene families. Hierarchical clustering based
on bud expression values of these transcripts along the
annual cycle were represented in Figure 6. Consistently
with the main bud transcriptional profiles described in
the previous section, expression analysis of these tran-
scripts identified three major distinct clusters. The first
cluster grouped transcripts up-regulated in non-dormant
buds and down-regulated during dormancy. The second
cluster contained transcripts with highest expression
level during bud break. The third cluster grouped tran-
scripts up-regulated in dormant buds with an opposite
expression to those of cluster 1.

Cluster 1 showed transcripts expressed in latent buds
when inflorescence primordia are initiated and prolifer-
ate. A well characterized gene within this cluster is the
MADS-box gene VvSOCI.1 [39], which expression pat-
tern suggests that it could play a crucial role in flowering
induction, as does SOC1I, its Arabidopsis homolog [53].
Other MADS-box genes in cluster 1 were members of
the FLC (VWFLCI) and SVP subfamilies (VvSVPI,
WSVP3 and VwSVPS) [39]. WFLCI showed high expres-
sion during the first season, decreased during dormancy
and increased again during the second growing season
(Additional file 5). Expression patterns of the three
grapevine SVP homologs were distinct than that
observed for SVP in Arabidopsis [54]. Their expression
levels were high at flowering induction, reduced during
dormancy and increased again at flower meristem for-
mation. No significant expression changes of SVP homo-
logs were observed along grapevine bud dormancy, what
would not justify their role in that process, as has been
reported in other species [18-24]. Cluster 1 also included
VWMFTI [31], a member of the FT-TFLI family of tran-
scriptional regulators [55,56], with highest expression
during the first season. In addition, detection within this
cluster of APETALA3.2, PISTILLATA and AGAMOUS
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homologs suggests that these genes, involved in the spe-
cification of flower organs identity, could already be
expressed in the inflorescence meristems of first season
buds in preparation for the flower organ specification
that takes place during the second growing season. Fi-
nally, cluster 1 included many homologs of A. thaliana
SPL genes (SPL2, SPL3, SPL4, SPL5, SPL8 and SPL9)
what will be discussed later when considering the ex-
pression patterns observed within this gene family.

Cluster 2 grouped transcripts showing their highest
expression during bud break in the second growing sea-
son and likely associated with the events of flower mer-
istems and flower organs differentiation. Consistently
with the developmental processes taking place in bud
break, cluster 2 contained both VWFT and VFL, which
have homologs in Arabidopsis that are required for
flower induction and flower meristem specification.
WFT was over-expressed during flowering induction,
decreased during bud dormancy and increased again
during the second season, which is compatible with the
roles proposed for its homologs in Populus and other
woody plants [7,11,13,43]. Although the putative TFLI
homolog (WTFLI1A) was not present in the Grapegen
GeneChip®, our previous analysis of this gene family
[31] showed that it is down-regulated during dormancy
and up-regulated with dormancy release. This expression
pattern parallels what has been reported for TFLI
homologs in Populus [13]. VwSPLI13-L and VvAG3 on
one side and VvFUL-L, VWAGL6.2 and VvSEP4 on the
other, showed a similar expression pattern and could
also participate in the processes of flower meristem and
flower organ specification.

Cluster 3 included transcripts showing their highest
expression during dormancy. Interestingly, this cluster
included two MADS-box genes, VWWFLC2 and
WAGLI15.1, which Arabidopsis homologs have been
involved in flowering repression. In addition, it contains
several SPL genes (VVSPL6-L, VvSPL12-L and VvSPL14-
L). The remaining genes also showed some expression in
non-dormant stages. The two FLC homologs found in
grapevine (VWFLCI and VWFLC2) [39] showed an oppos-
ite expression pattern in buds (Additional file 5).
VWWFLCI behaved as PEPI, the Arabis alpina FLC homo-
log. PEP1 expression is reduced during the winter and
increases when growth is resumed after the cold period
[57]. Fluctuations in the FLC transcript levels in this per-
ennial species would allow some meristems to undergo
flowering transition while others maintain the vegetative
growth of the plant. A similar role for VWFLCI in main-
taining vegetative growth of the young meristems that
will give rise to the new latent buds could be proposed
in grapevine. In contrast, the opposite expression pattern
of VVFLC2, resembles expression reported for FLC-like
genes in Poncirus [16] and leafy spurge [17], where they
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could be involved in the regulation of dormancy. Simi-
larly, a role as repressor of flower meristem initiation
has been proposed for AGL15 and AGL18 in Arabidop-
sis [58]. Interestingly, their putative grapevine homolog,
VWAGLI5.1, has the same expression pattern as VvFLC2.
The search of FLC gene homologs with opposite expres-
sion pattern in other polycarpic plant species could help
to elucidate their role in these processes. In addition,
two members of the FT/TFLI1 gene family (VWITFLCI
and VWMFT?2) [31] were also found in cluster 3, opening
the possibility that their function could be related with
the control of dormancy in grapevine. In agreement,
high expression of a member of the FT/TFLI family
(PaFT4) in Norway spruce (Picea abies L.) correlates
with growth cessation and bud set [59], in contrast to
that observed for the PtFT1 gene of Populus [11]. In-
deed, comparative sequence and expression analysis of
the FT/TFLI family in gymnosperm and angiosperm
species lead to speculate that the original function of this
gene family could be related to the regulation of growth
arrest and/or dormancy [60].

Different members of the SPL family of transcription
factors were found within the three clusters. This family of
transcription factors is known to participate in the regula-
tion of diverse plant developmental processes such as
plant phase transition, flower and fruit development and
plant architecture [61-64]. Ten of the 16 Arabipdopsis
SPL genes are post-transcriptionally regulated by miR156,
which incorporates endogenous age/development signals
into vegetative phase transition and flowering [61,62]. This
vegetative phase regulatory mechanism is also conserved
in woody perennials [65]. Interestingly, cluster 1 contains
transcripts homologous to SPL3, 4, 5 and 9, all belonging
to the miR156/7-targeted SPL subfamily, which act as
positive regulators of juvenile-to-adult phase change tran-
sition and flowering in Arabidopsis [63,64,66] and are
regulated by SOC1I [67]. Cluster 1 also included two SPL2
and one SPL8 homologs. Arabidopsis SPL2 is also miR156
targeted and seems to be involved in lateral organ devel-
opment within the reproductive phase [68]. The miR156/7
non-targeted SPL8 gene is involved in pollen sac develop-
ment [69] and required for male fertility [70]. Finally, sev-
eral members of this gene family were found in Cluster 3
displaying an expression pattern more restricted to the
dormancy period (WSPLI-L, VvSPL6-L, VvSPL7-L,
VWSPLI12-L, VvSPL14-L and VvSPL13-L2). Most Arabidop-
sis counterparts of these genes belong to the miR156/7
non-targeted SPL subfamily (SPL1, 7, 12, 14 and 16) that
comprises the larger proteins in the family [70]. Little is
known about the functions of these putative transcrip-
tional regulators with the exception of SPLI4, which
seems to regulate plant architecture and the length of
vegetative phase. An Arabidopsis mutant with reduced
SPL14 expression, had elongated petioles, serrated leaf
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margins and accelerated vegetative phase change [71], sug-
gesting that this gene could play a role as a negative regu-
lator of phase transition and flowering [72], having
antagonistic function to other SPL proteins that promote
vegetative phase change. Interestingly, both VwSPLI4-L
and VWSPLI2-L showed an expression pattern very similar
to WWELC2 and VWAGLI5.1 which could also suggest a role
for these SPL genes in dormancy maintenance. Little is
known about the role of SPL-like genes in woody species.
Two genes (SPL-like 3 and 6) were detected during dor-
mancy in Populus [24] with SPL6-like increasing and
SPL3-like decreasing along dormancy. In addition, an SPL-
2 homolog has also been found in grapevine which seems
to be regulated by photoperiod [35]. Further studies will
be needed to elucidate the possible role of the SPL gene
family in bud dormancy.

Additional mechanisms involving transcriptional
repressors could be required during the dormancy
period to prevent premature flower meristems formation
from the inflorescence meristems. The establishment of
annual and perennial life has independently arisen sev-
eral times in flowering plants [73], so it is likely that
mechanisms involved in the control of bud dormancy or
repression of flower meristem formation have recruited
different regulatory genes in different botanical families.
Complementary experiments will be needed to assess
the biological function of the members of these tran-
scriptional regulators families in such processes.

Conclusions
Transcriptional analyses along bud development have
shown that principal components explaining the observed
expression variability are determined by genes involved in
active cell growth and proliferation, dormancy regulation
and stress responses, indicating that these are the most ac-
tive events in bud development. Major transcriptional
changes were detected between samples collected in July
and September (para/endodormancy transition), September
and November (endo/ecodormancy transition) and March
and April (ecodormancy/bud break transition). The func-
tional categories enriched in these transitions are in agree-
ment with the results of the Principal Component analysis.
Expression profiles of key regulators of reproductive
development were assigned to three major transcrip-
tional clusters corresponding to (i) transcripts associated
only to flowering induction; (ii) transcripts associated to
flowering induction and flower meristem initiation; and
(iii) transcripts putatively involved in dormancy. Those
results suggest that VWFLC2 and other transcripts with
similar expression patterns such as VVAGLIS.1 or
VWSPL14-L could have a role in bud dormancy regula-
tion in grapevine whereas no evidence for a participation
of VwSVP genes in this process could be observed.
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Methods

Plant materials

Grapevine (Vitis vinifera L. cultivar Tempranillo) buds
were obtained from an experimental vineyard at the
Instituto Madrilefio de Investigacién y Desarrollo Rural,
Agrario y Alimentario (IMIDRA, Alcala de Henares,
Madrid). Samples were collected from triplicate blocks
in the same vineyard during two consecutive years.
Plants and buds developmental stages were classified fol-
lowing the developmental series of Baggiolini (1952) [74]
and modified E-L system [75]. Buds were collected at
equivalent stem positions from the base and always at
the same time of the day. Bud samples were frozen in li-
quid nitrogen and stored at -80°C before RNA extrac-
tion. Samples corresponding to May (MAY), June (JUN),
July (JUL), September (SEP), November (NOV), January
(JAN), March (MAR) and April (APR) buds were ana-
lyzed. Meteorological data were obtained from a station
at Finca El Encin (IMIDRA, Alcal4d de Henares).

RNA extraction

Total RNA was extracted from frozen bud samples
according to Reid et al., 2006 [76]. RNA purification was
performed using the RNeasy Mini Kit (QIAGEN) accord-
ing to manufacturer's protocols. To remove DNA traces
in RNA samples, DNase I digestion was carried out with
the RNase-Free DNase Set (QIAGEN). RNA integrity and
quantity were assessed by Agilent’s Bioanalyzer 2100.
Microarray hybridizations were performed at the Genom-
ics Unit of the National Centre for Biotechnology (CNB-
CSIC, Madrid). Raw microarray data from the reported
experiments are publicly available at the Plant Gene Ex-
pression Database (PlexDB) [77] and labelled as “VV36:
Time course of grapevine bud development”.

Microarray data processing and analysis
Monitoring of bud transcriptional activity was per-
formed in three biological replicates for each time point
using Affymetrix Grapegen GeneChip®. Raw Affymetrix
CEL files were imported to Robin software suite [78] to
perform data normalization using the RMA method.
Principal component analysis was performed using Acu-
ity software [79] (Molecular Devices, LLC, CA, US). The
score matrix was used to select probe-sets that best fit
the first principal component (PC1) and those with PC1
scores greater than 7 or lower than -7 were chosen.
Likewise, probe-sets that best fitted PC2 were those with
component score greater than 3 or lower than -3.
Differential expression analyses were performed in
Multi Experiment Viewer [80] using LIMMA, applying a
0.01 cut-off for P-value and log, fold ratio greater than 1
and lower than -1. P values were corrected using the
Benjamini-Hochberg test.
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To identify the biological functions over-represented
within selected probe sets functional enrichment ana-
lyses were performed using FatiGO [81] (P-value< 0.05).
Functional categories were based on manual annotation
of the custom made GrapeGen GeneChip®, based on
12X v1 grape genome assembly, described in Grimplet
et al,, 2012 [82].

Key regulators of reproductive development were
selected according to their functional annotation [82].
Expression values were extracted from the whole experi-
ment normalized data matrix (averaged from the tripli-
cates per sample and probe set). When more than one
probe set matched a single gene transcript, only one was
selected. Hierarchical clustering was performed using
MultiExperiment Viewer [80] based on Pearson's correl-
ation and using the complete linkage option.

Additional files

Additional file 1: Table containing the RMA normalized expression
values for all GrapeGen GeneChip® probesets in the analyzed
samples together with their correspondences to genes in the 12X
V1 version of grapevine reference genome and their annotations.
This file also includes the component scores for each probe-set in the
first three principal components.

Additional file 2: Table containing the RMA normalized expression
values for the probesets selected by PC1 component score (both
positive and negative values) in the analyzed samples.

Additional file 3: Table containing the RMA normalized expression
values for the probesets selected by PC2 component score (both
positive and negative values) in the analyzed samples.

Additional file 4: Functional categories significantly enriched in the
clusters selected by PC2 component score (both positive and
negative values). Categories enriched in the positive cluster are
depicted in green while those enriched in the negative one are in pink.
Absolute values of the log; transformed

P-values were used for the bar diagram representing statistical
signification, only categories with P-values < 0.05 were shown.

Additional file 5: Expression pattern of the two grapevine FLC
homologs. Average expression values for each time-point are shown.
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