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putatively introgressed alleles.
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Background: Many highly beneficial traits (e.g. disease or abiotic stress resistance) have been transferred into crops
through crosses with their wild relatives. The 13 recognized species of tomato (Solanum section Lycopersicon) are
closely related to each other and wild species genes have been extensively used for improvement of the crop,
Solanum lycopersicum L. In addition, the lack of geographical barriers has permitted natural hybridization between S.
lycopersicum and its closest wild relative Solanum pimpinellifolium in Ecuador, Peru and northern Chile. In order to
better understand patterns of S. lycopersicum diversity, we sequenced 47 markers ranging in length from 130 to
1200 bp (total of 24 kb) in genotypes of S. lycopersicum and wild tomato species S. pimpinellifolium, Solanum
arcanum, Solanum peruvianum, Solanum pennellii and Solanum habrochaites. Between six and twelve genotypes
were comparatively analyzed per marker. Several of the markers had previously been hypothesized as carrying wild
species alleles within S. lycopersicum, i.e., cryptic introgressions.

Results: Fach marker was mapped with high confidence (e<1 x 107 to a single genomic location using BLASTN
against tomato whole genome shotgun chromosomes (SL2.40) database. Neighbor-joining trees showed high
mean bootstrap support (86.8 + 2.34%) for distinguishing red-fruited from green-fruited taxa for 38 of the markers.
Hybridization and parsimony splits networks, genomic map positions of markers relative to documented
introgressions, and historical origins of accessions were used to interpret evolutionary patterns at nine markers with

Conclusion: Of the 47 genetic markers surveyed in this study, four were involved in linkage drag on chromosome
9 during introgression breeding, while alleles at five markers apparently originated from natural hybridization with
S. pimpinellifolium and were associated with primitive genotypes of S. lycopersicum. The positive identification of
introgressed genes within crop species such as S. lycopersicum will help inform conservation and utilization of crop
germplasm diversity, for example, facilitating the purging of undesirable linkage drag or the exploitation of novel,
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Background

Introgression is the transfer of genes of one species into
the gene pool of another via hybridization. As a
phenomenon, it has been an important topic in animal
and plant genetics research for many different reasons.
For example, introgression has been implicated in the
adaptation of modern humans [1] and is of concern to
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conservation biologists due to loss of integrity of wild bird
and mammal populations [2,3]. In plants, introgression is
a key concept in studies of the risks of contamination of
natural populations by genetically modified (GM) crops.
More commonly in crops, favorable genes from wild rela-
tives are intentionally transferred into breeding lines for
cultivar development. This has been particularly valuable
in crop species that are relatively low in genetic diversity.
According to a review of crop introgression breeding
[4] the major functional categories of beneficial traits
transferred from wild species are resistance or tolerance
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to abiotic stress or disease, yield, cytoplasmic male steril-
ity or fertility restorers for hybrid production, and qual-
ity traits. Among the pioneering uses of wild crop
relatives during the late 19™ to early 20™ centuries were
the transfer of disease resistances into grape (Vitis vini-
fera) [5] and sugarcane (Saccarum officinarum) [6]. A
1986 review of 23 crops estimated that 6% of total an-
nual economic value in the US was contributed by crop
wild relatives [7]. For 13 major crops of global import-
ance, it was estimated that 46 wild species have been
used in released cultivars, and that furthermore, the
introgression breeding approach is increasing [4]. Lack
of information on pedigrees, unpublished activities
within the private sector and changes in taxonomy are
some of the factors that contribute to the uncertainty of
the collective impacts of crop introgression breeding [4].

Some of the earliest tomato introgression breeding in
the US may have been done indirectly and unwittingly
via the French variety Merville des Marchés. Recent
phenotypic data collected for Merville des Marchés PI
109834 showed it to be variable in fruit size and smooth-
ness (http://www.ars-grin.gov/cgi-bin/npgs/acc/display.
pl?1129442); its genotype was segregating, showed popu-
lation admixture, and was an outlier based on genetic
distance relative to many other S. lycopersicum acces-
sions [8,9]. We postulated that these were indications of
S. pimpinellifolium in its ancestry (this idea was exam-
ined in the current study). The Fusarium wilt-resistant
processing variety Marvel [10] was selected from Mer-
ville des Marchés in the early 1900s, and Marvel was a
parent of Marglobe released in 1925 [11], which in turn
can be found in the pedigree of many important varieties
from the 1930s through the late 1950s (H.M. Munger’s
tomato pedigree chart provided by E.D. Cobb, Cornell
University, 2012). Direct introgression of tomato with
wild species in the US commenced in the 1930s concur-
rent with collection expeditions to geographic centers of
origin. The first released cultivar, developed from Mar-
globe x S. pimpinellifolium, was aptly named Pan Ameri-
can [12]. Introgression breeding efforts of tomato
increased globally post World War II, involving the
screening of a wide range of traits and all wild tomato
species [13]. Such efforts continue to be of utmost prior-
ity today using sophisticated tools such as introgression
libraries for gene discovery [14,15].

Compellingly, of 96 introgressed traits tallied in
released crop cultivars for 11 species (cassava, wheat,
millet, rice, maize, sunflower, lettuce, banana, potato,
groundnut, tomato), 55 of them were in tomato (Sola-
num lycopersicum L.); the next highest numbers were
found in rice and potato with 12 traits each [4]. The em-
phasis and success of introgression breeding in tomato
encompasses several factors including its intrinsically
narrow genetic base, relative ease of crossing with
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several wild taxa, production demands based on growing
conditions and market niche, its susceptibility to pests
and pathogens, and its sensitivity to abiotic factors. In
addition to resistance or tolerance to dozens of bacterial,
viral, fungal, insect, and nematode pathogens, hundreds
of favorable genes or quantitative trait loci (QTL) for
abiotic stress resistance, flower and fruit traits, yield, and
plant architecture have been mapped in wild tomato
species [16] and thus hold the potential to be exploited.

Introgression breeding carries a cost, namely, genetic
linkage of non-targeted loci that are eliminated through
repeated backcrossing. Linkage drag can persist within a
genome despite backcrossing, especially if recombination
is suppressed. Several examples of linkage drag in to-
mato and other crops have been quantified using mo-
lecular markers [17-21]. Linkage drag can denote
favorable, deleterious or neutral alleles that become in-
advertently incorporated into breeding lines or cultivars.

In this study we apply the term ‘cryptic introgression’
[22] to describe latent genetic variation in S. lycopersi-
cum that originated from wild tomato species. Various
scenarios can be evoked for its origins ranging from
linkage drag, hybridization between feral S. lycopersicum
and wild relatives, to crossing in open-pollinated popula-
tions by wind or insect vectors with pollen of intro-
gressed cultivars [23]. Cryptic introgression is of interest
in germplasm collections such as those conserved at
United States Department of Agriculture, Agricultural
Research Service (USDA, ARS) Plant Genetic Resources
Unit (PGRU) because it can indicate novel genetic vari-
ation for exploitation by end-users, or conversely, reveal
unfavorable and hence undesirable alleles with respect
to crop improvement.

In previous reports we hypothesized the detection of
cryptic introgression in 5% to 10% of DNA markers that
were resequenced in tomato germplasm panels [9,24,25].
The aim of the current study was to gather additional
evidence on these alleles by resequencing and analyzing
the same markers in several accessions of wild tomato
species and one accession of weedy S. lycopersicum
(Table 1). Although variation within wild species gene
pools made it impracticable to attempt to discover the
100% identical homologous allele, the assumption was
that introgressed alleles would be more closely related to
the alleles of a particular wild species than to their S.
lycopersicumm homologs. To identify introgressed alleles
we also used evidence from mapped locations of mar-
kers, phenotypic descriptions, and historical origins of
lines and accessions.

Results and discussion

Markers and in silico mapping

For the 47 markers used in this study (Additional file 1:
Table S1), nucleotide primers for PCR and sequencing
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Table 1 Tomato samples analyzed in this study
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Species Accession or line Description #
Solanum habrochaites PI 126445
Solanum pennellii Pl 414773
Solanum peruvianum G 32592 (LA4125)
Solanum peruvianum LA1537

Solanum arcanum® G 32591 (LA2157)
Solanum pimpinellifolium PI 370093
Solanum lycopersicum PI 303801
Solanum lycopersicum® P1 99782
Solanum fycopersicum® P1 109834
Solanum lycopersicum® PI 129026
Solanum lycopersicum® Pl 129128
Solanum lycopersicum® Pl 196297
Solanum lycopersicum® Pl 258474
Solanum lycopersicum® Pl 258478
Solanum lycopersicum® Pl 390510
Solanum lycopersicum® TA496

collected from Peru in 1937, source of Cyc-B, green-fruited

collected from Peru in 1976, source of /-1, -3, green-fruited

naturally selfing, collected from Chile in 2001, green-fruited

artificially inbred from PI 128650 collected from Chile in 1938 and source of Tm-2°, green-fruited
naturally selfing, collected from Peru in 1980, source of Cm QTLs, green-fruited

traces back to Vaughan Seed Co., Chicago, USA, circa 1930, source of Cf-2, Cf-3, Pto, red-fruited
Peru Wild (syn. with Utah 665) from Utah Agr. Expt. Sta,, source of Ve, red-fruited

Tomate, collected in 1932 from Peru, red-fruited

Merville des Marchés, collected in 1935 from France, red-fruited

unnamed, collected in 1938 from Ecuador, red-fruited

unnamed, collected in 1938 from Panama, red-fruited

unnamed, collected in 1951 from Nicaragua, red-fruited

unnamed, collected in 1959 from Ecuador, red-fruited

unnamed, collected in 1959 from Peru, red-fruited

unnamed, collected in 1974 from Ecuador, red-fruited

from S. Tanksley, Cornell Univ.,, developed in 1990s from E6203 x Vendor-Tm-27, red-fruited

Germplasm sources of sequenced alleles in wild and cultivated tomato accessions.

2 For complete references tracing history of these germplasm sources used for introgression breeding see [26].

b Sequences published in [25].

were originally designed against S. lycopersicum sequen-
ces except for the Conserved Ortholog Set II (COSII or
C2) and unigene (U) markers, which were designed
against Euasterids [27,28]. Molecular markers have
shown good success rates of transferability among dis-
tantly related wild tomato species such as S. lycopersicum
and S. pennellii (for examples see [29-31]). In the current
study, some primer pairs did not amplify or give clean or
homologous reads in every wild tomato sample. The
COSII and U markers did not outperform the other
markers in terms of successfully generating high quality
sequence data because most of them contained introns,
which sometimes carried small indels in a heterozyogus
condition. Such heterozygous indels were major contri-
butors to poor quality reads and hence missing data.

In our current germplasm panel (Table 1), S. lycopersi-
cum and S. pimpinellifolium had no missing markers;
sequences were available for at least two of the four
green-fruited taxa for the final set of 47 markers. S. per-
uvianum LA1537, S. peruvianum G32592, S. arcanum,
S. pennellii and S. habrochaites gave data for 32, 42, 40,
35 and 38 markers, respectively. The latter two species
are usually self-incompatible (SI) and carried greater
numbers of polymorphic markers within accessions than
the inbred accessions of S. peruvianum and S. arcanum
that were sampled. Mean SNP frequency across the
polymorphic markers was 0.0127 (n=17) for S. habro-
chaites, 0.0082 (n=17) for S. pennellii, 0.0126 (n=>5) for
S. peruvianum 1L.A1537, 0.0058 (n=2) for S. peruvianum
G32592 and 0.0078 (n=7) for Peru Wild. TA496,

Tomate and S. arcanum had no polymorphic sites in
any of the markers.

S. pimpinellifolium showed unusually high polymor-
phism of 0.0055 (n=17) relative to the other self-
compatible taxa. As one explanation, this accession was
categorized as an admixture population in a simple se-
quence repeat (SSR) genotyping study of S. pimpinellifo-
lium population structure [32], so naturally represents
two dissimilar S. pimpinellifolium genomes. Because the
seed source traces back to Vaughan Seed Co. in USA
and Horticultural Experiment Station, Ontario, Canada
[33], another possibility is that S. lycopersicum was
incorporated into its pedigree by one of those entities.
This may be evidenced by comparing the previously esti-
mated D, number of mutations per kb, [34] between the
two species [35] which was approximately four-fold
greater than our estimate reported below.

The majority of markers were mapped with high con-
fidence to a single map location within the genome
(Figure 1, Additional file 1: Table S1). This is the first re-
port in which a whole-genome sequence [36] and web
based tools were available with which to do this for the
expressed sequence tag (EST) -based markers [24]. Ac-
cordingly, 12 of the EST-based markers were newly
mapped and markers 437_2, 2189 _1 and 2819_5 were
revised with respect to previously predicted chromo-
somal location based on identities to restriction frag-
ment length polymorphism (RFLP) markers [25]. All
chromosomes were represented by the 47 markers;
numbers of markers per chromosome ranged from one
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Figure 1 Chromosomal map locations of 47 markers sequenced in this study. Nine markers with dashed outlines showed cryptic
introgressions. Also shown on the map (color) are documented introgressions used in tomato breeding that were mentioned in this report, S.
habrochaites: blue, S, lycopersicum Peru Wild: red, S. peruvianum: purple, S. pimpinellifolium: orange, S. pennellii: green.
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on chromosome 12 to eight on chromosome 6. Small
gaps were observed in the alignments but close examin-
ation revealed that these were in masked regions rich in
runs of poly A or poly T. Only marker 1675_1 did not
initially provide any hits. A lowered stringency of 1 x 10
30 subsequently found the probable position.

Four markers had two BLASTN hits each. These were
1260_2 for two tightly linked (2,849 nt apart) sequences
on chromosome 6, 2325 3 on chromosomes 1 and 3,
2582 1 on chromosomes 4 and 5, and 2819 5 for two
linked (14,114 nt apart) regions on chromosome 6. A
check of the primer regions found multiple mismatches
in predicted primer binding sites of the secondary hit for
three of the markers; these were assumed to have ampli-
fied as single-copy. For marker 2819 5 the forward pri-
mer had a single mismatch and the reverse had no
mismatches. The predicted amplicon in the mismatch
region was 86% identical to the reference TA496 se-
quence. When the mismatch sequence was included in
MEGA cluster analysis, it separated from all other (wild
and cultivated) alleles with 87% bootstrap support, and
the mean D among sequences increased 8-fold (D=1.5

for n=10 alleles versus D =12 for n=11 alleles). There-
fore, it is unlikely that this paralog amplified and con-
founded the results. All markers had previously been
screened in our lab for amplification of single bands and
highly homozygous sequences within S. lycopersicum
[24,25]. Results of in silico mapping confirmed that this
set of markers provides robust results in sampling
single-copy S. lycopersicum genes. All sequences were
deposited into the European Molecular Biology Labora-
tory (EMBL), European Nucleotide Archive (ENA) data
base as accession numbers HE977919-HE978211.

Clustering patterns and divergence estimates among taxa
PI 99782 Tomate was chosen for the current study to
represent a ‘pre-introgression breeding’ genotype. It
bears small, slightly ribbed and unimproved fruit with
scarring and cracking (http://www.ars-grin.gov/cgi-bin/
npgs/acc/display.pl?1127604) and was homozygous for
the common S. lycopersicum haplotype at 48 of 50 mar-
kers for which it had been sequenced [25]. For 38 of the
markers there was high bootstrap support for the red-
fruited clade that consisted of S. lycopersicum including
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Tomate and S. pimpinellifolium alleles (Additional file 1:
Table S2). Bootstrap values ranged from 54% to 100%
(mean + standard error = 86.8 + 2.34%). These bootstrap
values subtracted from 100% can be interpreted as esti-
mates of the probability of Type I error, ie., falsely
accepting a cluster that is not signified by the data (see
[37] for discussion).

Results underscored the close relationship of S. lyco-
persicum to S. pimpinellifolium because their alleles
were frequently identical or highly similar. The place-
ment of green-fruited species with respect to the red-
fruited clade and each other varied among loci. This can
result from incomplete lineage sorting or introgression
[38]. An example was the placement of S. habrochaites
near S. pimpinellifolium for marker TG11 (Additional
file 2: Figure S1); this example was also reported by Nes-
bitt and Tanksley [35].

Of the nine markers that did not support the red-
fruited clade, seven had previously been hypothesized as
carrying introgressions (Additional file 1: Table S2).
These are discussed below. The other two markers,
1287_1 and 2280_1, showed patterns that contained S.
peruvianum within the red-fruited clade (Additional file
2: Figure S1) seemingly due to lack of resolution. At
marker 1287_1 S. peruvianum haplotypes were only one
or two mutational steps from Tomate. These mutations
were not shared with any other taxa. At marker 2280_1
only four unique haplotypes were observed. These were
S. habrochaites, S. pennellii, S. arcanum and {TA496,
Tomate, S. pimpinellifolium, Peru Wild, G32592,
LA1537}. For the 38 markers that supported the red-
fruited clade, accepted taxonomic relationships among
tomato species were generally supported [39,40].

Divergence estimates (D) among loci are associated with
a high variance over evolutionary time due to differences
in mutation and recombination rates, selective con-
straints, and influences of various factors such as random
sampling of gametes and demography. Average D ranged
from 5 for marker 4301_3 to 52 mutations per kb for mar-
ker C2_Atl1g44575 (mean + standard error =16.5 + 1.29).
At the aggregate scale the mean D + standard error from
PI 99782 Tomate was as follows: TA496 D=0.001 +
0.0005, Peru Wild D=0.002 + 0.0006, S. pimpinellifolium
D=0.002 £ 0.0004, S. arcanum D =0.020 + 0.0022, S. per-
uvianum LA1537 D=0.020 + 0.0025, S. peruvianum
G32592 D=0.022 + 0.0024, S. habrochaites D=0.021 +
0.0024 and S. pennellii D =0.022 + 0.033.

The lack of precise resolution in distinguishing taxa by
clustering, or by average divergence from Tomate in the
case of the green-fruited taxa was a function of shared
polymorphisms in many instances, e.g., at 24 markers at
least one single nucleotide polymorphism (SNP) within a
species was also segregating between other species pairs.
This has been observed in other studies of crop species
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and their closely related wild relatives ([41] and refer-
ences therein). In addition, random sampling contribu-
ted to low resolution, e.g., S. peruvianum haplotypes
appeared to be derived from Tomate at marker 1287_1
based on a small number of noninformative SNPs.

Evidence for introgression

In previous studies we reported nine markers (Table 2)
with highly diverged alleles within S. lycopersicum and
hypothesized that this was due to introgression from
wild species. These were 220_1, 437_2, 2325_3, 2534_1R
(redesigned into 2534_1b), 2486_1 [24], 2819_5,
C2_At1g73180 [25], U146140 and C2_At1g44575 [9]. Of
the 47 markers in the current study, seven of these
nine showed patterns in cladograms that did not clus-
ter together members of the red-fruited clade (Add-
itional file 2: Figure S1). Hybridization networks
(Additional file 2: Figure S1), descriptive information
of the accessions, map positions of markers, and species
origins of documented introgressed disease resistance
alleles (e.g. [16,26,42-44]) were used as total evidence to
categorize the divergent markers into putative linkage
drag during introgression breeding versus natural out
crossing with S.  pimpinellifolium (Table 2). This
categorization did not constitute proof of natural
hybridization versus introgression breeding. However, it
was a useful concept from which to synthesize inde-
pendent lines of evidence and can serve as a basis for
future hypothesis testing of the two scenarios.

Linkage drag was inferred for at least three of the four
markers at which TA496 carried an allele that was highly
divergent from all other members of the red-fruited
clade. All four mapped to chromosome 9 and spanned
from 5.77 MB to 54.71 MB (Table 2). Introgressed dis-
ease resistance loci documented on chromosome 9 [42]
include Vel (0.06 MB) and Ve2 (0.05 MB) both from
Peru Wild, Frl (physical map position not annotated),
Tm-2% (13.62 MB) and Sw-5 (67.30 MB), all three from
S. peruvianum, and Ph-3 (66.71-66.78 MB) from S. pim-
pinellifolium (Figure 1, Table 2). LA1537 was the most
closely related allele to TA496 in cladograms for the
three markers spanning 5.77 — 17.00 MB on chromo-
some 9, which encompasses the Tm-2 locus at position
13.62 MB. LA1537 is an inbred accession that was
derived from PI 128650, the original source of Tm-2¢
(Table 1).

Hybridization networks placed TA496 in various posi-
tions for each of the three markers surrounding Tm-2%
near the red-fruited alleles with reticulation back to-
wards S. peruvianum for marker 2486_1 (Figure 2a and
Additional file 2: Figure S1), between the red-fruited
alleles and S. peruvianum with reticulation back towards
both for marker 2534_1b (Figure 2b and Additional file
2: Figure S1), and within the green-fruited wild species
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Table 2 Tomato markers tested for cryptic introgression
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Marker SGN gene model,

predicted protein

Chromosome Divergent line
location (MB) or accession

Genetic-distance
based clustering results®

Observations

Introgression from crop improvement

220_1 Solyc09g014280, ch09, 5.77 TA496
hydroxycinnamoyl!
transferase

2486_1 Solyc09g014350, ch09, 5.90 TA496

glycerol-3-phosphate
acyltransferase 6
2534_1b Solyc09g018790, ch09, 17.00 TA496
succinic semialdehyde
reductase isofom1

4372 Solyc09g061440,
uncharacterized protein

ch09, 54.71 TA496

Introgression from natural hybridization with S. pimpinellifolium

2325_3¢ Solyc01g073640, ch01, 70.26 TA496
alcohol dehydrogenase-3 Pl 258478
C2_At1g44575 Solyc06g060340, ch06, 34.71 Pl 258478
chloroplast photosystem
ll-associated protein
2819_5° Solyc06g082670, ch06, 44.70 Pl 258478
ribosomal protein L10
U146140 Solyc06g083360, ch06, 45.08 Pl 109834
DNA-directed RNA
polymerase Il subunit
C2_At1g73180 Solyc08g014060, eukaryotic  ch08, 3.57 Pl 129026
translation initiation factor
3 subunit 9-like protein Pl 129128
Pl 196297
Pl 258474
PI 390510

TA496 intermediate between
LA1537 and S. pennelli

low bootstrap values overall
except {TA496, LA1537}

TA496 clustered with two
S. peruvianum accessions

TA496 intermediate between

{S. peruvianum, S. arcanum, Peru
Wild, S. pimpinellifolium, Tomate}
and {S. pennellii, S. habrochaites}

red-fruited clade was supported

red-fruited clade was supported

red-fruited clade was split into
{Peru Wild-1, Tomate, TA496}

and {Peru Wild-2, S. pimpinellifolium,

Pl 258478}

red-fruited clade was split into
{PI1 109834, S. pimpinellifolium}
and {TA496, Peru Wild, Tomate}

{P1 196297, PI 390510} were
divergent from other members
of red-fruited clade

Major disease resistance
genes on ch09 include:

Ve2, 0.05 MB, (11.002 cMP),
from Peru Wild

Vel, 0.06 MB, (11.002 cM),
from Peru Wild

Cma9.1, (4.0 — 24.0 cM),
from S. peruvianum

Frl, (27.0 = 37.0 cM),
from S. peruvianum

Tm29, 13.62 MB, (32.002 cM),
from S. peruvianum

Sw-5,67.30 MB, (78.001 cM),
from S. peruvianum

Ph-3,66.71 — 66.78 MB,
(63.0 - 78.0 cM), from
S. pimpinellifolium

Pl 258478 was collected
from Peru in 1959, highly
variable, fasciated fruit.

Introgressions on ch06 include:

Cyc-B, 42.29 MB, (106 cM),
from S. habrochaites

Pl 109834 Merville des
Marchés was collected
from France in 1935.

Pl 196297 was collected in
Nicaragua in 1951, fasciated
fruit, reported as introgressed
by Rick [23]; carries same
allele as PI 129026 (from
Ecuador, 1938, fasciated fruit),
Pl 129128 (from Panama, 1938,
fasciated fruit), Pl 258474 (from
Ecuador, 1959, fasciated fruit).
PI 390510 was collected in
Ecuador in 1974, described

as a wild cherry tomato.

Nine tomato markers previously identified as carrying highly divergent alleles within Solanum lycopersicum.

@ (Additional file 2: Figure S1).
P Genetic linkage map positions from [45] or [46].
€ Sequence mapped to two locations, see Results and discussion.

alleles between the two S. peruvianum accessions, with
no reticulation for marker 220_1 (Figure 2c and Add-
itional file 2: Figure S1). The size of the Tm-2" intro-
gressed region was estimated by mapping in segregating
F, populations [19]. RFLP marker TG101 at chromo-
some 9 location 50.41 MB was tightly linked (< 1 ¢cM) to
Tm-2%. The chromosomal position of Tm-2% has been

characterized as very near the centromere with ex-
tremely repressed recombination [47]. It is therefore
probable that markers 220_1 (5.77 MB), 2486_1
(5.90 MB) and 2534_1b (17.00 MB) were part of the
introgressed segment in TA496.

The TA496 allele at marker 437_2 (54.71 MB) was not
as definitively related to S. peruvianum and its origin
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was more difficult to interpret. The cladogram placed
TA496 in an intermediate position between two clades,
namely, {S. pimpinellifolium, Tomate, S. arcanum, Peru
Wild, S. peruvianum} versus {S. habrochaites, S. pennel-
lii} (Additional file 2: Figure S1). The hybridization net-
work showed reticulation with S. habrochaites and the
red-fruited alleles (Additional file 2: Figure S1). Several
genes commonly found in tomato varieties have origi-
nated from S. habrochaites (Cf-4, Tm-1, Ol-1, Cyc-B and
Del) or S. pennellii (I-1 and I-3) but none of these map
to chromosome 9 [43,45]. The chromosome 9 introgres-
sions listed in Table 2 were judged to be commonly used
in cultivars based on an informal survey of descriptions
from online seed catalogs (unpublished observations) as
well as comprehensive reviews of tomato breeding (e.g.
[16,26,42-44]).

Linkage drag of 437_2 in TA496 with Ph-3 (66.71 MB)
or Sw-5 (67.30) was rejected because they originated
from S. pimpinellifolium and S. peruvianum, respect-
ively. Based on a BLASTN search of TA496 marker
437_2 against the Solanaceae PlantGDB-assembled
Unique Transcipts (PUTs) in the Solanaceae Genomics
Resource database (http://solanaceae.plantbiology.msu.
edu/), TA496 and S. habrochaites shared a sympleisio-
morphy at nucleotide position 46 that was absent from
all other alleles that we resequenced. This provided ten-
tative but inconclusive evidence of a direct relationship
between the introgression and S. habrochaites. As alter-
native evidence, FM6203, a progenitor of TA496, pur-
portedly carries Asc resistance (pers comm. S. Loewen,
University of Guelph, 2005) for which S. pennellii has
served as one of the original sources on chromosome 3
in tomato [48].

The remaining five markers with divergent alleles
showed patterns consistent with introgression from S.
pimpinellifolium in natural populations. At four markers
(2325_3, C2_Atl1g44575, 2819_5 and U146140) the di-
vergent alleles were more closely related to red-fruited
rather than green-fruited taxa with bootstrap values ran-
ging from 82% — 100% (Additional file 1: Table S2), al-
though markers 2819_5 and U146140 did not support
monophyly of red-fruited alleles (Additional file 2: Figure
S1). Hybridization networks showed red-fruited species
alleles to be distinct from green-fruited species alleles
for 2325_3 and C2_Atlgd4575, while 2819 5 and
U146140 showed connections between red-fruited and
green-fruited species (Additional file 2: Figure S1). Mar-
ker U146140 nicely illustrated the S. lycopersicum x S.
pimpinellifolium hybrid origin of Merville des Marchés
PI 109834 (Figures 2d, 2e). Marker C2_Atl1g73180
showed an unusual pattern in that PI 196297 (and three
additional accessions with the identical allele, Table 2)
and PI 390510 were divergent from all other alleles in
the cluster analysis with 99% bootstrap support
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(Figure 3a and Additional file 2: Figure S1). This sug-
gested a potential paralog. However, no heterozygotes
were observed, the marker did not map to more than
one genomic location, and COSII markers were designed
to amplify highly conserved single copy genes [27].

The divergent C2_At1g73180 alleles were unlikely to
have originated from a green-fruited species because
chromosome 8 does not carry any introgressed disease
resistance alleles [16,42-44]. The hybridization network
depicted PI 196297 and PI 390510 as branching from S.
pimpinellifolium, with complex reticulations at the base
of the red-fruited clade that extended through the
green-fruited taxa, down to S. pennellii at the root
(Figure 3b). Among the seven unique polymorphisms
carried by PI 196297 and PI 390510, two were non-
conservative amino acid substitutions, two were syn-
onymous and three were intronic. One possibility is that
selection at or near this locus has caused ancient poly-
morphism to have been retained. A significant HKA test
[49] (y*=7.36, P=0.007) strengthened this interpret-
ation. Therefore, diversity at this marker showed pat-
terns of both natural selection and introgression.

Additional evidence that these five markers represent
S. pimpinellifolium introgressions in natural populations
includes geographical origins of three accessions from
Ecuador where the two species hybridize extensively
[50], original collection of three accessions dating to
1935 and 1938 (likely precluding the influence of direct
introgression breeding), the primitive fruit phenotype of
fasciation (four accessions) or wild cherry tomato (one
accession, n.b., cherry tomato was described as an ad-
mixture of S. lycopersicum and S. pimpinellifolium by
[35]), and previously reported introgression of PI 196297
with S. pimpinellifolium by Rick [23]. In estimates of
population structure [51] PI 109834, PI 129128, PI
258474 and PI 258478 all showed high probability of
membership in the second of two populations inferred
for S. lycopersicum genotypes, consistent with interspeci-
fic hybridization [9].

Conclusions

It was useful to delineate cryptic introgression within S.
lycopersicum into linkage drag stemming from breeding
versus natural hybridization with S. pimpinellifolium, al-
though this categorization was not definitive and should
be subjected to further scrutiny. Sequences of the wild
tomato species markers in the context of their physical
map locations have strengthened our previous interpre-
tations of detection of introgressed alleles in domesti-
cated tomato [24,25]. Genomic tools for fine resolution
of introgressed regions in crop species are increasingly
available. The strengths and weaknesses of comparative
genotyping to verify introgression have been illustrated
here using Solanum section Lycopersicon taxa.
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In the current study the implications of linkage drag
of introgressed alleles on phenotype remain unknown.
At least one marker (2534_1b) codes for an enzyme
involved in fruit ripening (Table 2). In cultivars or
breeding lines it will be more useful to estimate the pro-
portion of a genome that harbors linkage drag. This
should be feasible for TA496 using bioinformatics given
the vast amount of public EST sequence data available
for this particular line and wild tomato species (http://
solgenomics.net/tools/blast/dbinfo.pl as of June 2012
reported 323,465 Lycopersicon mRNAs). Importantly,
an understanding of linkage drag will help to distinguish
it from selection during crop improvement. Four of six
markers that previously rejected neutrality tests (437_2,
2486_1, 2534_1b and 2819_5) (Table 2 in [25]) were
found to be introgressed rather than selected. It is
anticipated that next-generation sequencing will be

utilized to more rapidly eliminate linkage drag in crops
[52].

Natural hybrids will carry high proportions of wild
alleles making them somewhat easy to detect using large
numbers of molecular markers. The intrinsic value of
naturally introgressed germplasm was recognized in
common bean (Phaseolus vulgaris) as a source of new
alleles for traits such as disease resistance [53]. In S.
lycopersicum, if horticultural effects of introgression are
subtle then accessions such as Merville des Marchés
may be prime sources to screen for new alleles. A search
of the literature for accessions that were part of the
current study (Table 2) found that PI 129128 showed
high lycopene content, similar to lines containing pig-
ment mutations such as og", hp, and dg [54].

Finally, it is worth noting that Rick [23] reported the
potential of natural hybridization of S. lycopersicum with
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Solanum chilense, S. habrochaites (formerly Lycopersicon
hirsutum f. glabratum), and Lycopersicon peruvianum
(now revised into four species, [55]) in regions of Chile,
Ecuador and Peru where sympatric populations grow in
close contact, although he found no evidence of this
based on phenotypes and severe postzygotic barriers are
well known. Genotyping of populations sampled from
these regions would provide evidence to reexamine
whether introgression from these wild tomato species
into S. lycopersicum has played a role in the crop’s
evolutionary history.

Methods

Plant material

Marker genotypes used in this study were previously
reported for Solanum arcanum and S. lycopersicum
[9,25] or were newly collected from each of five wild
tomato accessions and one weedy S. [ycopersicum ac-
cession Peru Wild. The specific accessions of S. habro-
chaites, S. pennellii, S. pimpinellifolium and Peru Wild
have served historically as sources of important disease
resistance alleles for tomato cultivars (Table 1). The
two S. peruvianum accessions were chosen because
they were known to be inbred and predicted to be
highly homozygous. One of these, S. peruvianum
LA1537, originated from accession PI 128650 which
was the original source of Tm-2* [56,57]. Two plants
per each of the six accessions were sampled as seed-
lings for genomic DNA isolation and sequencing of
markers. Three accessions included in this study had
previously published sequences for the markers [25]
(Table 1). These were — a breeding line with documen-
ted multiple introgressions in its pedigree including
Tm-2" (TA496) [57], an accession that predated tomato
introgression breeding (Tomate, PI 99782), and S. arca-
num (G 32591) a naturally self-fertilizing accession
formerly classified as Lycopersicon peruvianum. For
a few markers, published sequences from additional
S. lycopersicum accessions (PI 109834 Merville des
Marchés, PI 129026, PI 129128, PI 196297, PI 258474,
PI 258478, PI 390510, Table 1) were included in ana-
lyses because they were previously reported as carrying
highly divergent alleles, i.e. putative introgressions, at
those loci [9,25].

DNA sequences

Genomic DNA extraction from seedlings, PCR amplifi-
cation and two-pass sequencing were as described in
Labate et al. [28]. Initially, 49 of 50 markers from Labate
et al. [9] were sequenced. These represent random loci
including expressed genes (expressed sequence tag, EST-
based), highly conserved genes (COSII and U) and arbi-
trary loci. Marker 1523_4 was excluded without testing
because it tended to give poor quality sequence within
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S. Ilycopersicum. Markers 175_1 and 1909_2 were
dropped during this study because they did not consist-
ently amplify S. lycopersicum homologs in wild tomato
species, leaving 47 markers representing approximately
24 kb in total (Additional file 1: Table S1). Software
packages phred, phrap and Consed [58,59] and Staden
[60] were used for assembly and base calling of reads.
Pregap4 (ver. 1.5) of the Staden package was configured
to apply a base-calling algorithm “Estimate Base Accur-
acies” that is different from phred in order to independ-
ently verify the data. Sequence data were trimmed to
remove primer binding sites and low quality ends
(phred<40), and manually aligned in BioEdit [61]. All
SNPs and heterozygous positions were confirmed by vis-
ual examination of trace files by two people. If the two
plants from one accession had different sequences they
were kept distinct; if they were identical they were trea-
ted as a single representative sequence of that accession.
Heterozygous sites were manually edited to use I[UPAC
nucleotide ambiguity codes. GeneSeqer (ver. 08 Oct.
2008) [62] was used to compare exon and intron predic-
tion for all markers against previous annotations [28].
All sequences were mapped using BLASTN [63]
against tomato whole genome shotgun chromosomes
(SL2.40) database with an e-value threshold of 1 x 107%°
on the SGN web site [64]. Gene models within markers
and adjacent regions were identified in the SGN genome
browser using ITAG2.3 Release: genomic annotations.
For marker 437_2, tomato sequences were compared to
transcribed sequences from an evolutionary out group
(potato, Solanum tuberosum) by BLASTN searches of the
Solanaceae Genomics Resource database at Michigan
State University (http://solanaceae.plantbiology.msu.edu/).

Statistical analyses

For each of the 47 markers, relationships among geno-
types (also referred to as taxa) were first examined by
applying the neighbor-joining (NJ) clustering method
[65] as implemented in MEGA 4.0.2 [66] with 1,000
bootstrap replicates. Genetic distance and average evolu-
tionary divergence (D) were estimated using the Jukes-
Cantor method [34]; positions with alignment gaps or
missing data were eliminated in pairwise sequence com-
parisons. For each of 11 markers that did not support
the red-fruited clade based on MEGA results, consensus
trees were generated by Phylip ver. 3.69 using Seqgboot
to produce 100 datasets by bootstrap resampling, Dna-
dist to estimate genetic distances using the Jukes-Cantor
method, Neighbor to produce unrooted NJ trees and
Consense to compute a consensus tree by the majority-
rule consensus tree method [67]. SplitsTree4 ver. 4.12.3
[68] was used to create splits networks from DNA
sequences or NJ trees [69]. Hybridization splits networks
were created using the consensus tree of marker
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U146437 as a control that highly supported the red-
fruited clade (99%) plus the consensus tree of the marker
being tested for an introgression, with balanced sets of
taxa (same taxa in each tree). A neutrality test [49] of
marker C2_At1g73180 was carried out in DnaSP v. 5.10
[70] using marker TG11 as a control and S. arcanum as
the out group.

Additional files

Additional file 1: Table S1.Virtual mapping of 47 sequence-based
markers. BLASTN results of 47 markers against tomato whole genome
shotgun chromosomes from version 2.40 of the WUR assembly, current
as of 10 Jan, 2012. Table S2.Evolutionary relationships among taxa at 47
markers. Bootstrap support and evolutionary divergence of 47 tomato
markers sequenced in wild and cultivated tomato accessions. Marker
names in bold were previously hypothesized as carrying introgressions.

Additional file 2: Clustering and network analyses of tomato
genotypes. Neighbor joining trees for 47 markers and hybridization
networks for nine markers sampled from wild and cultivated tomato.
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