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Abstract

Background: The two highly similar Arabidopsis apyrases AtAPY1 and AtAPY2 were previously shown to be
involved in plant growth and development, evidently by regulating extracellular ATP signals. The subcellular
localization of AtAPY1 was investigated to corroborate an extracellular function.

Results: Transgenic Arabidopsis lines expressing AtAPY1 fused to the SNAP-(O-alkylguanine-DNA alkyltransferase)-tag
were used for indirect immunofluorescence and AtAPY1 was detected in punctate structures within the cell. The same
signal pattern was found in seedlings stably overexpressing AtAPY1-GFP by indirect immunofluorescence and live
imaging. In order to identify the nature of the AtAPY1-positive structures, AtAPY1-GFP expressing seedlings were treated
with the endocytic marker stain FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-hexatrienyl)-pyridinium
dibromide) and crossed with a transgenic line expressing the trans-Golgi marker Rab E1d. Neither FM4-64 nor Rab E1d
co-localized with AtAPY1. However, live imaging of transgenic Arabidopsis lines expressing AtAPY1-GFP and either the
fluorescent protein-tagged Golgi marker Memobrin 12, Syntaxin of plants 32 or Golgi transport 1 protein homolog showed
co-localization. The Golgi localization was confirmed by immunogold labeling of AtAPY1-GFP. There was no indication of
extracellular AtAPY1 by indirect immunofluorescence using antibodies against SNAP and GFP, live imaging of AtAPY1-GFP
and immunogold labeling of AtAPY1-GFP. Activity assays with AtAPY1-GFP revealed GDP, UDP and IDP as substrates, but
neither ATP nor ADP. To determine if AtAPY1 is a soluble or membrane protein, microsomal membranes were isolated
and treated with various solubilizing agents. Only SDS and urea (not alkaline or high salt conditions) were able to release
the AtAPY1 protein from microsomal membranes.

Conclusions: AtAPY1 is an integral Golgi protein with the substrate specificity typical for Golgi apyrases. It is therefore not
likely to regulate extracellular nucleotide signals as previously thought. We propose instead that AtAPY1 exerts its growth

Co-localization, Substrate specificity

and developmental effects by possibly regulating glycosylation reactions in the Golgi.
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Background

The term “apyrase” (adenosine pyrophosphatase) for an
enzyme cleaving the phosphoanhydride bonds of ATP and
ADP was coined by Otto Meyerhof in 1945 [1]. Decades
later, the alternative name “N'TPDase” (nucleoside triphos-
phate diphosphohydrolase) was officially proposed [2] be-
cause apyrases hydrolyze a wide range of nucleoside tri-
and diphosphates (reviewed in [3]). Apyrases have been
found in many pro- and eukaryotes (reviewed in [3]), and
they all share highly conserved regions [4]. In plants, the
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postulated functions are diverse and include nodulation
[5-9], resistance to xenobiotics [10], phosphate scavenging
[11] and growth [12-16]. Each eukaryotic genome
screened for the presence of apyrase genes holds at least
two candidates. In Arabidopsis thaliana, a total of seven
apyrase gene candidates exist. Our research focused on
the function of the two Arabidopsis apyrase genes AtAPY1
and AtAPY?2, whose corresponding proteins share an iden-
tity of 87% amino acids. Knocking out one of the two
apyrase genes by T-DNA (transfer DNA) insertion result-
ing in an apyl or apy2 single knockout (SKO) caused no
obvious differences in phenotype compared with the wild
type (WT) [17], but knocking out both AtAPYI and
AtAPY2 inhibited pollen germination [17] and was
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seedling-lethal [18]. Overexpression of either AtAPY1 or
AtAPY2 led to more vigorous growth of hypocotyls and
pollen tubes [12]. Suppression of expression, however, by
RNA interference targeting AtAPYI in the apy2 SKO
background, inhibited growth throughout the whole plant
and especially in the hypocotyls and roots [12]. Several
lines of evidence suggested that these growth effects are
mediated by AtAPY1 and AtAPY2 regulating extracellular
ATP (eATP) signals [12]: Apyrase activity, measured in
the extracellular matrix (ECM) of growing pollen tubes,
could be reduced by adding chemical inhibitors or poly-
clonal antibodies directed against AtAPY1. The reduction
in activity simultaneously raised eATP levels and reduced
pollen tube growth [12]. These findings explained the in-
hibition of growth when the expression of AtAPY1 and
AtAPY2 is suppressed or shut off and provided the first
direct evidence that apyrases function as regulators of
extracellular nucleotides such as eATP in plants. In the
animal field, the direct link between ecto-apyrases and
[eATP] had already been shown [19]. Similarly, eATP was
already known to serve as signaling molecule in animals
(reviewed in [20]) before it became recognized as such in
plants in the past decade (reviewed in [21-23]).

The objective of this study was to confirm the extracel-
lular function of the two Arabidopsis apyrases AtAPY1
and AtAPY2 by their localization to the plasma membrane
or the apoplast. Since AtAPY1 and AtAPY2 were shown to
be functionally redundant in their ability to rescue pollen
germination of double knockout apyrase (DKO) pollen
[17] and seedling viability in DKO mutants [18], an over-
lapping subcellular localization of the two apyrases was
likely. Therefore, this study focused on the localization of
only one apyrase.

Stable Arabidopsis lines were generated expressing
AtAPY] fused to either one of two tag sequences, SNAP
or GFP. For the identification of the AtAPY1-positive
compartments, organelle-specific marker proteins were
co-expressed and immunogold labeling was used. Unex-
pectedly, the apyrase was not localized to the plasma
membrane or cell wall, but to the Golgi apparatus.

Methods

Plant material and growth conditions

For all experiments, the A. thaliana ecotype Wassi-
lewskija was used as the WT control. Seedlings were
grown for one week under sterile conditions on agar
plates (4.3 gL 'Murashige Skoog (MS) salts, 0.5 gL
MES, pH 5.7 (adjusted with KOH), 1% (w/v) sucrose,
0.8% (w/v) agar) or in liquid medium (see above,
without agar) under shaking (80 rpm). After one
week on agar plates, seedlings were transferred to
soil (Einheitserde, type P, Pdtzer Inc., Sinntal-Jossa,
Germany) and grown at 24°C and a 16-h photo-

period at 100 pymol photons m™ % s,
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Genotypic background and terminology of apyrase
mutants

The term SKO refers to the homozygous presence of the
null alleles of either the AtAPY1 gene (= apyl/apyl) or
the AtAPY?2 gene (= apy2/apy2). The T-DNA null muta-
tions apyl and apy?2 refer to the mutant alleles apyl-1
and apy2-1, respectively, as described in Steinebrunner
et al. [17]. The symbol “+” refers to the WT counterpart
of the mutant allele. Two types of apyrase DKO mutants
were generated: DKO-SNAP (= apyl/apyl; apy2/apy2;
SPIK::AtAPY2; AtAPYI1::AtAPY1-SNAP) and DKO-GFP
(= apyl/apyl; apy2/apy2; SPIK:AtAPY2; 35S:AtAPYI-
GFP). Both types of DKO mutants carried the AtAPY2
gene under the control of the SPIK promoter. The
details of the construct SPIK::AtAPY2 were published in
[18]. SPIK is the promoter region of the shaker pollen
inward K* channel gene expressed specifically in pollen
and pollen tubes [24].

Generation of AtAPY1-SNAP-complemented apyrase DKO
mutants (= DKO-SNAP)

The open reading frame (ORF) of AtAPY1 fused to the
SNAP-tag sequence was cloned under the control of the
native AtAPY1 promoter region (nt —-10 to —1959; with
-1 corresponding to the first nucleotide upstream of the
adenine of the AtAPY1 start codon) with the Gateway
technology (Invitrogen). The AtAPY1-SNAP sequence is
shown in the Additional file 1. For the SNAP-tagging,
the stop codon was removed from the AtAPY1 sequence
to create a C-terminal fusion to the tag. The vector
pSNAP-tag(m) (New England Biolabs) was used as the
PCR template for the SNAP-tag sequence. The primer
pair for the amplification produced a 531-bp product
and contained the following SNAP-specific sequences:
5-GACTGCGAAATGAAGCGCA-3  (SNAPlokattB3F;
forward) and 5-TTAAGGCTTGCCCAGTCTGTG-3’
(SNAPlokattB2R; reverse). The reverse primer intro-
duced the stop codon. The entry clone for each of the
three DNA elements was generated by recombining the
respective PCR product with the matching pDONR vec-
tor (Invitrogen). The necessary recombination sites were
introduced into the PCR product through the primer
sequences. The three entry clones were recombined with
the binary destination vector pGWB501 [25] to form the
final construct AtAPY1::AtAPY1-SNAP. The sequences
of the entry clones and the expression clone were con-
firmed by sequencing. The Agrobacterium tumefaciens
strain GV3101 [26] was transformed with the expression
clone and then used for transformation of apyrase mutants
which were hemizygous for the apyl mutation (= +/apyl),
homozygous for the apy2 mutation (= apy2/apy2; SKO)
and contained the construct SPIK:AtAPY2. The plants
were transformed by the floral dip method [27]. Transgenic
lines (T1 generation) were grown on agar plates containing
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hygromycin (50 pg mL™"), phosphinothricin (PPT)
(10 ug mL™") and kanamycin (30 pg mL™). Hygromycin
selected for the presence of AtAPYI1:AtAPY1-SNAB PPT
for the presence of SPIK:AtAPY2 and kanamycin for the
presence of apyl or apy2.

Generation of AtAPY1-GFP-complemented apyrase DKO
mutants (= DKO-GFP)

The cloning of the 355:AtAPYI1-GFP construct is described
in detail in [28]. The ORF of AtAPY1 without the stop
codon was amplified by PCR and cloned into the pQE-30
vector (Qiagen). For the amplification of the GFP cDNA,
the pBIN mGFP5-ER [29] served as the template. The PCR
product was cloned in frame with the AtAPY1 sequence
already present in pQE-30 to enable a translational fusion
of GFP with the C-terminus of AtAPY1. The resulting con-
jugated AtAPYI-GFP ORF was amplified and subcloned
into the TOPO pCR2.1 vector (Invitrogen). The AtAPYI-
GFP cDNA was released by EcoRI digestion and cloned
into the binary vector pLBJ21 [30]. The AtAPY1-GFP se-
quence is available as Additional file 2. The transgenic line
expressing the GFP-tag alone is available from the Arabi-
dopsis Resource Center (stock number CS9114).

WT Wassilewskija plants were transformed with the
help of agrobacteria containing the recombinant construct
by the floral dip method [27]. Transformants (T1 gener-
ation) were selected on agar plates containing kanamycin
(30 ug mL™). For genetic complementation experiments,
homozygous AtAPYI-GFP transgenic lines were crossed
with apyl SKO plants hemizygous for the apy2 mutation
and carrying the AtAPY2 ¢cDNA under the control of the
SPIK promoter (= apyl/apyl; +/apy2; SPIK:AtAPY?2).
Kanamycin-resistant progeny were genotyped by PCR.
Apyl SKO plants containing the AtAPYI-GFP construct
(= apyl/apyl; +/+; 35S::AtAPY1-GFP) were crossed with
apy2 SKO plants hemizygous for the apyl mutation and
expressing AtAPY2 under the control of the SPIK pro-
moter (= +/apyl; apy2/apy2; SPIK:AtAPY2). The progeny
were selected on kanamycin and PPT.

Screening for complemented apyrase DKO mutants

For the screening for complemented apyrase DKO-SNAP
and DKO-GFP mutants, genomic DNA was extracted from
candidate plants as described elsewhere [31]. For detection
of AtAPY1, AtAPY2, apyl, apy2 and SPIK:AtAPY2, the
used primer combinations are described in [18], except for
the reverse AtAPY1-specific primer which was changed to
AIIIR (5-GCGAGCTAGAAATACCACC-3) vyielding a
PCR product of 1 kb. The presence of the AtAPYI:
AtAPY1-SNAP construct was confirmed using the SNAP-
specific primer SNAPlokattB2R and the AtAPY1-specific
primer AlE9F (5-CCACTAGGAAGCGCAATAGA-3)
located in exon 9. The 35S:AtAPY1-GFP construct was
amplified using the AtAPY1 forward primer A1ESF and a
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reverse primer located in the GFP sequence (GFP_rev 5'-
TGTATAGTTCATCCATGCCATG-3) resulting in a PCR
product of 0.7 kb.

Generation of transgenic lines co-expressing AtAPY1-GFP
and either YFP-(yellow fluorescent)-Rab E1d, -SYP32,
-Got1p homolog or RFP - (red fluorescent protein)-MEMB12
Four transgenic lines generated by Geldner et al. [32]
expressing either the marker YFP-Rab Eld, YFP-Gotl-
phomolog, YFP-SYP32 or RFP-MEMBI2 under the con-
trol of the UBQIO promoter were obtained from the
Nottingham Arabidopsis Stock Centre. The lines were
validated by antibiotic selection and genomic PCR as
suggested by Geldner et al. [32]. Homozygous transgenic
35S::AtAPY1-GFP plants were crossed with either homo-
zygous UBQ10::YFP-Gotlp homolog, YFP-SYP32 or RFP-
MEMBI2 plants. The F1 progeny were selected on agar
plates containing kanamycin (30 pg mL™) and either
PPT (10 pg mL™) for the crosses with the YFP fusion
constructs or hygromycin (50 pug mL™) for the crosses
with the RFP fusion construct. Double resistant F1 seed-
lings were genotyped for the existence of the desired fu-
sion constructs before analyzing them by confocal
microscopy.

Protoplast preparation

Ten-day-old 35S::AtAPYI-GFP transgenic seedlings from
a liquid culture were digested over night at 18°C in buf-
fer (0.4 M sorbitol, 20 mM HEPES-KOH pH 7.6,
2.5 mM EDTA, 5 mM MgCl,, 10 mM NaHCOs;, 0.1%
(w/v) bovine serum albumin, freshly added 1.6% (w/v)
cellulase Onozuka RS (Duchefa) and 1.6% (w/v) macero-
zyme R-10 from Rhizopus sp. (Serva)) [33].

Whole mount immunofluorescence of AtAPY1-SNAP

Ten-day-old DKO-SNAP seedlings were fixed in 4%
(w/v) paraformaldehyde (PFA) for 1 h and treated with
1% (w/v) cellulase Onozuka RS (Duchefa) and 1% (w/v)
macerozyme R-10 from Rhizopus sp. (Serva) for 15 min
at 37°C. After washing twice with phosphate buffered sa-
line (PBS), the samples were treated with 1% (v/v) Triton
X-100 for 1 h at room temperature (RT). To inactivate
all endogenous peroxidases, the samples were incubated
in methanol:hydrogen peroxide (200:1, v/v) for 30 min
at RT in the dark. After washing with water, the seed-
lings were treated with 96% (v/v) ethanol for 1 min,
washed twice with PBS and blocked with 1% (w/v) skim
milk (Fluka) for 30 min. Incubation with polyclonal
rabbit a-SNAP antibody (Open Biosystems, Huntsville,
Alabama, USA) (1:50 in 1% (w/v) skim milk) followed
for at least 1 h at RT. After washing three times with
PBS, the seedlings were incubated for at least 1 h at RT
with goat a-rabbit-IgG conjugated with horseradish per-
oxidase (HRP) (GE Healthcare) diluted 1:800 in 1%
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(w/v) skim milk. After removing the secondary antibody
by washing three times with PBS, the seedlings were
treated with 2 pL fluorescein isothiocyanate (FITC) tyra-
mides (1 mg mL™) in 50 mL amplification buffer [34]
for at least 1 h at RT or at 4°C overnight in the dark.
FITC tyramides were prepared according to Pernthaler
et al. [34] and kindly provided by Kerstin Roske. The
samples were washed three times with PBS and stored
for imaging in PBS.

Whole mount immunofluorescence of AtAPY1-GFP

Root tips of six-day-old 35S::AtAPY1-GFP transgenic seed-
lings were fixed with 4% (w/v) PFA in 0.1 M phosphate
buffer (PB, pH 7.4) for 30 min, 2 h in 8% (w/v) PFA ([35];
Y-D Stierhof, personal communication) followed by post-
fixation in 80% methanol/20% DMSO (Dent’s fixative,
[36]). Fixed samples were whole-mount immunolabeled
with rabbit a-GFP (TP 401; Lot no. 071519 from Torrey
Pines, 1:100) and goat a-rabbit Alexa Fluor 488 (Invitro-
gen; Lot no. 430222; 1:100) and then embedded in Tech-
novit 7100 as previously described [37]. Three-um
sections were analyzed with the fluorescence microscope
Keyence BZ 8000 (Additional file 3).

Treatment with FM4-64 and alkaline pH

Seven- to ten-day-old 35S:AtAPYI-GFP transgenic seed-
lings were vacuum-infiltrated with 15 pM FM4-64 (Invitro-
gen) in 1 M Tris—HCI pH 8.0. For the alkali treatment, two
approaches were taken: (1) 35S:AtAPY1-GFP seedlings
were cultured in regular liquid MS medium (pH 5.7) for
five days, transferred to alkaline MS medium (pH 8.1) and
grown for three more days before imaging [38] or (2) the
seedlings were grown in regular liquid MS medium
(pH 5.7) for eight days and infiltrated with tap water or Tris
buffered saline (TBS) pH 7.5 for at least 2 h before imaging.

CLSM (confocal laser scanning microscopy)
For the imaging of DKO-SNAP plants (10 d old), the
Leica confocal and multiphoton microscope TCS SP5
MP was used. To avoid bleaching of FITC, the samples
were mounted with antifade (0.233 g 1,4-diazabicyclo
(2.2.2)octane (Sigma) in 200 uL. 1 M Tris—HCI pH 8.0,
800 pL water, 9 mL glycerine) [39]. The FITC signals
were captured using a Leica water immersion objective
(HCX PL APO 63x/1.2 Water Lbd.Bl.). The detector
range was set to 494 to 530 nm. The autofluorescence of
the WT seedlings (10 d old) was captured with the same
parameters and settings as described for FITC. Spectral
images of the WT and the DKO-SNAP samples were
analyzed by linear unmixing with the dye separation tool
of the Leica software (LAS1.8.2) to identify FITC-
specific signals.

Transgenic plant material containing the 35S:AtAPYI-
GFP construct were imaged with the Zeiss Axio Imager

Page 4 of 16

connected to the laser scanning microscope LSM 710 or
780 (Carl Zeiss). Six- to 10-d-old seedlings were imaged in
water and protoplasts in sorbitol buffer pH 7.6 (see Proto-
plast preparation) without the enzymes. The images
were analyzed with the Zeiss Zen 2009 and Fiji [40] soft-
ware. Zeiss water immersion objectives (C-Apochromat
40x/1.20 W Korr M27 or C-Apochromat 63x/1.20 W Korr
M27) were used. Chlorophyll fluorescence was detected be-
tween 601 to 708 nm after excitation with the 594-nm exci-
tation line of a helium-neon (HeNe) laser. GFP was excited
with the 488 nm argon laser multiline and the emission
was collected between 490 and 520 nm. YFP was excited
with the 514-nm excitation line of an argon laser (multi-
beam splitter 514/561) and the emission was collected be-
tween 535 and 580 nm. RFP was excited at 561 nm and its
fluorescence detected in the 570 to 630-nm range. For co-
imaging of GFP with either YFP or RED, the line sequential
imaging mode was chosen with rapid switching between
the two exciting laser lines. For detection of GFP and YFP
in one sample, GFP was excited at 458 nm and YFP as
described above (multi-beam splitter 458/514/594). The
fluorescence of GFP and FM4-64 was imaged simultan-
eously by using the exciting laser line 488 nm, but separate
emission detectors (490 — 543 nm and 667 — 746 nm, re-
spectively). For all dual labelings, narrow detector entrance
slit bandwidths were chosen to avoid bleed-through of
fluorescence emissions. Bright field-type images were
acquired with the transmitted light detector.

Immunogold labeling of AtAPY1-GFP

Root tips of six-day-old 35S::AtAPY1-GFP transgenic seed-
lings were fixed as described under “Whole mount im-
munofluorescence of AtAPY1-GFP”. Fixed samples were
processed for Tokuyasu cryo-sectioning as described [41].
In brief, root tips were washed several times in PB, infil-
trated stepwise into gelatine and cooled down on ice.
Blocks with single root tips were cut on ice, incubated in
2.3 M sucrose in water for 24 h at 4°C, mounted on Pins
(Leica no. 16701950) and plunge-frozen in liquid nitrogen.
One-hundred-nm-thin sections were cut on a Leica UC6
equipped with a FC6 cryo-chamber and picked up in me-
thyl cellulose sucrose (1 part 2% (w/v) methyl cellulose
(Sigma M-6385, 25 centipoises) + 1 part 2.3 M sucrose). For
immunogold labeling, the grids were placed upside down
on drops of PBS in a 37°C incubator for 20 min, washed
with 0.1% (w/v) glycine in PBS (5x1min), blocked with 1%
(w/v) bovine serum albumin in PBS (2x5min) and incu-
bated with primary antibodies for 1 h (a-GFP: TP 401 from
Torrey Pines, 1:50, or ab290 from Abcam, 1:50). After
washes in PBS (4x2min), the sections were incubated with
Protein A conjugated to 10-nm or 6-nm gold for 1 h,
washed again in PBS (3x5s, 4x2min) and postfixed in 1%
(v/v) glutaraldehyde (5 min). The sections were washed
with distilled water (10x1min), stained with neutral uranyl
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oxalate (2% (w/v) UA in 0.15 M oxalic acid, pH 7.0) for
5 min, washed briefly in water and incubated in methyl
cellulose uranyl acetate (9 parts 2% (w/v) MC + 1 part 4%
(w/v) UA, pH 4) on ice for 5 min. Finally, grids were looped
out, the MC/UA film was reduced to an even thin film and
air-dried. Sections were analyzed on a Philips Morgagni
268 (FEI) at 80 kV and images were taken with the Mega-
View III digital camera (Olympus). Areas were calculated
using the ITEM-software (Olympus). Alternatively, 200-
nm-thin sections were mounted on glass slides and stained
with a-GFP and goat o-rabbit Alexa Fluor 488 for fluores-
cence analysis on a Keyence BZ 8000 fluorescence
microscope.

Co-localization analysis

Transgenic plants co-expressing AtAPYI1-GFP and either
RFP-MEMBI2, YFP-SYP32, YFP-GOTIlp homolog or
YFP-Rab Eld were imaged by confocal microscopy and
the obtained dual-channel images analyzed with Image]
[40]. The corresponding scatterplots and Pearson’s cor-
relation coefficients were generated with the “Colocaliza-
tion Threshold” and “Coloc2” tool of Image].

Purification of AtAPY1-GFP

For cultivation of starting material, 50 mg of seeds were
grown in 50 mL of liquid medium in a 250-mL flask for
10 to 12 d. Seedlings were ground to a fine powder in li-
quid nitrogen using a mortar and pestle. For each gram
of plant material, 250 to 375 pL ice-cold Tris-MES buf-
fer (10 mM Tris, 2 mM MgCl,, 30 mM KCI, pH 6.5,
adjusted with 1 mM MES pH 3) were added. The cell
homogenate was allowed to thaw at RT and filtered
through a fine mesh (Miracloth, Calbiochem). The fil-
trate was subjected to centrifugation at 1,000¢ and 4°C
for 10 min to remove debris. The supernatant was centri-
fuged at 8,000 ¢ and 4°C for 10 min and the pellet was dis-
carded. The supernatant was mixed 1:1 with 100% (v/v)
glycerol to retain enzymatic activity and stored at —-80°C.
For purification of AtAPY1-GFP, 96-well microtiter plates
coated with o-GFP antibodies (GFP-multiTrap plates,
ChromoTek, Planegg-Martinsried, Germany) were used.
Two hundred microliters of protein extract (4—6 pg pL™)
were added per well and incubated at 4°C under shaking
(500 rpm) for 2 h or overnight. Unbound proteins were
removed by washing the wells three times with 300 pL of
ice-cold Tris-MES buffer.

Apyrase activity assay

To determine the apyrase activity, an assay based on
Tognoli et al. [42] was used. The nucleotide substrates
were purchased from Sigma and the stock solutions
were prepared in water. The nucleotides were diluted in
Tris-MES buffer (pH 6.5 or pH 5.5) to the desired con-
centration and added as 130-pL aliquots to each well of
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immobilized AtAPY1-GFP on the GFP-multiTrap plate.
The reaction was incubated under shaking (500 rpm) at
30°C for 1 h. The released phosphate was assayed by
transferring 60 pL of each reaction mixture to two sep-
arate wells on a new transparent 96-well microtiter plate
(Greiner Bio-One, Kremsmiinster, Austria) and by add-
ing 120 pL of freshly prepared stopping solution of
0.375 M H,S0,, 0.75% (w/v) (NH,)4MoOQ, - 4H,0, 0.7%
(w/v) SDS and 3% (w/v) FeSO, - 7H,O to each well.
After a 10-min incubation at RT, the absorbance of the
samples was read at 740 nm. To determine the back-
ground from phosphate contaminations and unspecific
phosphatase activities, the reactions were run in parallel
with WT protein extracts. The background absorbance
readings were subtracted from the readings assayed with
AtAPY1-GFP.

Solubilization of microsomal membrane proteins
Seedlings from 2 mg of 35S:AtAPY1-GFP transgenic seeds
were grown in 60 mL of liquid medium for two weeks and
then ground in liquid nitrogen. The plant powder was sus-
pended in 3 mL ice-cold protein extraction buffer (50 mM
HEPES KOH pH 6.5, 5 mM EDTA, 0.4 M sucrose, 1 mM
AEBSF  (4-(2-aminoethyl)-benzensulfonyl fluoride hydro-
chloride) (Sigma), complete EDTA-free protease inhibitor
cocktail (Roche)). AEBSF and the inhibitor cocktail were
added right before use. The protein suspension was filtered
through a single layer of miracloth and centrifuged at
14,000 g for 10 min at 4°C. The supernatant was ultracentri-
fuged at 100,000 g for 1 h at 4°C to pellet microsomal mem-
branes. Equal amounts of the membranes were either
treated with 2 M NaCl, 0.2 M Na,COs;, 0.2% (w/v) SDS,
4 M urea or protein extraction buffer alone for 30 min on
ice. Then, the samples were centrifuged at 100,000 ¢ for 1 h
at 4°C producing a supernatant with solubilized proteins
(S100) and the microsomal membrane fraction (P100). The
supernatants were centrifuged in Vivaspin 2 concentrators
(polyethersulfone membrane, 10-kDa cut off; Sartorius) for
circa 20 min at 12,000g. The protein concentrations of the
S100 and P100 fractions were determined with the BCA
protein assay kit (Thermo Scientific). Equal amounts
(approximately 40 pg) of the membrane fraction and of the
solubilized proteins were loaded on a SDS gel and
immunoblotted.

SDS-PAGE and Western blot analysis

The SDS-PAGE and semidry immunoblotting proce-
dures were performed according to standard protocols.
The nitrocellulose membrane (Schleicher & Schiill) was
blocked in 1% (w/v) skim milk for 1 h. Primary and sec-
ondary antibodies were diluted with 1% (w/v) skim milk
in TBS. After incubation of the membrane with the anti-
bodies for 1 h each, it was washed three times for
10 min each with 0.1% (v/v) Tween-20 in TBS. AtAPY1-
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GFP was detected with monoclonal mouse o-GFP
(1:1000; Roche), actin with monoclonal mouse «-plant
actin 8 (clone 10-B3 MAbGPa; 1:1000; Sigma), cFBPase
with polyclonal rabbit o-A. thaliana cFBPase (1:1000;
Agrisera). The secondary monoclonal goat antibodies
a-mouse IgG and a-rabbit IgG, both conjugated with
HRP (GE Healthcare), were diluted 1:5000. The ECL
Western blotting reagents (GE Healthcare) were used for
the chemiluminescent signal detection.

Accession numbers

AtAPYI1 [TAIR:At3g04080], AtAPY2 [TAIR:At5g18280],
Gotlp homolog [TAIR:At3g03180], MEMBI2 [TAIR:
At5g50440], Rab Eld [TAIR:At5g03520], SPIK [TAIR:
At2g25600], SYP32 [TAIR:At3g24350].

Results

Rescue of the seedling-lethal apyrase double knockout
phenotype with tagged AtAPY1

One objective was to localize AtAPY1 at the subcellular
level to learn how the protein exerts its function in plant
growth. Tagging AtAPY1 was chosen over raising anti-
bodies against it because AtAPY1 and AtAPY2 are so iden-
tical in their amino acid (aa) sequence: There is only one
six-aa-stretch in AtAPY1 (aa 44—49) that has four different
and two similar aa to the corresponding sequence in
AtAPY?2 [43]. All other stretches of differences between the
two sequences comprise only one or two aa.

Among the tags available, the SNAP-tag [44,45] seemed
the most suitable. As an O°-alkylguanine-DNA alkyltrans-
ferase, SNAP binds covalently to benzylguanine-based
substrates. There are a large number of substrates coupled
to different fluorescent dyes and other labels commercially
available making the SNAP-tag a versatile tool for
localization studies. The expression of AtAPYI-SNAP was
placed under the control of the native promoter region,
because overexpression can lead to localization artifacts.
Despite this risk, another tagged AtAPY1 version,
AtAPY1-GFP, was fused to the strong cauliflower mosaic
virus 35S promoter because expression levels of
NTPDases are generally low [46].

The SNAP- or GFP-tag was fused to the C-terminus
of AtAPY1 to avoid losing the tag by a possible N-
terminal cleavage in a subcellular targeting process.
Since tags can impair protein function and lead to mislo-
calization [47], a complementation strategy was per-
formed. The knockout of AtAPY1 and AtAPY2 (DKO) is
seedling-lethal [18]. A DKO seedling should survive if it
is complemented with a tagged AtAPY1 that is func-
tional and correctly localized. However, the use of the
35S promoter made the rescue of the DKO mutant with
AtAPY1-GFP impossible as confirmed experimentally,
because this promoter is turned off in pollen [48]. With-
out AtAPY1-GFP in the DKO pollen, no progeny will
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form, because the presence of either AtAPY1 or AtAPY2
is prerequisite for pollen to germinate [17]. In order to
overcome this hurdle, partially complemented apyrase
apy2 SKO plants (= +/apyl; apy2/apy2; SPIK::AtAPY?2)
were used as the genetic background for transformation
with each tagged AtAPY1 construct. These plants carried
AtAPY2 under the control of the pollen-specific pro-
moter SPIK which ensured the survival of the DKO
pollen.

DNA was isolated from progeny of the partially comple-
mented SKO plants containing either AtAPYI:AtAPYI-
SNAP or 35S:AtAPY1-GFP and used for genotyping by
PCR. Several DKO plants without a WT AfAPY1 and
AtAPY2 gene, but with a tagged apyrase construct were
identified hereafter called DKO-SNAP and DKO-GEFD, re-
spectively. The PCR analysis of two such mutants is shown
in Figure 1A. The SPIK:AtAPY2 construct was always
present in the DKO-GFP mutants as expected, but interest-
ingly also in the DKO-SNAP mutants. One possible explan-
ation is that some regulatory elements necessary for
optimal expression in pollen were missing in the chosen
promoter region. The promoter region used previously for
AtAPY1:GUS analyses [12,17,18] was 1 kb longer at the
3end including almost the entire gene (At3g04090) up-
stream of AtAPY1. Since the gene At3g04090 was deemed
unnecessary for successful complementation, it was mostly
excluded in the AtAPY1::AtAPY1-SNAP construct.

To confirm that the SNAP- and GFP-tagged AtAPY1
could rescue the lethal DKO seedling phenotype, the seed-
ling phenotype of complemented SKO and DKO plants in
comparison with the WT and DKO seedlings was analyzed
(Figure 1B). SKO-SNAP (+/+; apy2/apy2; SPIK:AtAPY2;
AtAPYI1:AtAPY1-SNAP) and SKO-GEFP (apyl/apyl; +/+;
SPIK::AtAPY2; 35S::AtAPYI-GFP) plants were included in
the study to check for possible dominant negative effects of
the tagged apyrase on the WT phenotype. DKO seedlings
without a construct coding for a tagged AtAPY1 had an ab-
normal phenotype with fleshy cotyledons and no root
(Figure 1B; [18]). These seedlings did not develop beyond
this stage. DKO plants expressing AtAPYI-SNAP or
AtAPYI-GFP, on the other hand, showed no phenotypical
differences to WT plants (Figure 1B) and SKO mutants
(data not shown).

The lethal DKO (apyl/apyl; apy2/apy2; SPIK:AtAPY2)
could be rescued by transformation with AtAPY1-SNAP or
AtAPYI-GFP making the DKO-SNAP and DKO-GFP
plants suitable tools for localization studies.

AtAPY1 is present in punctate structures, but not at the
plasma membrane or extracellular space

For localization of AtAPY1 at the subcellular level by
confocal microscopy, living DKO-SNAP seedlings were
incubated with SNAP-compatible fluorescent substrates
to label the AtAPY1-SNAP fusion protein. Two cell-



Schiller et al. BMC Plant Biology 2012, 12:123
http://www.biomedcentral.com/1471-2229/12/123

A DKO- DKO-

SNAP - + GFP - +
I B Acarvi
Y B v
T T o
I T 02

= 1. e

T AtAPY1-SNAP
AtAPY1-GFP
B rescued
DKO- DKO-
WT SNAP GFP

 AAPY1 - apy1 B SPIK:: B GFP-tag
. AtAPY2 . apy2 m 35S::  SNAP-tag
0O AtAPY1::

Figure 1 Identification of apyrase double knockouts
complemented with AtAPY1::AtAPY1-SNAP or 35S::AtAPY1-GFP.
(A) Genomic DNA was isolated from DKO plants complemented
with either AtAPY1:AtAPY1-SNAP (DKO-SNAP) or 35S:AtAPY1-GFP
(DKO-GFP) and subjected to PCR analysis. The PCR products for
AtAPYT (1.0 kb), AtAPY2 (0.9 kb), the T-DNA null mutations apy!

(0.7 kb) and apy2 (0.6 kb), AtAPYT1-SNAP (0.6 kb), AtAPY1-GFP (0.7 kb)
and SPIK:AtAPY2 (0.4 kb) were analyzed by agarose gel
electrophoresis. Genomic DNA from plants which had been tested
positive for the respective amplification products before served as
the positive controls (+). The negative PCR controls (—) were run
without addition of any DNA template. (B) The phenotype of the
WT, the DKO and the DKO rescued with either the SNAP- or GFP-
tagged AtAPY1 are shown. The genetic backgrounds are
represented by colored symbols. Images of 8-d- (WT), 14-d- (DKO),
7-d- (DKO-SNAP), 7-d-old (DKO-GFP) seedlings and of 30-d-old adult
plants were taken. Scale bars equal T cm.

permeable, fluorescent substrates were used: red fluores-
cent tetramethylrhodamine-Star and the green fluores-
cent BG-505 (both kindly provided by Andreas Brecht,
formerly Covalys Biosciences, Basel, Switzerland). Al-
though specific labeling of fusion proteins in vivo was
successful in yeast [49] and animal as well as human cell
cultures [50-52], a high background made the detection
of AtAPY1-SNAP-specific signals in Arabidopsis seed-
lings impossible. The tested dyes passed the cell wall
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and entered the cell, but even 14-h washing steps could
not remove the excess fluorescent substrate (data not
shown).

Therefore, indirect immunofluorescence was chosen as
a different approach. DKO-SNAP seedlings were fixed.
After cell wall digestion and plasma membrane
permeabilization, they were incubated with primary anti-
bodies against the SNAP-tag. Following several washing
steps, FITC-labeled secondary antibodies were added to
visualize AtAPY1-SNAP for the CLSM. The background
was low, but no specific signals could be detected (data
not shown). To increase the fluorescent signal, the tyra-
mide signal amplification (TSA) technique was applied
[53]. This technique employs peroxidase activity to cova-
lently couple a large number of labeled substrates in the
immediate vicinity. Therefore, instead of FITC-labeled
secondary antibodies, HRP-labeled antibodies were added
in combination with FITC-coupled tyramides. TSA
improved the signal-to-noise ratio and intracellular dot-
like structures became visible in DKO-SNAP seedlings
(Figure 2A) which were not found in the WT (Figure 2B).
Root hairs were selected as suitable cell types for
localization, because promoter-glucuronidase analyses
suggested that AtAPY1 is expressed strongly in root hairs
as well as in guard cells among other cell types [12,18].

To overcome the weak expression levels of AtAPYI,
the indirect immunofluorescence approach was repeated
with transgenic plants expressing AtAPYI-GFP under
the control of the strong 35S promoter. We used pri-
mary antibodies against GFP and secondary Alexa Fluor
488-coupled antibodies in two different approaches: 1.
Post-embedding labeling of 200-nm-thin Tokuyasu cryo-
sections (Figure 2C, D), and 2. Pre-embedding labeling
followed by embedding in Technovit 7100 resin and sec-
tioning (Additional file 3). In both experiments, the
intracellular punctate signals could be confirmed in the
root (Figure 2C) and in root hairs (Additional file 3). No
signals were detected in the cell wall and at the plasma
membrane and in the control without primary antibody
(Figure 2D).

To verify the imaging data obtained by immunofluores-
cence, a second detection method was used. The transgenic
plants expressing AtAPYI-GFP were imaged in vivo by
CLSM. Here, the same intracellular punctate pattern as
found before in AtAPY1-SNAP and AtAPYI-GFP expres-
sing plants was observed in guard cells (Figure 2E), cotyle-
don epidermis (Additional file 4A), hypocotyls (Additional
file 4B) and roots (Additional file 4C). The WT control did
not present this punctate pattern as shown exemplarily for
WT guard cells (Figure 2F). Expression of the GFP-tag
alone led to cytoplasmic staining [28].

The method of live imaging of GFP-tagged proteins is
suitable to detect apyrase in the cell wall as shown for apo-
plastic apyrases in other plant species [16,54]. But since
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AtAPY1 was expected to be localized extracellularly and
since GFP does not fluoresce at pH <5.0 [55], a weak
AtAPY1-GFP signal could be missed if the tag were
exposed to the acidic environment of the cell wall. To pro-
vide an optimal pH for GFP fluorescence in the extracellu-
lar environment, WT protoplasts and those expressing
AtAPYI-GFP were prepared from cotyledons and imaged
at pH 7.6. As before, intracellular GFP signals were found
(Figure 2G) which did not appear in the WT control
(Figure 2H), but the plasma membrane of the transgenic
protoplasts did not fluoresce (Figure 2H). This result ruled
out the possibility that AtAPY1 was anchored in the plasma
membrane. However, protoplastation represents severe
stress for the cells which could have caused down regula-
tion of AtAPYI and/or degradation or internalization of
AtAPY1. In addition, AtAPY1 was a possibly soluble

C AtAPY1-GFP control

E AtAPY1-GFP

G  AtAPY1-GFP

AtAPY1-GFP & bright field

=
-
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Figure 2 AtAPY1 is present in intracellular dot-like structures,
but absent from the extracellular space. CLSM (A, B, E-J) and
fluorescence microscopy (C, D) images of various cell types are
depicted. All WT control images were captured using the identical
CLSM settings as for the corresponding images of the transgenic
plants. The FITC, Alexa Fluor 488 and GFP fluorescence is shown in
green, the chlorophyll autofluorescence in magenta. The
fluorescence signals are overlaid with a bright field image in A, B, E
and F. Scale bars=20 um. (A, B) Root hairs of DKO-SNAP and WT
seedlings were fixed and successively incubated with a-SNAP
antibodies and secondary a-rabbit IgG coupled with horseradish
peroxidase. FITC tyramides were added to amplify the fluorescence
signal. The parameters of the indirect immunofluorescence
detection were modified in multiple independent experiments until
FITC-specific fluorescence signals as shown here were obtained. (C,
D)Two hundred-nm Tokuyasu cryo-sections through root tips of
AtAPY1-GFP expressing seedlings were fixed and incubated with (C)
or without (D) a-GFP antibodies. All samples were incubated with
secondary a-rabbit Fab fragments coupled with Alexa Fluor 488. The
pictures (C) and (D) were taken with the same exposure times. (E, F)
Two guard cells of a 355:AtAPY1-GFP transgenic and WT seedling are
depicted. The dot-like green fluorescent signals were obtained in at
least 20 independent live imagings. (G) A protoplast expressing
AtAPY1-GFP and a WT protoplast (H), both prepared from
cotyledons, were imaged. Overlays of the green and magenta
fluorescent signals are shown. These images represent the results
from three independent protoplastations. (I, J) The GFP fluorescence
and the bright field image of the same epidermal section of a
cotyledon from an AtAPY1-GFP overexpressing seedling grown
under alkaline conditions are shown representative of the imaging
results from three seedlings. Doughnut- or horseshoe-shaped
fluorescent structures typical of Golgi stacks imaged from the top

are indicated by white arrows.

protein in the cell wall and in this case the digestion of the
cell wall during protoplast preparation would have led to a
loss of the AtAPY1-GEFP signal. Therefore, cells with intact
walls were imaged at a pH suitable for GFP fluorescence
(Figure 2I, ]). Seedlings expressing 35S::AtAPY1-GFP were
grown in liquid culture at pH of 8.1 instead of 5.7. The
higher pH in the culture medium is known to recover GFP
fluorescence in the apoplast [38]. However, even under
these conditions, no extracellular GFP signal was detectable
(Figure 2I). In addition, 35S:AtAPY1-GFP seedlings were
cultured under normal conditions to minimize any impact
the alkaline culture medium may have on AtAPY1 distribu-
tion and infiltrated with buffer of pH 7.5 just for imaging.
Again no extracellular signals were found in more than 30
independent experiments (data not shown).

Both detection methods, immunofluorescence and
in vivo imaging, revealed the same punctate structures,
but no signals at the plasma membrane or in the extra-
cellular space.

AtAPY1 is localized in the Golgi apparatus

At higher magnifications, some of the AtAPY1-specific
punctate signals appeared as doughnut- or horseshoe-
shaped structures (see Figure 2I). This morphology is
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typical of Golgi stacks viewed in the middle of the main cis-
ternae from the top [56]. In addition, the observed size be-
tween 0.5 to 1 pm across matched the expected size of
Golgi stacks [57]. In order to corroborate that AtAPY1 was
localized in these organelles, the dye FM4-64 was applied.
FM4-64 is endocytosed by the cell, sequentially staining
the plasma membrane, endosomes and the trans-Golgi
network, but not the Golgi apparatus [58]. Imaging FM4-
64-infiltrated 35S:AtAPYI-GFP seedlings did not reveal
any co-localization of the fluorescent dye and the GFP sig-
nal, even 120 min after the infiltration (Figure 3A and cor-
responding scatterplot in Figure 3E).

As an additional negative endosomal control, co-
localization with the GTPase Rab E1d was studied. There
is some controversy in the literature over the designation
of Rab E1d as a marker protein for the Golgi [59] or the
post-Golgi/endosomal compartment [32]. However, there
is consensus that Rab E1d primarily co-localizes with rat
sialyltransferase [59,60], a trans-Golgi and/or trans-Golgi
network marker protein [61], and that it also associates
with the plasma membrane (PM) [60,62]. Therefore, Rab
E1d is believed to play a role in the trafficking of secretory
vesicles from the Golgi to the PM [59,60].

In transgenic plants co-expressing YFP-Rab Eld and
AtAPYI-GFP, no overlap of the YFP and GFP fluores-
cence was found (Figure 3B and corresponding scatter-
plot in Figure 3E). The lack of overlap not only suggests
the absence of AtAPY1-GFP in endosomes, but also
ruled out crosstalk between the GFP and YFP detection
channels. In order to confirm that the chosen GFP and
YFP settings were specific for the detection of the GFP
and YFP fluorescence, respectively, transgenic plants
expressing only one of the two fluorophores were
imaged sequentially with the GFP and YFP settings.
When imaging epidermal cells from the AtAPYI-GFP
expressing plant with the GFP settings, the familiar dot-
like structures appeared in the GFP detection channel
(Additional file 5A). Taking an image of the identical
epidermal section with the YFP settings, however, did
not deliver this punctate pattern (Additional file 5A).
The same imaging experiment with a plant expressing
YFP-SYP32 only, showed negligible bleed-through of the
YFP fluorescence into the GFP detection channel (Add-
itional file 5B). These control experiments demonstrated
the specificity of the GFP and YFP detection settings.

In a direct localization approach, the occurrence of
AtAPY1-GFP in the Golgi apparatus was investigated by
co-localization with three known Arabidopsis Golgi-
resident proteins. MEMB12 (Membrin 12) and SYP32
(Syntaxin of plants 32) are SNARE proteins localized in
the Golgi apparatus [63]. Gotlp (Golgi transport 1 pro-
tein) was found in the Golgi membranes of Saccharomyces
cerevisiae [64] and its homolog in Arabidopsis was
also localized in the Golgi [32]. Transgenic plants co-
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expressing AtAPYI-GFP and either the Golgi marker
REP-MEMBI2 (Figure 3C), the YFP-SYP32 (Figure 3D)
or YFP-Gotlp homolog (Additional file 6) were analyzed
by confocal microscopy. The fluorescence of all three
Golgi marker proteins overlapped with the AtAPY1
fluorescence, localizing AtAPY1-GFP to the Golgi
apparatus.

To exclude or confirm a co-localization not only by
eye, the Image]J software was applied. The overlays of the
images from the two detection channels were used to
generate scatterplots and to calculate the Pearson’s cor-
relation coefficient (R;) of the two fluorescent signals
(Figure 3E and Additional file 6). R, values > 0.5 indicate
co-localization [65], verifying co-localization of all three
marker proteins RFP-MEMB12, YFP-SYP32 and YFP-
Gotlp homolog with AtAPY1-GFP.

In order to confirm the co-localization results, AtAPY1-
GEFP was labeled with gold particles using a-GFP primary
antibodies and secondary gold-coupled secondary anti-
bodies. Electron microscopy of Tokuyasu cryo-sections
through roots revealed weak, but specific staining of Golgi
stacks (Figure 4A, B). In sections through 56 Golgi com-
partments (48 labeled, 8 unlabeled) equaling an area of
11.8 um?, 8.3 gold particles per um? were counted. Con-
sidering only labeled Golgi compartments increased the
value to 9.8 particles per um® By comparison, only 0.37
and 0.07 gold particles per um? were found in sections
through 88 mitochondria (= 14 pum? and 12 nuclei
(= 27 pum?), respectively. Multivesicular bodies (MVB)
were also positively immunolabeled by gold particles
(Figure 4C) which most likely reflects the transport of
some AtAPY1-GEP to the vacuole as seen in other GFP-
overexpressing plants [59] rather than a functional role of
AtAPY1 in this prevacuolar compartment. No immunola-
beling of any other cellular compartment including the
cell wall was found (Figure 4D). In summary, the immu-
nogold labeling studies of AtAPY1-GFP confirmed its
localization in the Golgi and gave no indication of an
extracellular occurrence.

AtAPY1 has the substrate specificity typical of an endo-,
not an ecto-apyrase

If the Golgi localization of AtAPY1 were correct, AtAPY1
should exhibit the substrate specificity typical of Golgi
apyrases. Therefore, the activity of AtAPY1-GFP was tested
in the presence of known apyrase substrates at pH 6.5
which equals the pH found in the Golgi [55]. AMP is not a
substrate for apyrases and for this reason served as a nega-
tive control. AtAPY1-GFP did not hydrolyze ATP and
ADD, the typical substrates of ecto-apyrases [46], but the
nucleotides uridine diphosphate (UDP), guanosine diphos-
phate (GDP) and inosine diphosphate (IDP) (Figure 5). No
activity was detectable in the presence of all other NTPs or
NDPs (Figure 5) and AMP (data not shown). Hydrolysis of
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Figure 3 Identification of AtAPY1-positive structures as Golgi. CLSM images of epidermal cells from cotyledons are shown. The GFP
fluorescence is shown in green, the FM4-64 (A), YFP (B, D) and RFP (C) fluorescence in magenta. The images from the two fluorescence
detection channels were merged with the “Co-localization Finder” plugin (= overlay) and co-localization of the green and magenta signals
resulted in white spots. Scale bars=20 pum. (A) Transgenic seedlings expressing AtAPY1-GFP were treated with 15 uM FM4-64 by vacuum-
infiltration. A section of the lower epidermis is shown after 120 min of treatment. (B) Two guard cells of a transgenic seedling co-expressing
AtAPY1-GFP and YFP-Rab E1d are shown. (C, D) Transgenic seedlings co-expressing AtAPY1-GFP and either RFP-MEMBI12 or YFP-SYP32 were imaged.
(E) The distribution of the green and magenta pixels in the dual-channel overlay images in A-D were analyzed with the ImageJ “Colocalization
Threshold” and “Coloc2” tool. The x-axes represent the intensities of the green pixels from the GFP channel (AtAPY1) and the y-axes from the
magenta channel (FM4-64, Rab E1d, MEMB12 or SYP32). For each scatterplot, the intensities are given as the pixel grey values ranging from 0 to
255. Co-localization clusters the pixels from both channels along a diagonal line. The maximal theoretical value for the Pearson’s correlation

these three NDPs matches the substrate specificity of other
plant Golgi apyrases, e. g. from rice (Oryza sativa) [66] and
sycamore (Acer pseudoplatanus) [67].

In order to investigate the possibility that the substrate
specificity was pH-dependent and that it would change in
favor of ATP and ADP once AtAPY1 reached the apoplast,
the activity assay of AtAPY1-GFP was repeated at pH 5.5,
the pH typically found in the cell wall [68]. However, the
three diphosphates UDP, GDP and IDP remained the only
substrates (Additional file 7). Therefore, the determined

substrate specificity substantiated the results that AtAPY1
was not observed in the cell wall, but in the Golgi.

AtAPY1 is an integral membrane protein

One objective was to determine if AtAPY1 was a soluble
protein in the lumen of the Golgi or, as implied by the
TMHMM prediction program [69], a Golgi membrane pro-
tein with an uncleaved signal sequence at the N-terminus
serving as a transmembrane anchor (Figure 6A). This pre-
diction was supported by the immunogold labeling results
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Figure 4 Confirmation of the Golgi localization of AtAPY1 by
immunogold labeling. (A-D) Transverse Tokuyasu-cryo-sections
through root tips were imaged by TEM after imunogold labeling of
AtAPY1-GFP using a-GFP antibodies (Torrey Pines) and Protein A 10-
nm gold. Arrows mark gold particles. Independent experiments with
Protein A 6-nm gold gave the same localization results presented
here. Both approaches were repeated three times. Abbreviations: cw,
cell wall, g, golgi stack, mvb, multivesicular body. Scale bars equal
200 nm in A and 500 nm in B-D.

which suggested a membrane association of the protein
(Figure 4A-C).

Microsomal membranes were isolated from transgenic
AtAPYI-GFP seedlings and their purity was verified with
antibodies against marker proteins for cytosolic and insol-
uble proteins (Additional file 8). The microsomal mem-
branes were treated with various solubilizing agents and
then analyzed for any solubilized proteins. Using o-GFP
antibodies, a major signal was observed at the expected
molecular mass of AtAPY1-GFP (80 kDa) and a minor sig-
nal at 27 kDa (Figure 6B). The smaller protein most likely
represents a degradation product of AtAPY1-GFP resulting
from the protein extraction procedure. If the microsomal
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membranes were left untreated, AtAPY1-GFP was detected
in the membrane fraction (Figure 6B), suggesting that the
protein was membrane-bound. In support of this finding,
the detergent SDS released the majority of the AtAPY1-
GEFP protein from the membranes (Figure 6B). In order to
differentiate between AtAPY1 being a peripheral or an inte-
gral membrane protein, the microsomal membranes were
subjected to high salt (2 M NaCl), alkaline (0.2 M Na,COs)
and denaturing (4 M urea) conditions. Peripheral proteins
are removed from membranes by urea which disturbs
protein-protein interactions or by high salt and alkaline
treatments which disrupt electrostatic and hydrophobic
interactions, respectively. Except for trace amounts, the salt
and Na,COj; treatment did shift AtAPY1 from the pellet
fraction to the supernatant (Figure 6B) as expected for an
integral membrane protein. AtAPY1 is also not a Golgi sol-
uble protein, because AtAPY1 remained in the pellet frac-
tion after Nay,COj5 treatment which is known to leach the
soluble proteins from the microsomal lumen into the
supernatant fraction as shown in [70]. Urea released some
AtAPY1-GFP protein into the supernatant, but most of the
protein remained in the membrane fraction (Figure 6B). Al-
though transmembrane proteins are generally not extracted
by urea at all, type II integral proteins seem to be less
tightly associated with the membrane than proteins with
multiple transmembrane domains [71].

In summary, AtAPY1 showed the characteristics of a
single-pass type II membrane protein.

Discussion

Previous evidence for extracellular localization of AtAPY1
Using programs to predict the subcellular localization of
AtAPY1 was inconclusive: The program SubLoc version (v)
1.0 [72] suggested the cytoplasm, Target P v. 1.1 [73] mito-
chondria and WoLF PSORT v. 2.0 [74] the chloroplast. Pre-
dotar v. 1.3 [75] could not define a specific localization and
PSORT v. 6.4 [76] predicted an extracellular localization.

Figure 5 Substrate specificity of AtAPY1-GFP. The activity of AtAPY1-GFP in the presence of various substrates at pH 6.5 was measured.
Different letters above the columns indicate mean values that are significantly different from one other (p<0.05, Tukey test). Error bars represent
standard deviations of duplicate measurements from one reaction (see Methods). The data are representative of five activity assays with
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Figure 6 Analysis of the solubility of AtAPY1-GFP. (A) The output of the TMHMM prediction program [69] is shown. The AtAPY1 aa sequence
is represented along the x-axis with the N-terminal aa being the first residue. The probability for each aa to appear within a transmembrane

43. (B) Microsomal membranes were prepared from transgenic plants

Therefore, experimental data became invaluable. Experi-
ments with in vitro germinated pollen detected apyrase ac-
tivity in the liquid germination medium [12]. This
extracellular activity was inhibited by the addition of poly-
clonal antibodies raised against the N-terminally truncated
(aa 36—471), denatured and recombinant AtAPY1 protein
[12]. This result indicated that AtAPY1 was an extracellular
protein. However, these antibodies might have targeted
apyrases other than AtAPY1 in the cell wall. The apyrase
conserved region (ACR) 1 of AtAPY1, for example, is 100%
identical to the ACR1 of AtAPY?2. Therefore, it is not sur-
prising that the o-AtAPY1 antibodies also recognize
AtAPY2 [12]. The similarity of the AtAPY1 ACRs with the
other five Arabidopsisapyrases is not as high, but these con-
served regions could still be binding targets for the o-
AtAPY1 antibodies. The possibility of cross-reactivity is
supported by experiments using the same a-AtAPY1

antiserum to successfully inhibit extracellular apyrase activ-
ity in a different plant species, namely cotton [14].

The experiment with the in vitro germinated pollen
also showed that the protein exhibiting apyrase activity
in the pollen germination medium was soluble because
it was measureable in siphoned off aliquots [12]. Since
AtAPY1 showed the solubilization characteristics of an
integral membrane protein, it is unlikely to be identical
to the previously detected extracellular apyrase activity.

Arabidopsis apyrases as regulators of eATP signals

AtAPY1 and AtAPY2 have been implicated to be the regu-
lators of eATP signals in Arabidopsis [12,14,15,77-79] and
were therefore expected to function in the cell wall. How-
ever, the substrate specificity of AtAPY1 does not fit this
model. AtAPY1-GEP did not hydrolyze ATP and ADD, the
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typical substrates of ecto-apyrases, contradicting a role of
AtAPY1 in regulating eATP signals.

Even though AtAPY1 did not agree with the profile of an
ecto-apyrase, AtAPY2 remains a candidate. However,
Dunkley et al. [80] noted a Golgi localization of AtAPY2.
They prepared membrane fractions from Arabidopsis callus
cultures by density centrifugation and identified AtAPY2 in
the Golgi protein pool by mass spectrometry. Recently, the
Golgi localization of AtAPY2 was confirmed in another
proteome analysis of enriched Golgi membranes [81].
Nevertheless, the Arabidopsis Information Resource data-
base holds entries for two different splice variants of
AtAPY?2 that could result in different localizations of the
corresponding proteins. The fact that transgenic Arabidop-
sis plants overexpressing AtAPY2 show less eATP-mediated
superoxide production than WT [79] points to an extracel-
lular localization of (a variant of) AtAPY2.

Since AtAPY1 was not detected in the cell wall by three
subcellular detection methods and did not exhibit the sub-
strate specificity of an ecto-apyrase, we hypothesize that
some apyrase other than AtAPY1 is the regulatory enzyme
observed in eATP signaling of Arabidopsis.

Possible AtAPY1 function(s) in the Golgi apparatus
A diphosphatase activity was described in the Golgi of
Pisum sativum [82]. UDP was rapidly degraded to uridine
monophosphate and P; by an integral membrane protein
facing the Golgi lumen with its active site. It was also
shown in P. sativum that UDP inhibits glycosyltransferases
[83], which function in the assembly of primary plant cell
wall components [84] in a feedback mechanism. So it was
proposed that a diphosphohydrolase such as apyrase pre-
vents inhibition of polysaccharide synthesis in the Golgi by
constantly removing the by-product UDP from the glycosyl
transfer reaction [85]. A role of the Golgi apyrase in poly-
saccharide biosynthesis was supported by their finding that
the enzyme was only found in the elongation zone of the
pea seedling stem. This zone constantly needs new cell wall
material. The apyrase AtAPY1 could assume the same role
in Arabidopsis. The developmental and growth phenotypes
of the apyrase DKO mutants such as lack of pollen germin-
ation [17], no root and shoot growth, and distorted cell
shapes [18] could be explained by defects in the biosyn-
thesis of cell wall material. Such a role is supported by the
substrate specificity of AtAPY1 because UDP and GDP are
produced by glycosyltransferases in the Golgi.

xMore evidence for a function in glycosylation comes
from a complementation experiment with the yeast
Saccharomyces cerevisiae mutant Agdal. This yeast mu-
tant lacks the Golgi apyrase guanosine diphosphatase 1
(GDA1) leading to a glycosylation defect [86] which is
abolished by complementation with AtAPYT [81].

It is also believed that Golgi apyrases provide the nucleo-
side monophosphates which serve as the substrates in
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exchange for nucleotide sugars from the cytosol in an anti-
port mechanism [85]. Therefore, a shortage of nucleoside
monophosphates would prevent or reduce the transport of
nucleotide sugars into the Golgi [87] and increase the nu-
cleotide sugar concentration in the cytosol. As a “release
valve”, the chloroplasts would import the sugar and convert
it into starch. In agreement with this hypothesis, a pro-
nounced increase in transitory starch was observed in the
apyrase DKO mutants compared with the WT [18]. An ac-
cumulation of starch in the chloroplasts was also seen when
the Golgi function was generally disrupted and explained
by an indirect effect due to elevated cytosolic sugar concen-
trations [88].

Conclusions

The use of two different transgenic lines expressing either
AtAPY1-SNAP or -GFP allowed specific labeling of
AtAPY1 at the subcellular level. The cell organelles exhi-
biting the AtAPY1-specific fluorescent signals were identi-
fied as the Golgi apparatus by the following criteria: (i)
morphology, (ii) size, (iii) lack of co-localization with the
endocytic marker stain FM4-64 and trans-Golgi marker
protein Rab Eld, but (iv) co-localization with the three
Golgi marker proteins MEMB12, SYP32 and Gotlp
homolog. In addition, Golgi stacks were immunolabeled
with o-GFP antibodies. While this paper was under re-
view, the Golgi localization of AtAPY1 was independently
confirmed by proteome analysis of Golgi membranes and
by co-localization of AtAPY1-YFP with the CFP-labeled
cis-Golgi marker a-mannosidase I in transiently trans-
formed onion peels [81].

Although it can never be ruled out that the missing
detection of extracellular AtAPY1 is a matter of meth-
odological sensitivity, our results show that AtAPY1 is
primarily present in the Golgi. Therefore, AtAPY1 is
highly unlikely to represent the regulatory enzyme of
eATP levels [12,14,15,77,78] and the true identity of the
Arabidopsis ecto-apyrase(s) is yet to be found. Further-
more, the growth defects caused by the absence [18] and
by the reduced amounts of AtAPY1 and AtAPY2 [12]
are probably not directly linked to eATP signaling. In-
stead, the localization of AtAPY1 in the Golgi needs to
be the basis for future investigations to understand how
AtAPY1 in particular and plant Golgi apyrases in general
affect plant growth and development.

Additional files

Additional file 1: AtAPY1-SNAP DNA sequence. The AtAPY1-SNAP DNA
sequence present in the AtAPY1:AtAPY1-SNAP transgenic lines is shown.

Additional file 2: AtAPY1-GFP DNA sequence. The AtAPY1-GFP DNA
sequence present in the 35S:AtAPY1-GFP transgenic lines is shown.

Additional file 3: Inmunofluorescence of pre-imbedding labeled
AtAPY1-GFP in root hair. Roots from AtAPY1-GFP expressing seedlings
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were immunostained whole mount, embedded in resin and sectioned.
The sections were successively incubated with a-GFP and secondary a-
rabbit Fab fragments coupled with Alexa Fluor 488. A 3-um cross-section
of a root hair is shown. The Alexa Fluor 488 fluorescence is shown in
green. Scale bar equals 20 pm.

Additional file 4: Live imaging of AtAPY1-GFP in various cell types.
CLSM images of various tissues in AtAPY1-GFP expressing seedlings show
the GFP signals in green overlaid with bright field view. (A) Cotyledon
epidermis, (B) hypocotyl and (C) root tip. Scale bars =20 um.

Additional file 5: Specificity of the imaging settings for the
detection of GFP and YFP fluorescence. The epidermis of cotyledons
from transgenic plant lines was imaged with the GFP and YFP settings
outlined under Methods for the “CLSM". The GFP and YFP fluorescence is
shown in green and magenta, respectively. Scale bars =20 um. (A) The
identical epidermal section with two guard cells from plants expressing
AtAPY1-GFP only was imaged sequentially with the GFP and YFP settings.
Dot-like signals appeared in the GFP detection channel only. Only weak
autofluorescence of the thickened cell wall around the stomate was
visible in the YFP detection channel. (B) The identical epidermal section
with two guard cells from plants expressing YFP-SYP32 only was imaged
sequentially with the GFP and YFP settings. Here, only very weak signals
were detectable in the GFP detection channel, but strong YFP
fluorescence appeared with the YFP-specific excitation and detection.

Additional file 6: Co-localization analysis of AtAPY1-GFP and YFP-
Got1p homolog. CLSM images of epidermal cells of cotyledons from
transgenic lines co-expressing AtAPY1-GFP and YFP-Got! phomolog were
taken. The GFP fluorescence is shown in green and the YFP fluorescence
in magenta. The bright field-type image was acquired with the
transmitted light detector. The fluorescence signals for AtAPY1-GFP and
YFP-Got1p homolog were detected separately and merged for co-
localization with the “Co-localization Finder” plugin of ImageJ. Co-
localization of the two proteins is depicted as white signals. The
corresponding scatterplot was analyzed with the ImageJ “Colocalization
Threshold” and “Coloc2” tool from Imagel. The x-axis represents the pixel
intensities from the GFP channel and the y-axis from the YFP channel.
R.=Pearson’s correlation coefficient. Scale bar=20 um.

Additional file 7: Substrate specificity of AtAPY1-GFP at pH 5.5. The
activity of AtAPY1-GFP at pH 5.5 in the presence of various substrates
was measured. No activity was detectable with AMP as substrate (data
not shown). Different letters above the columns indicate mean values
that are significantly different from one other (p<0.05, Tukey test). Error
bars represent standard deviations of two phosphate measurements from
one reaction (see Methods). Abbreviation: P;, inorganic phosphate.

Additional file 8: Analysis of the purity of microsomal membrane
and soluble protein fractions. Protein extracts from transgenic plants
expressing 35S:AtAPY1-GFP were treated with either extraction buffer,
0.2% SDS, 2 M NaCl, 0.2 M Na,COs or 4 M urea and then centrifuged at
100,000 g to obtain microsomal membrane fractions (P100) and
supernatants (S100). Proteins from each fraction (40 pg each) were
subjected to Western blot analysis. The enrichment of microsomal and
insoluble proteins in the P100 fractions and of soluble proteins in the
S100 fractions was confirmed with antibodies against marker proteins.
The 37-kDa cytosolic fructose-1,6-bisphosphatase (cFBPase) served as a
marker protein for soluble proteins. Actin (45 kDa) was used as a marker
protein for insoluble proteins under actin polymerizing conditions found
in the extraction buffer and 2 M NaCl [89] and as a soluble marker under
actin depolymerizing conditions such as 0.2 M Na,COs, 0.2% SDS and

4 M urea [89,90].

Abbreviations

aa: Amino acid(s); ACR: Apyrase conserved region; AEBSF: 4-(2-aminoethyl)-
benzensulfonyl fluoride hydrochloride; apyrase: Adenosine pyrophosphatase;
CLSM: Confocal laser scanning microscopy; DKO: Double knockout;

eATP: Extracellular ATP; ECM: Extracellular matrix; FITC: Fluorescein
isothiocyanate; FM4-64: N-(3-triethylammoniumpropyl)-4-(p-
diethylaminophenyl-hexatrienyl)-pyridinium dibromide; GDP: Guanosine
diphosphate; GFP: Green fluorescennt protein; Got1p: Golgi transport 1
protein; HeNe: Helium-neon; HRP: Horseradish peroxidase; IDP: Inosine
diphosphate; MC: Methyl cellulose; MEMB12: Membrin 12; MS: Murashige
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and Skoog; MVB: Multivesicular body; NTPDase: Nucleoside triphosphate
diphosphohydrolase; ORF: Open reading frame; P: Pellet; PB: Phosphate
buffer; PBS: Phosphate buffered saline; PFA: Paraformaldehyde; P;: Inorganic
phosphate; PM: Plasma membrane; PPT: Phosphinothricin; RFP: Red
fluorescent protein; RT: Room temperature; S: Supernatant; SNAP: 0°-
alkylguanine-DNA alkyltransferase; SPIK: Shaker pollen inward K* channel;
SYP32: Syntaxin of plants 32; SKO: Single knockout; T-DNA: Transfer DNA;
TBS: Tris buffered saline; TEM: Transmission electron microscopy;

TM: Transmembrane domain; TSA: Tyramide signal amplification; UA: Urany!
acetate; UDP: Uridine diphosphate; v: Version; WT: Wild type or wild-type;
YFP: Yellow fluorescent protein.
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