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Abstract

other regions of the protein.

Brassica crops.

Background: The SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) domain is an evolutionarily conserved sequence of
approximately 130-150 amino acids, and constitutes the catalytic site of lysine methyltransferases (KMTs). KMTs
perform many crucial biological functions via histone methylation of chromatin. Histone methylation marks are
interpreted differently depending on the histone type (i.e. H3 or H4), the lysine position (e.g. H3K4, H3K9, H3K27,
H3K36 or H4K20) and the number of added methyl groups (i.e. mel, me2 or me3). For example, H3K4me3 and
H3K36me3 are associated with transcriptional activation, but H3K9me2 and H3K27me3 are associated with gene
silencing. The substrate specificity and activity of KMTs are determined by sequences within the SET domain and

Results: Here we identified 49 SET-domain proteins from the recently sequenced Brassica rapa genome. We
performed sequence similarity and protein domain organization analysis of these proteins, along with the SET-
domain proteins from the dicot Arabidopsis thaliana, the monocots Oryza sativa and Brachypodium distachyon, and
the green alga Ostreococcus tauri. We showed that plant SET-domain proteins can be grouped into 6 distinct
classes, namely KMT1, KMT2, KMT3, KMT6, KMT7 and S-ET. Apart from the S-ET class, which has an interrupted SET
domain and may be involved in methylation of nonhistone proteins, the other classes have characteristics of
histone methyltransferases exhibiting different substrate specificities: KMT1 for H3K9, KMT2 for H3K4, KMT3 for
H3K36, KMT6 for H3K27 and KMT7 also for H3K4. We also propose a coherent and rational nomenclature for plant
SET-domain proteins. Comparisons of sequence similarity and synteny of B. rapa and A. thaliana SET-domain
proteins revealed recent gene duplication events for some KMTs.

Conclusion: This study provides the first characterization of the SET-domain KMT proteins of B. rapa. Phylogenetic
analysis data allowed the development of a coherent and rational nomenclature of this important family of

proteins in plants, as in animals. The results obtained in this study will provide a base for nomenclature of KMTs in
other plant species and facilitate the functional characterization of these important epigenetic regulatory genes in
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Background

Epigenetic regulation acts through heritable changes in
genome function that occur without a change in DNA
sequence. One well-known epigenetic mechanism is
through posttranslational covalent modifications of his-
tones; these modifications include acetylation, methylation,
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ubiquitylation and others, and form the basis of the
‘histone code’ for gene regulation [1]. Histone lysine
methylation plays a pivotal role in a wide range of cellular
processes including heterochromatin formation, transcrip-
tional regulation, parental imprinting, and cell fate deter-
mination [2]. At least six lysine residues, five on histone
H3 (K4, K9, K27, K36, K79) and one on H4 (K20), are sub-
ject to methylation. Each lysine can carry one, two or three
methyl residue(s), known as mono-, di- and tri-methyla-
tion, respectively. In general, di-/tri- methylation of H3K4
and H3K36 correlates with transcriptional activation,
whereas di-methylation of H3K9 and trimethylation of
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H3K27 correlates with gene silencing in plants and ani-
mals [2,3].

All known lysine methylation modifications, with the
exception of H3K79 methylation, are carried out by
methyltransferases that contain an evolutionarily con-
served SET domain, named after three Drosophila genes
(Su(var), E(z), and Trithorax) [4]. The SET domain
encompasses approximately 130-150 amino acids that
form a knot-like structure and constitute the enzyme cata-
Iytic site for lysine methylation [5]. In addition to the SET
domain, flanking sequences, more distant protein
domains, and possibly some cofactors are also important
for enzyme activity and specificity. The genes encoding
SET-domain proteins are ancient, existing in prokaryotes
and eukaryotes, but have proliferated and evolved novel
functions connected with the appearance of eukaryotes
[6].

The first plant genes encoding SET-domain proteins to
be genetically characterized were CURLY LEAF (CLF) and
MEDEA (MEA) in Arabidopsis thaliana [7,8]. Chromatin-
binding properties and histone methylation activity of
plant SET-domain proteins were first reported for tobacco
NtSET1 and Arabidopsis KRYPTONITE (KYP) [9,10].
Phylogenetic analysis of plant SET domain proteins has
proven helpful as a guide for genetic and molecular studies
of this large family of proteins [11,12]. To date, some of
the Arabidopsis SET-domain family members have been
characterized and shown to play crucial functions in
diverse processes including flowering time control, cell
fate determination, leaf morphogenesis, floral organogen-
esis, parental imprinting and seed development [3,13-15].

Genome sequences of an increasing number of plant
species, in addition to the model plants (Arabidopsis
thaliana, Oryza sativa, and Brachypodium distachyon),
have also been completed. Other Brassica species are of
particular interest because of their agro-economical
importance and their close relationship with Arabidopsis,
thus providing insights into recent SET-domain gene
amplification during evolution of Brassica species. Here,
we identified and analyzed 49 SET-domain proteins from
the recently completed Brassica rapa whole genome
sequence [16]. Our data provide a platform for future
functional characterization of these important epigenetic
regulatory genes in Brassica species.

Results

Identification of SET-domain proteins from the B. rapa
genome

Using BLASTp and tBLASTn with the full complement
of known Arabidopsis and rice SET-domain proteins
as queries, we identified 49 genes encoding different
SET-domain proteins from the B. rapa genome (http://
brassicadb.org/brad). We used the nomenclature
recently proposed for lysine methyltransferases (KMTs,
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[17]) and named the newly identified B. rapa genes
based on our phylogenetic analysis of their corre-
sponding protein sequences (see below). Apart from
BrKMTI1B;1a and BrKMTI1B;2b genes, whose chromo-
somal locations are yet unknown, the other 47 genes
are distributed on the ten B. rapa chromosomes, with
1-7 KMT genes per chromosome (Table 1).

B. rapa SET-domain proteins can be grouped into six
classes

To analyze the B. rapa SET-domain protein sequences, we
extracted SET-domain proteins from several other green
lineage species, including 37 proteins from A. thaliana, 36
proteins from O. sativa, 41 proteins from B. distachyon,
and 10 proteins from Ostreococcus tauri (Table 1). We
also included the Saccharomyces cerevisiae SCKMT2/Setl
and ScKMT3/Set2 proteins, which are H3K4- and H3K36-
specific KMTs, respectively [18,19], and can be used to
represent ancient eukaryotic SET-domain proteins from
an evolutionary point of view. Phylogenetic analysis of the
aforementioned 175 SET-domain proteins revealed that
they could be grouped into 6 distinct classes, namely
KMT1, KMT2, KMT3, KMT6, KMT7 and S-ET class
(Figure 1). The first four class numbers used here are con-
sistent with the nomenclature previously proposed for
yeast and animal KMT's [17]. Furthermore, two plant-spe-
cific subclasses (namely A and B) were identified for
KMT1 and KMT6. Representative members of each class/
subclass are found in A. thaliana, B. rapa, O. sativa and
B. distachyon. The S-ET class members contain an inter-
rupted SET domain and are likely involved in methylation
of nonhistone proteins, e.g. RUBISCO subunits; however,
their biological functions remain largely unknown. Here-
after, we focused on the KMT classes/subclasses that are
involved in histone methylation.

The KMT1A subclass proteins

The KMT1A subclass is the largest class and can be further
divided into 4distinct groups (Figure 2). In each group,
proteins from dicots (B. rapa and A. thaliana) and mono-
cots (O. sativa and B. distachyon) clearly fall into separate
branches, indicating that they are derived from a common
ancestral gene but diverged before the monocot/dicot
separation. The first three groups have a relatively simple
relationship and small number of genes, but Group-4 is
more complex: each plant species has 4-8 members that
diverged at various times during evolution. In the case of
B. rapa, among the 8 members belonging to Group-4,
BrKMT1A;4a, BrKMT1A;4c, BrKMTI1A;4d, and
BrKMT1A;4f are clustered with the Arabidopsis AtKM-
T1A;4a/SDG32/SUVH1; BrKMT1A;4b with AtKM-
T1A;4b/SDG19/SUVH3; and BrKMT1A 4e, BPKMT1A4 g
and BrKMT1A;4 h with AtKMT1A;4e/SDG11/SUVHI10
(Figure 2). Examination of synteny between B. rapa and A.
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Table 1 List of green lingeage SET-domain proteins analyzed in this study
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B. rapa A. thaliana O. sativa B. distachyon O. tauri
Name Locus Chr. Name Synonyms Name Synonyms Name Locus Name Synonyms
BrKMT1A;1  Bra006226 3 AKMTTA;T  SDG33/SUVHA4/KYP OsKMT1A;1  SDG714 BAKMT1A;1a  Bradi2g59430
BrKMT1A;2a Bra021840 4 AtKMT1A2a  SDG3/SUVH2 OsKMT1A2a  SDG726 BAKMT1A;1b  Bradi2g26840
BrKMT1A;2b  Bra007048 3 AtKMT1A2b  SDG22/SUVH9 OsKMT1A2b  SDG715 BAKMT1A2a Bradi1g29010
BrKMT1A;2c  Bra005511 5 AtKMT1A3a  SDGY9/SUVHS OsKMT1A;3a SDG710 BAKMT1A2b Bradi3g12710
BrKMT1A;3a  Bra005362 5 AtKMT1A;3b  SDG23/SUVHG OsKMT1A;3b  SDG727 BAKMT1A;2c  Bradi2g60080
BrKMT1A;3b  Bra030212 4 AtKMT1A/4a  SDG32/SUVHT OsKMT1A;3c  SDG703 BAKMT1A;3a Bradi3g35330
BrKMT1A/4a Bra009408 10  AtKMT1A4b SDG19/SUVH3 OsKMT1A4a  SDG704 BAKMT1A;3b  Bradi4g28460
BrKMT1A4b Bra016018 7 AtKMT1A4c  SDG17/SUVH7 OsKMT1A;4b  SDG713 BAKMT1A;3c  Bradi4g28792
BrKMT1A/4c  Bra028776 2 AtKMTTA4d  SDG21/SUVHS OsKMT1A4c  SDG728 BAKMT1A;3d  Bradi5g17340
BrKMT1A4d  Bra005829 3 AtKMTTA4e  SDGT1/SUVH10 OsKMT1A4d  SDG709 BAKMT1A/4a Bradilg53840
BrKMT1A/4e  Bra004258 7 OsKMT1A4e  SDG734 BAKMT1A/4b  Bradi4g25940
BrKMT1A4f  Bra025949 6 OsKMT1A4f  SDG733 BAKMT1A/4c  Bradi2g13416
BrKMT1A/4g Bra009409 10 BAKMT1A;4d  Bradi4g43717
BrKMT1A4h  Bra025950 6
BrKMT1B;1a  Bra040197 ud* AtKMT1B;1  SDG31/SUVR4 OsKMT1B;1  SDG742 BAKMT1B;1a  Bradi3g12790
BrKMT1B;1b  Bra001104 3 AtKMT1B;2a  SDG13/SUVRI1 OsKMT1B;2  SDG712 BAKMT1B;1b  Bradi5g00500
BrKMT1B;2a Bra033710 6 AtKMT1B;2b  SDG18/SUVR2 OsKMT1B;3  SDG706 BAKMT1B;2a  Bradi1g64870
BrKMT1B;2b Bra036004 ud* AtKMT1B;3  SDG6/SUVRS/AtCZS — OsKMT1B;4  SDG729 BAKMT1B;2b  Bradi3g48970
BrKMT1B;3  Bra032148 4 AtKMT1B;4  SDG20/SUVR3 BAKMT1B;2c  Bradi3g48980
BrKMT1B4  Bra031976 2 BAKMT1B;3  Bradi3g52950
BAKMT1B;4  Bradi2g51320
BrkKMT2;1a Bra021721 4 AtKMT2;1a SDG27/ATX1 OsKMT2;1 SDG723 BAKMT2;1 Bradi4g08510 OtKMT2 SDG3601
BrkKMT2;1b  Bra032450 9 AtKMT2;1b  SDG30/ATX2 OsKMT2;2a  SDG717 BAKMT22a  Bradi4g01790
BrkKMT2;2 Bra027983 9 AtKMT2;2 SDG25/ATXR7 OsKMT2;2b  SDG732 BAKMT22b  Bradi3g13430
BrKMT2;3a  Bra003467 7 AtKMT23a  SDG14/ATX3 OsKMT2;3a  SDG721 BAKMT2;2c  Bradi4g37627
BrkKMT2;3b  Bra040838 8 AtKMT23b  SDG16/ATX4 OsKMT2;3b  SDG705 BAKMT2;3a  Bradi2g07082
BrkKMT2;3c Bra003056 10  AtKMT2;3c  SDG29/ATXS BAKMT2;3b  Bradi2g45430
BrkKMT3;1 Bra015678 7 AtKMT3;1 SDG8/ASHH2/EFS/ OsKMT3;1 SDG725 BAKMT3;1 Bradi3g45727 OtKMT3;1  SDG3605
CCR1
BrkKMT3;2 Bra015723 7 AtKMT3;2 SDG26ASHH1 OsKMT3;2 SDG708 BAKMT3;2 Bradi5g10110 OtKMT3;2  SDG3608
BrkKMT3;3 Bra010270 8 AtKMT3;3 SDG4/ASHR3 OsKMT3;3a  SDG736 BAKMT3;3a  Bradi3g48497
BrKMT34a  Bra004809 5 AtKMT3;4a SDG7/ASHH3 OsKMT3;3b  SDG707 BAKMT3;3b  Bradi3g36790
BrKMT34b  Bra0039% 7 AtKMT3;4b  SDG24/ASHH4 OsKMT3;4 SDG724 BdKMT3;4a  Bradilg20527
BrKMT34c  Bra00343 3 BdAKMT3;4b  Bradi4g27797
BrKMT3;4d  Bra007496 9
BrKMTEA; T Bra032169 4 AtKMT6A;1 SDG1/CLF OsKMT6A; 1 SDG711 BAKMT6A;1  Bradi1g48340 OtKMT6A  SDG3609
BrKMTEA;2  Bra036300 9 AtKMT6A;2  SDG10/EZA1/SWN OsKMT6A;2  SDG718 BAKMT6A;2  Bradilg64460
BrKMT6A;3a Bra033334 10  AtKMT6A;3  SDG5/MEA
BrKMT6A;3b  Bra032592 9
BrKMTEB;1a  Bra009403 10  AtKMT6B;1  SDG15/ATXRS OsKMT6B;1  SDG720 BAKMT6B;1  Bradi2g61717
BrKMTEB;1b  Bra028618 2 AtKMT6B;2  SDG34/ATXR6 OsKMT6B;2 ~ SDG730 BAKMT6B;2  Bradi3g02220
BrKMT6B;2a  Bra009752 6
BrKMTEB;2b  Bra029401 2
BrkKMT7;1a Bra037086 5 AtKMT7;1 SDG2/ATXR3 OsKMT7;1 SDG701 BAKMT7;1 Bradi3g15410 OtKMT7;1a  SDG3606
BrKMT7;1b  Bra039562 1 OtKMT7;1b  SDG3602
BrKMT7;1c ~ Bra020935 8
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Table 1 List of green lingeage SET-domain proteins analyzed in this study (Continued)

BrS-ET;1 Bra024688 9 AS-ET;1 SDG35 OsS-ET;1 SDG739 BdS-ET;1 Bradi1g73790 OtS-ET;1a  SDG3615
BrS-ET;2 Bra028726 2 AS-ET;2 SDG38 OsS-ET;2 SDG741 BdS-ET;3 Bradi5g22730 OtS-ET;1b  SDG3613
BrS-ET;3 Bra031313 5 AtS-ET;3 SDG36 OsS-ET;3 SDG722 BdS-ET;4a Bradizg17710 OtS-ET;1c  SDG3611
BrS-ET/4a Bra036713 9 AtS-ET:4a SDG39 OsS-ET;4a SDG740 BdS-ET;4b Bradilg11010 OtS-ET;3 SDG3604
BrS-ET;4b Bra002100 10  AtS-ET:4b SDG37 OsS-ET;4b SDG716
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Figure 1 Phylogenetic tree of SET-domain proteins. The SET domain sequences of the 175 different proteins were aligned using ClustalW,
and the phylogenetic tree analysis was performed using MEGA4. Closed circles and triangles indicate Arabidopsis thaliana (At) and Brassica rapa
(Br) proteins, respectively; open circles and triangles indicate Brachypodium distachyon (Bd) and Oryza sativa (Os) proteins, respectively; open and
closed squares indicate Ostreococcus tauri (Ot) and Saccharomyces cerevisiae (Sc) proteins, respectively.
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thaliana (http://brassicadb.org/brad/searchSynteny.php)
revealed that BrKMTI1A;4a, BrKMTI1A;4c and BrKM
T1A;4d but not BrKMT1A;4f are syntenic with AtKM-
T1A;4a/SDG32/SUVHI, and BrKMTI1A;4 h but not
BrKMTI1A;4e nor BrKMT1A;4 g is syntenic with AtKM-
T1A;4e/SDGI11/SUVH]IO0. It thus appears that multiple
duplication events occurred, in either a chromosome seg-
ment or single gene scale, resulting in more recent amplifi-
cation of Group-4 genes in B. rapa after separation from
A. thaliana during evolution. In agreement with previous
studies in Arabidopsis, rice and maize [11,12], few introns
are present in BrKMTIA genes (Additional File 1: Figure
S1). Most BrKMT1A genes are represented by ESTs, but
some do not have any ESTs in current databases (Addi-
tional File 2: Table S1). Our RT-PCR analysis revealed that
indeed two genes that lack ESTs, BrKMT1A;2a and
BrKMT1A;2c, are very weakly expressed. Strong expression
was detected for BrKMT1A;4a, but relatively weak expres-
sion was detected for BrKMYI1A;4d and expression was
undetectable for BrKMTI1A;4c (Additional File 3: Figure
S2). Together, these data indicate that expression levels of
different BrKMTIA genes varied considerably and thus
these genes may regulate genome function to different
degrees.

The plant KMT1A subclass proteins show high
sequence similarity to the animal KMT1 proteins both
within the SET domain and in the surrounding regions
known as the Pre-SET and post-SET domains. Addition-
ally, most of the plant proteins contain a specific
domain named SRA (SET and RING associated). Similar
to previously studied Arabidopsis proteins [12,20], most
of the BrKMT1A proteins also contain SRA, Pre-SET,
SET and post-SET domains (Figure 2). These domains
are missing in some of the Group-4 proteins; for exam-
ple, BPKMT1A.4e, BrKMT1A;4f and BrKMT1A;4 g lack
a Post-SET domain, and BrKMT1A.4 h lacks SRA, Pre-
SET and post-SET domains (Figure 2). Several functions
have been reported for SRA domains, including binding
with the N-terminal tail of histone H3 and with DNA
cytosine methylation [21]. The crystal structure of
AtKMT1A;3a/SDG9/SUVHS5 revealed that SRA recog-
nizes the methylation status of CG and CHH sequences
[22]. The Pre-SET domain contains 9 conserved
cysteines. The Post-SET domain is a small cysteine-rich
region often found at the C-terminal side of SET
domains. Both Pre-SET and Post-SET domains have
been shown to affect histone methyltransferase activity
of the SET domain [23,24].

Members of the plant KMT1A subclass, like animal
KMT1 proteins, are likely to be responsible for H3K9
methylation, an epigenetic mark involved in heterochro-
matin formation and gene silencing. Consistent with this,
analysis of AtKMTI1A;1/SDG33/SUVH4/KYP, AtKM-
T1A;2a/SDG3/SUVH?2, AtKMT1A;3a/SDG9/SUVHS and
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AtKMTI1A;3b/SDG23/SUVHG has revealed their important
roles in H3K9 methylation, in heterochromatic gene silen-
cing and in cross-talk between H3K9 and DNA methyla-
tion [9,21,22,25-28]. Work in rice also confirmed that
several members of this subclass are involved in H3K9
methylation and in transposon silencing [29-31]. Some of
the BrKMT1A genes might also have similar functions.

The KMT1B subclass proteins

Six B. rapa proteins belong to the KMT1B subclass,
which can be further divided into 4 groups (Figure 3).
Group-1 contains two B. rapa proteins (BrKMT1B;1a
and BrKMT1B;1b) whose genes show synteny with
AtKMT1B;1/S§DG31/SUVR4. Moreover, sequence analy-
sis showed that BrKMT1B;1b and AtKMT1B;1/SDG31/
SUVR4 have highly similar protein domain organization,
indicating that BrKMT1B;1b is more conserved and
BrKMTI1B;1a diverged relatively late during evolution
after the B. rapa/A. thaliana separation. Group-2 has
two B. rapa, two A. thaliana proteins, one O. sativa pro-
tein, and three B. distachyon proteins. Both BrKMT1B;2a
and BrKMTI1B;2b show synteny with AtKMT1B;2b/
SDG18/SUVR2. Group-3 and 4 each have one represen-
tative member in each of the four examined higher plant
species.

The KMT1B subclass differs from the KMT1A subclass
in protein domain organization; specifically, these proteins
lack the SRA domain (Figure 3). A recent study demon-
strated that AtKMT1B;1/SDG31/SUVR4 possesses H3K9-
methyltransferase activities and its binding with ubiquitin
converts H3K9mel to H3K9me3 deposition on transposon
chromatin [32]. Notably, the WIYLD domain, which binds
ubiquitin, is conserved in BrKMT1B;1la, BrKMT1B;1b,
BrKMT1B;2a and BrKMT1B;2b (Figure 3). It was reported
that AtKMT1B;3/SDG6/SUVR5/AtCZS is involved in reg-
ulation of flowering time, possibly through deposition of
H3K9 methylation at the flowering time repressor FLC
[33]. The functions of other members of the KMT1B sub-
class remain uncharacterized so far.

The KMT2 class proteins

The KMT?2 class includes six B. rapa and six A. thaliana
proteins in 3 groups (Figure 4). This class features highly
conserved SET and Post-SET domains with the yeast
H3K4-methyltransferase SCKMT2/Setl. Nevertheless,
some plant proteins have acquired specific domains during
evolution, namely PWWP, PHD, FYR and/or GYF. The
PWWP domain is also found in eukaryotic proteins
involved in DNA methylation, DNA repair, and regulation
of transcription [34], and regulates cell growth and differ-
entiation by mediating protein-protein interactions [35].
The PHD domain is found in a number of chromatin-
associated proteins and is thought to be involved in pro-
tein-protein interactions important for the assembly of
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Figure 3 Domain organization of the KMT1B subclass proteins. Schematic diagrams show the domain organization of KMT1B proteins and
are placed on the right side of the phylogenetic tree. The scale bar indicates the evolutionary distance, the number along the tree branch
indicates bootstrap value, and the other information about tree construction and symbol indication can be found in legend of Figure 1. Different
conserved protein domains (WIYL, Pre-SET, SET, Post-SET, and Ribosomal) are colored as indicated. The KMT1B;3-group proteins are large in size;
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multiprotein complexes [36]. The PWWP domain of the
animal BRPF1 protein binds H3K36me3 [35], and the
PHD domain is also an important module in proteins that
read histone modifications [37]. The FYR domain is com-
posed of FYR-C and FYR-N terminal portions, which are
often located close to each other but can also be separated
[38]. The GYF domain is proposed to be involved in
recognition of proline-rich sequences in protein-protein
interactions [39].

KMT?2 Group-1 members contain one PWWP, one FYR
and two PHD domains. Only one member belonging to
Group-1 is found in O. sativa or B. distachyon, but two
members are found in B. rapa and A. thaliana. Our exam-
ination revealed that BrKMT2;1a has synteny with

AtKMT21a/SDG27/ATX1, and BrKMT2;1b with AtKM
T2;1b/SDG30/ATX2, suggesting that they are derived
from two different ancestral copies before the B. rapa/A.
thaliana separation. Consistent with this, the afx! mutant
plants exhibit strong and pleiotropic defects [40], but the
atx2 mutant plants have a normal phenotype [41]. The
atx2 mutation can enhance atx! in reduction of expres-
sion of the flowering repressor gene FLC through reduced
levels of H3K4me3 at the FLC locus [42].

The PWWP and FYR domains are absent from the
Group-2 members and the PHD domain is found only in
some monocot proteins (Figure 4). Only one Group-2
representative member is found in the dicot species
B. rapa or A. thaliana, but the monocot O. sativa has two
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Figure 4 Domain organization of the KMT2 class proteins. Schematic diagrams show the domain organization of KMT2 proteins and are
placed on the right side of the phylogenetic tree. The scale bar indicates the evolutionary distance, the number along the tree branch indicates
bootstrap value, and the other information about tree construction and symbol indication can be found in legend of Figure 1. Different
conserved protein domains (PWWP, FYR, GYF, PHD, SET, and Post-SET) are colored as indicated. The protein is indicated on top of the schematic
diagram and other similar domain organization proteins are indicated in parentheses.

members and B. distachyon has three members. The
B. rapa and A. thaliana proteins, as well as one member
each from O. sativa and B. distachyon, contain a GYF
domain in the N-terminal part of the protein (Figure 4).
The fact that this domain is conserved in KMT2;2 proteins
from all four higher plant species suggests that the acquisi-
tion of the GYF domain occurred before the monocot/
dicot separation and may have a conserved function in
higher plants. Genetic analysis demonstrated that
AtKMT2;2/SDG25/ATXR?7 is necessary in preventing early
flowering [43,44]. The recombinant AtKMT2;2/SDG25/
ATXR?7 protein was shown to methylate histone H3 in
vitro and the depletion of AtKMT2;2/SDG25/ATXR7 in
planta slightly reduced H3K4 and H3K36 methylation at

FLC chromatin [43,44]. OsKMT2;2b/SDG732 and
BdKMT?2;2c contain two PHD domains, but BAKMT2;2b,
like the yeast protein SCKMT2/Setl, does not contain a
recognizable PHD domain. Future study of these monocot
proteins will likely provide a deeper understanding of the
domain evolution of KMT2 proteins.

The Group-3 KMT2 proteins have a domain organiza-
tion more similar to Group-1 except that they lack the
FYR domain (Figure 4). B. rapa and A. thaliana both
have three Group-3 members, but each of the other two
higher plant species has only two Group-3 members.
Synteny was observed for BrKMT2;3c with AtKMT2;3¢c/
SDG29/ATXS but not with AtKMT2;3b/SDG16/ATX4,
suggesting that AtKMT2;3b/SDG16/ATX4 was derived
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from a relatively recent duplication event. This is in
agreement with a previous study revealing that AtK
MT2;3b/SDG16/ATX4 and AtKMT2;3¢/SDG29/ATX5
are collinearly duplicated with AtKMT2;1a/SDG27/ATX1
and AtKMT2;1b/SDG30/ATX2 [12]. To date, none of the
Group-3 proteins has been functionally characterized.

The KMT3 class proteins

The KMT3 class contains 5 members in A. thaliana but
7 members in B. rapa, and these can be further divided
into four groups (Figure 5). The other groups contain a
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single member per plant species, but Group-4 contains
2 members in A. thaliana and 4 members in B. rapa.
Our examination indicates that BrKMT3;4a and BrK
MT3;4c are syntenic with AtKMT3;4a/SDG7/ASHHS3,
and BrKMT3;4b and BrKMT3;4d with AtKMT3;4b/
SDG24/ASHH4. The ESTs found in the current data-
bases match all four BrKMT3;4 genes (Additional File 2:
Table S1), and thus do not allow us to distinguish
expression of each gene. Our RT-PCR analysis indicated
that BrKMT3;4a and BrKMT3;4c are expressed at higher
levels and more broadly in different examined organs/
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Figure 5 Domain organization of the KMT3 class proteins. Schematic diagrams show the domain organization of KMT3 proteins and are
placed on the right side of the phylogenetic tree. The scale bar indicates the evolutionary distance, the number along the tree branch indicates
bootstrap value, and the other information about tree construction and symbol indication can be found in legend of Figure 1. Different
conserved protein domains (AWS, PHD, CW, SET, and Post-SET) are colored as indicated. The KMT3;1-group proteins are large in size; therefore
the corresponding schematic diagram is drawn with a remove of ~500 aa from the C-terminus, a region without any detectable known protein
domains. The protein is indicated on top of the schematic diagram and other similar domain organization proteins are indicated in parentheses.
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tissues, whereas only weak expression was detected for
BrKMT3;4b and BrKMT3;4d in some organs/tissues
(Additional File 3: Figure S2).

The KMT3 class plant proteins share high sequence
similarity and share the AWS (a subdomain of Pre-SET,
[45]), SET and Post-SET domain organization with the
yeast H3K36-methyltransferase SCKMT3/Set2 (Figure 5).
The Group-1 proteins have a long sequence and contain
an additional CW domain specific to this group. The CW
domain of AtKMT3;1/SDG8/ASHH2/EFS/CCR1 was
recently shown to bind H3K4mel/me2 [46], suggesting a
novel link between H3K4 and H3K36 methylation in
plants. AtKMT3;1/SDG8/ASHH2/EFS/CCR1 is the major
H3K36-methyltransferase specifically required for
H3K36me2 and H3K36me3 deposition, and activates
expression of hundreds of genes including FLC and MAFs
[47]. Depletion of AtKMT3;1/SDG8/ASHH2/EFS/CCR1
causes pleiotropic phenotypes, including early flowering,
reduced organ size, increased shoot branching, perturbed
fertility and carotenoid composition, and impaired plant
defenses against pathogens [47-54]. The other group of
KMT3 plant proteins have a shorter sequence and do not
contain the CW domain; interestingly the depletion of
AtKMTS3;2/SDG26/ASHHI resulted in a late-flowering
phenotype associated with elevated levels of FLC expres-
sion [47]. The Group-3 KMT3 proteins, with the excep-
tion of BAKMT3;3b and OsKMT3;3b/SDG707, contain a
PHD domain; and AtKMT3;3/SDG4/ASHR3 was reported
to be involved in pollen and stamen development possibly
through mediating H3K4me2 and H3K36me3 deposition
[55,56]. The functions of the Group-4 proteins remain
unexamined so far. Examination of this group in B. rapa
could be a challenge because of gene multiplication and
more diverged sequences (Figure 5).

The KMT6A subclass proteins

The KMT6A subclass includes 4 members in B. rapa
and 3 well-characterized members in A. thaliana,
AtKMT6A;1/SDG1/CLF, AtKMT6A;2/SDG10/EZA1/
SWN and AtKMT6A;3/SDG5/MEA, which represent
three distinct groups (Figure 6a). AtKMT6A;1/SDG1/
CLF and AtKMT6A;2/SDGI10/EZA1/SWN are broadly
expressed and partially redundant in regulation of vege-
tative and reproductive development, whereas AtK
MT6A;3/SDG5/MEA appears to function specifically in
gametophyte and seed development [7,8,57]. The three
Arabidopsis proteins can act as a key component of the
evolutionarily conserved Polycomb Repressive Complex
2 (PRC2), which trimethylates H3K27 involved in tran-
scriptional repression [57]. AtKMT6A;1/SDG1/CLF and
AtKMT6A;2/SDG10/EZA1/SWN represent Group-1
and Group-2, respectively, and each has an orthologue
in different higher plant species. AtKMT6A;3/SDG5/
MEA, which belongs to Group-3, has no orthologue in
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monocots but has two orthologues in B. rapa. Both
BrKMT6A;3a and BrKMT6A;3b are syntenic with
AtKMT6A;3/SDG5/MEA, and BrKMT6A;3a has a more
similar protein domain organization to AtKMT6A;3/
SDG5/MEA than does BrKMT6A;3b, suggesting that
BrKMT6A;3b may have diverged after the A. thaliana/B.
rapa separation during evolution.

The SANT (SW1I3, ADA2, N-CoR, and TFIIIB DNA-
binding) domain is found in most of the plant KMT6A
subclass proteins. This domain is also found in a number
of other chromatin remodeling proteins with multiple
activities such as DNA-binding, histone tail binding, and
protein-protein interactions [58]. Nevertheless, the precise
role of the SANT domain in KMT6A proteins is currently
unknown. Notably, BrKMT6A;3b does not contain a
SANT domain. As expected from restricted AtKMT6A;3/
SDG5/MEA expression in only a small number of cells
during reproduction, expression of both BrKMT6A;3a and
BrKMT6A;3b is barely detectable in the examined tissues
(Additional File 3: Figure S2). It will be interesting to
investigate BrKMT6A;3a and BrKMT6A;3b expression
during reproduction and to examine whether both genes
are functionally important.

The KMT6B subclass proteins

The KMT6B subclass includes two members each in A.
thaliana, B. distachyon and O. sativa, and four members
in B. rapa, which together can be divided into two distinct
groups (Figure 6b). The two members from A. thaliana,
AtKMT6B;1/SDG15/ATXR5 and AtKMT6B;2/SDG34/
ATXR6, were classified as trithorax-related in the first
genome analysis of Arabidopsis SET-domain proteins [11].
However, our study as well as two previous studies that
included a more complete set of plant SET-domain pro-
teins clearly show that AtKMT6B;1/SDG15/ATXR5 and
AtKMT6B;2/SDG34/ATXR6 belong to the KMT6B sub-
class (Figure 1) [12,20]. Consistent with this, functional
analysis revealed that AtKMT6B;1/SDG15/ATXR5 and
AtKMT6B;2/SDG34/ATXR6 are involved in monomethy-
lation of H3K27 [59]. They appear to act redundantly,
because depletion of H3K27 monomethylation is only
detectable in the atxr5 atxr6 double mutant [59].
KMT6A-mediated H3K27me3 is mainly present in
euchromatic regions and is important for gene silencing
[58], but KMT6B-mediated H3K27mel is found in hetero-
chromatic chromocenters and is important for hetero-
chromatin condensation and replication in Arabidopsis
[60].

Distinct from KMT6A proteins containing a SANT
domain, many plant KMT6B subclass proteins contain a
PHD domain (Figure 6). The PHD domain of both
AtKMT6B;1/SDG15/ATXR5 and AtKMT6B;2/SDG34/
ATXR6 strongly bind unmethylated H3 tail peptides
(amino acids 1-21), and this binding is negatively affected
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Figure 6 Domain organization of the KMT6 class proteins. The KMT6 class can be divided into 2 subclasses (a and b). Schematic diagrams
show the domain organization of KMT6 proteins and are placed on the right side of the phylogenetic tree. The scale bar indicates the
evolutionary distance, the number along the tree branch indicates bootstrap value, and the other information about tree construction and
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protein is indicated on top of the schematic diagram and other similar domain organization proteins are indicated in parentheses.

[

by methylation on H3K4 [60]. This binding preference
may help to assure that these KMT6B proteins are not tar-
geted to euchromatin and active genes enriched in H3K4
methylation. Remarkably, both Group-1 and Group-2
members are duplicated in B. rapa. Both BrKMT6B;1a
and BrKMT6B;1b are syntenic with AtKMT6B;1/SDG15/
ATXRS5, and both BrKMT6B;2a and BrKMT6B;2b with
AtKMT6B;2/SDG34/ATXR6. Expression of BrKMT6B;1a,
BrKMT6B;2a and BrKMT6B;2b was detected in different
tissues, but we failed to detect BrKMT6B;1b expression

(Additional File 3: Figure S2). It is reasonable to speculate
that BrKMT6B;1a, BrKMT6B;2a and BrKMT6B;2b might
have redundant functions.

The KMT7 class proteins

The KMT?7 class contains a single member each in A.
thaliana, O. sativa and B. distachyon, but three members
in B. rapa (Figure 7). Although the Arabidopsis protein
AtKMT7;1/SDG2/ATXR3 was considered to be related
to members of the KMT2 class in some previous studies
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[11,20], it was located outside of any classes in the phylo-
genetic tree analysis by Springer and colleagues [12], and
our analysis here revealed that it is grouped together with
some other green lineage proteins, forming the plant
KMT?7 class (Figure 1). Unlike the classes described
above, the plant and animal KMT?7 classes do not cluster
although they are predicted to have similar functions in
H3K4 methylation. Representatives of the animal KMT7
class are only found in mammals and include the human
SET7/9, which monomethylates H3K4 and also methy-
lates a number of nonhistone proteins [17]. The plant
KMT7 proteins did not show the highest sequence simi-
larities with the human SET7/9, and depletion of
AtKMT7;1/SDG2/ATXR3 resulted in a global reduction
of H3K4me3 and caused pleiotropic defects in both spor-
ophyte and gametophyte development [61,62]. Both
BrKMT?7;1a and BrKMT7;1b but not BrKMT?7;1c have
synteny with AtKMT7;1/SDG2/ATXR3, and phylogenetic
analysis showed that BrKMT7;1a is more closely related
to AtKMT7;1/SDG2/ATXR3. RT-PCR analysis revealed
that BrKMT7;1b is expressed at a higher level than
BrKMT7;1a (Additional File 3: Figure S2). In view of the
important function of AtKMT7;1a/SDG2/ATXR3, it will
be interesting to investigate roles of BrKMT7;1a and
BrKMT7;1b in histone methylation and plant develop-
ment in B. rapa.

Discussion

Opver last 10 years, a number of SET-domain genes in Ara-
bidopsis and in rice have been characterized and shown to
exert crucial chromatin-based functions via histone
methylation during plant growth and development [3,15].
However, the nomenclature of plant SET-domain proteins

remains complex, and multiple synonyms exist for many
Arabidopsis proteins (Table 1), which could cause consid-
erable confusion in this important field. Nomenclature
based on sequence similarity has several advantages,
informing the prediction of KMT enzyme substrate speci-
ficity for its histone lysine residue and providing a global
view of KMT types in an organism once its whole genome
sequence becomes available. However, the SDG nomen-
clature failed to provide information concerning enzyme
substrate specificity and the number following “SDG”
could be long and difficult to remember [12,63], e.g., the
first SDG from B. rapa (ID = 197) would have been
named SDG19701. While the nomenclature by Baum-
busch and colleagues provided information about homol-
ogy to animal proteins, an incomplete list of Arabidopsis
SET-domain proteins and the limitation (at that time) of
having only one plant species with a genome-wide analysis
restricted the precision and correctness of phylogenetic
grouping in this study [11]. In addition, animal KMT
nomenclature had also been noncoherent; a rational
nomenclature was proposed only recently [17]. Therefore,
the nomenclature we propose here is in line with the latest
advances in the field.

In accordance with the guidelines of the Commission
on Plant Gene Nomenclature [64], the nomenclature of
plant KMTs is defined by species initials (e.g. Br for Bra-
sica rapa) before KMT, which is followed by the class
number (Figure 8). The class number is based on the
yeast and animal systems indicating the enzyme substrate
specificity, i.e. KMT1 for H3K9, KMT2 for H3K4, KMT3
for H3K36, KMT6 for H3K27, and KMT?7 also for H3K4
[17]. Multiple subclasses are indicated by upper-case let-
ters (e.g. KMT1A and KMT1B), and distinct groups
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Species abbreviation Lysine (K) Class number:
(Brassica rapa) Methyl-Transferase indicating substrate
specificity
Sub-class
\ Group
A
! Member
BrKMT1A;2a
Figure 8 Nomenclature for plant KMTs. The BrKMT1A;2a protein serves as an example to show assignment of various layers of information
within the nomenclature of a plant KMT. Refer to text for class, subclass, group and member definition.

within the class/subclass are indicated by an arabic
numeral suffix (e.g. KMT1A;1). Members within the
group are indicated by lower-case letters (e.g. KMT1A;1a
and KMT1A;1b). Subgroups are not currently defined
but may be designated in the future as functional analysis
and an increasing number of sequenced genomes
demonstrate sequence conservation between species or
distinct functions for several members of a defined KMT
group. The use of a given subgroup suffix should indicate
highly similar sequences or equivalent functional roles
between several species. The new nomenclature may be
difficult to adopt in Arabidopsis because the original
names for a number of SET-domain proteins are familiar
to researchers, but a coherent and rational nomenclature
for different species is important and useful because of
the enormous interest in KMTs. The guidelines proposed
here will be particularly useful for nomenclature of newly
identified SET-domain proteins, which are being discov-
ered at an exponentially increasing rate as genome
sequences become available for additional plant species.
We identified 49 SET-domain proteins from the
recently completed whole genome sequence of B. rapa.
Among them, 5 proteins belong to the S-ET class likely
involved in nonhistone protein methylation, 20 proteins
belong to the KMT1 class potentially involved in H3K9
methylation, 6 proteins belong to the KMT2 class poten-
tially involved in H3K4 methylation, 7 proteins belong to
the KMT3 class potentially involved in H3K36 methyla-
tion, 8 proteins belong to the KMT6 class potentially
involved in H3K27 methylation, and 3 belong to the
KMT?7 class also potentially involved in H3K4 methyla-
tion. This in silico survey is useful for future functional
analysis of this important family of epigenetic regulators
in Brassica. H4K20 methylation was detected in Arabi-
dopsis using antibodies [28,65], but the catalyzing
enzyme(s) involved is(are) not yet known and the current

phylogenetic analysis did not allow prediction of a speci-
fic KMT class involved in H4K20 methylation. It is possi-
ble that some members of the aforementioned KMT
classes catalyze H4K20 methylation. The total number of
KMTs in B. rapa (49) is slightly higher than that identi-
fied in A. thaliana (37), O. sativa (36) and B. distachyon
(41). Nevertheless, we could not exclude the possibility
that a few more KMTs may be missing from the cur-
rently available genome sequence of B. rapa.

Gene duplication is one of the primary driving forces in
the evolution of genomes and genetic systems, and is con-
sidered to be a major mechanism for the establishment of
new gene functions and the generation of evolutionary
novelty [66,67]. Contrary to what would be expected from
the chromosome number duplication in B. rapa compared
to A. thaliana, the number of KMT genes in B. rapa (49)
is much less than double the number of A. thaliana KMTs
(74). Many duplicated genes show synteny with their A.
thaliana homologues, suggesting that they are derived
from chromosome/genome segment duplications. Three
alternative outcomes can occur in the evolution of dupli-
cated genes: (i) one copy may simply become silenced by
degenerative mutations (nonfunctionalization); (ii) one
copy may acquire a novel, beneficial function and become
preserved by natural selection (neofunctionalization); (iii)
both copies may become partially compromised by muta-
tion so that their total capacity adds up to the capacity of
the single-copy ancestral gene (subfunctionalization) [66].
These different outcomes likely apply to different dupli-
cated KMT genes, judging from their expression patterns
(Additional File 3: Figure S2). Expression of BrKMT1A;4c
and BrKMT6B;1b was undetectable, suggesting that they
might have been nonfunctionalized. The duplicated pairs
BrKMTI1B;2a and BrKMTI1B;2b, BrKMT3;4b and BrK
MT3;4d, or BrKMT7;1a and BrKMT7;1b are differentially
expressed in plant organs, suggesting that they might have
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acquired distinct tissue-specific functions. Finally, expres-
sion of some duplicated genes, e.g. BrKMT1A;2a and
BrKMTI1A;2¢c, BrKMTI1B;1a and BrKMTI1B;1b, or BrK
MT6A;3a and BrKMT6A;3b showed similar patterns, sug-
gesting that they might be subfunctionalized and/or have
redundant functions.

Among the groups showing gene duplications in B.
rapa, it is worth to note that in Arabidopsis, AtKMT6A;3/
SDGS5/MEA is critical for parental gene imprinting and
seed development [8,68], ALKMT6B;1/SDG15/ATXS and
AtKMT6B;2/SDG34/ATX6 are important for heterochro-
matin condensation and replication in Arabidopsis [59,60],
and AtKMT7;1/SDG2/ATXR3 is essential for both sporo-
phyte and gametophyte development [61,62]. It will be of
great interest to investigate these groups of genes for their
regulation and function in chromatin organization, plant
growth and development in B. rapa.

Conclusions

Our study shows that the plant SET-domain KMT pro-
teins can be phylogenetically grouped into distinct classes
and that the classes involved in histone methylation can
be named in accordance with the nomenclature proposed
for animal and yeast SET-domain KMTs. Such a coherent
and rational nomenclature in different organisms will help
avoid confusion caused by the existence of multiple names
for the same protein or gene. The information provided
on the B. rapa KMTs will also be beneficial for future
research to unravel the mechanisms of epigenetic regula-
tion in Brassica crops.

Methods

SET-domain protein identification

Sequences of SET-domain proteins from A. thaliana, O.
sativa, O. tauri and S. cerevisiae were retrieved from the
Chromatin Database with the key word SDG in species
database respectively (ChromDB, http://www.chromdb.
org). These sequences, primarily those from A. thaliana
and O. sativa, were used as queries to search the B. dis-
tachyon genome (http://www.brachypodium.org) and the
B. rapa genome (http://brassicadb.org/brad/index.php) by
using the BLASTp and tBLASTn tools (http://blast.ncbi.
nlm.nih.gov). The Expect threshold was set at 1.0 and
other parameters were set at default values. We did not
use a strict E-value threshold; rather we examined each of
the resulting hits for the presence of the SET or S-ET
domain to collect previously unidentified sequences. The
synteny analysis was performed using the online viewer
tool (http://brassicadb.org/brad/index.php). ESTs of the B.
rapa SET-domain protein genes were retrieved from the
Brassica Database (http://brassicadb.org/brad/index.php)
and from NCBI (http://blast.ncbi.nlm.nih.gov), using an
Expect threshold of 1, and a minimum sequence length of
50 bp.
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Protein domain organization analysis

The protein sequences were analyzed for domain orga-
nization using NCBI-CD searches (http://ncbi.nlm.nih.
gov/Structure/cdd/wrpsb.cgi). The low-complexity filter
was turned off, and the Expect value was set at 1.0 to
detect short domains or regions of less conservation in
this analysis. Domains were also verified and named
according to the SMART database (http://smart.embl-
heidelberg.de/).

Phylogenetic analysis

Multiple sequence alignments of SET-domain sequences
were performed using the ClustalW program [69]. The
resulting file was subjected to phylogenic analysis using
the MEGAA4.0 program [70]. The trees were constructed
with the following settings: Tree Inference as Neighbor-
Joining; Include Sites as pairwise deletion option for
total sequences analysis and complete deletion option
for each class analysis; Substitution Model: Poisson cor-
rection; and Bootstrap test of 1,000 replicates for inter-
nal branch reliability.

RT-PCR Analysis

B. rapa plants were grown at 18-22°C under a 12 h light
(10,000 Lx)/12 h dark photoperiod. Leaves were col-
lected from 2-, 4-, 6-, 8- or 10-week-old plants; roots
and stems were collected from 6-week-old plants; flower
buds were collected from 10-week-old plants. Total
RNA was extracted using Trizol reagent (Invitrogen,
USA) from about 100 mg of collected plant tissue. The
RNA preparation was then treated with DNasel (Pro-
mega, USA) for 30 min at 37°C, followed by enzyme
inactivation by incubation at 65°C for 5 min. First strand
c¢cDNA was made using an RT-PCR Kit (RevertAid™
First Strand cDNA Synthesis Kit, Fermentas, CA). The
RT-solution with first strand cDNA was stored at -80°C.
Primers used for the RT-PCR reactions are listed in
Additional File 4: Table S2. Conditions for the PCR
reactions were as follows: 94°C for 3 min; then 30 cycles
of 94°C for 30 s, 50-63°C for 30 s, and 72°C for 1 min;
and finally 72°C for 8 min. PCR products were separated
in a 1.5% (w/v) agarose Tris-borate/EDTA buffer gel and
visualized by ethidium bromide staining.

Additional material

Additional file 1: Figure S1. ORF organization of the B. rapa KMT1A-
group genes.

Additional file 2: Table S1. List of ESTs of the B. rapa SET-domain
genes.

Additional file 3: Figure S2. Expression analysis of BrKkMT duplication
genes in different organs and stages.

Additional file 4: Table S2. List of gene specific primers used in this
study.
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