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Abstract

Background: Sucrose is the primary photosynthesis product and the principal translocating form within higher
plants. Sucrose transporters (SUC/SUT) play a critical role in phloem loading and unloading. Photoassimilate transport
is a major limiting factor for seed yield. Our previous research demonstrated that SUT co-localizes with yield-related
quantitative trait loci. This paper reports the isolation of BnA7.SUT1 alleles and their promoters and their association
with yield-related traits.

Results: Two novel BnA7.SUT1 genes were isolated from B. napus lines ‘Eagle’ and ‘S-1300’ and designated as BnA7.
SUT1.a and BnA7.SUT1.b, respectively. The BnA7.SUT1 protein exhibited typical SUT features and showed high
amino acid homology with related species. Promoters of BnA7.SUT1.a and BnA7.SUT1.b were also isolated and
classified as pBnA7.SUT1.a and pBnA7.SUT1.b, respectively. Four dominant sequence-characterized amplified region
markers were developed to distinguish BnA7.SUT1.a and BnA7.SUT1.b. The two genes were estimated as alleles with
two segregating populations (F2 and BC1) obtained by crossing ‘3715’×’3769’. BnA7.SUT1 was mapped to the A7
linkage group of the TN doubled haploid population. In silico analysis of 55 segmental BnA7.SUT1 alleles resulted
three BnA7.SUT1 clusters: pBnA7.SUT1.a- BnA7.SUT1.a (type I), pBnA7.SUT1.b- BnA7.SUT1.a (type II), and pBnA7.SUT1.b-
BnA7.SUT1.b (type III). Association analysis with a diverse panel of 55 rapeseed lines identified single nucleotide
polymorphisms (SNPs) in promoter and coding domain sequences of BnA7.SUT1 that were significantly associated
with one of three yield-related traits: number of effective first branches (EFB), siliques per plant (SP), and seed
weight (n = 1000) (TSW) across all four environments examined. SNPs at other BnA7.SUT1 sites were also
significantly associated with at least one of six yield-related traits: EFB, SP, number of seeds per silique, seed yield
per plant, block yield, and TSW. Expression levels varied over various tissue/organs at the seed-filling stage, and
BnA7.SUT1 expression positively correlated with EFB and TSW.

Conclusions: Sequence, mapping, association, and expression analyses collectively showed significant diversity
between the two BnA7.SUT1 alleles, which control some of the phenotypic variation for branch number and seed
weight in B. napus consistent with expression levels. The associations between allelic variation and yield-related
traits may facilitate selection of better genotypes in breeding.

Background
Sucrose is the principal transport form of photosyntheti-
cally assimilated carbohydrate in higher plants. It is
synthesized in the source leaf or the pericarp of the pod
and transported via the phloem to sink tissues and

provides energy and carbon skeleton to the non-photo-
synthetic tissues. In sink tissues, sucrose may be used
directly for metabolism or translocated to storage tissues
(such as cotyledon and endosperm) for synthesis of
three major storage products (oil, starch, and protein)
through carbohydrate metabolism. On the basis of these
storage products, crops are designated as oleaginous,
farinose, or proteinacious crops [1-4].
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Sucrose transporter (SUT) was first reported in spi-
nach (Spinacia oleracea L.) (Amaranthaceae) [5]. In the
last two decades, cDNA for SUTs has been isolated and
cloned in higher plants (e.g., Solanaceae, Brassicaceae,
Amaranthaceae, Poaceae) [6-8]. Immunolocalization
analysis revealed that SUTs are located in plasma mem-
branes of enucleate sieve and companion cells [9,10].
SUTs have been reported to be expressed in various tis-
sues of the transport pathway and sink cells in Arabi-
dopsis, barley, potato, and rubber [9-13]. Mutation
studies of SUTs have revealed that SUTs are responsible
for restraining plant growth and pollen germination
[14-16]. Antisense transformation experiments have
clearly shown that SUTs also are responsible for retar-
dation of sucrose translocation, fruit size reduction, and
lowered fertility in tomato [17,18]. Overexpression
transformations showed lower sucrose concentration in
leaves and increased growth rates of pea cotyledon
[19,20]. Early stages of seed development in Brassica
exhibit a SUT association with starch and oil accumula-
tion in the embryo; the further growth of the cotyledon
leads to lipid synthesis and starch degradation [2,21].
Results from another study have suggested that
increased lipid synthesis is an effect of sucrose unload-
ing [22]. However, detailed reports are lacking for SUT
in Brassica napus (Brassicaceae).
B. napus is one of the major global oil crops. It is

used for direct human consumption, as animal feed, and
recently as a source of bio-fuel. High seed yield per unit
is one of the most important challenges in B. napus
breeding, while the harvest index (HI) is only about 0.2-
0.3 [23,24]. Generally, the HI of cereal crops can reach
0.5-0.6 in crop production under suitable conditions and
management, with reserved assimilates in plants contri-
buting 10-40% of the final yield at the grain filling stage
[25]. The HI of soybean, one of the most important oil
crops, also can reach 0.4-0.6 [26,27] and has been suc-
cessfully maximized during breeding [28]. Investigations
have indicated that source and sink organs are not limit-
ing, while assimilate translocation is the most critical
limiting factor for seed yield in Brassica [29,30]. SUT
may be a key gene for increasing seed yield by translo-
cating sucrose from source to sink.
In our previous investigation, a functional marker

derived from SUT was co-localized with seed yield
quantitative trait loci (QTLs) in B. napus [31]. We
hypothesized that the SUT gene affects seed yield in
B. napus. Here, a complete SUT (BnA7.SUT1) and
promoters were isolated and characterized. A series of
experiments and observations of the B. napus SUT
made it possible to detect alleles located in the A7
linkage group, and allelic variation of BnA7.SUT1 was
associated with seed yield-related traits. BnA7.SUT1.b
and its promoter are linked to higher seed yield,

while BnA7.SUT1.a is associated with increased seed
weight.

Results
Isolation of BnA7.SUT1
Three Brassica fragments (two expressed sequence
tagged and a bacterial artificial chromosome [BAC];
respective GenBank accession numbers AY190281,
AY065839, and AC189334) were obtained from the
large-scale sequence analysis results at The Arabidopsis
Information Resource database and identified as having
high sequence homology with the Arabidopsis AtSUC1
(At1G71880) sequence [6]. Primers (M1-M4) were
designed based on conservative segments (see Addi-
tional file 1). With these primers, the main genomic seg-
ments of BnX.SUT1 were generated; the remnant
fragments and promoter were obtained by thermal
asymmetric interlaced (TAIL) PCR in the B. napus culti-
var ‘Eagle’. According to the contig, the complete open
reading frame (ORF) was identified by using gene pre-
diction programs (GENSCAN; FGENESH), and gene-
specific primers were developed to generate BnX.SUT1
in line ‘S-1300’. Of interest, the PT1 primer pair, which
amplifies the 5’-end of BnX.SUT1, generated the
expected band in ‘Eagle’ exclusively (Table 1). Thus,
more than 2 kb of promoter and 5’ untranslated region
(UTR) were obtained by TAIL-PCR from ‘S-1300’,
respectively. Based on the predicted 5’ and 3’ UTRs of
the candidate SUT-like gene, common gene-specific pri-
mers were designed: sut-2L (5’-AGA ATG GGA GCT
TTT GAA ACA G-3’) and sut-2R (5’-GGC ATA GAG
TAC ACT AAT GGA AG-3’). These primers were used
to amplify the full-length cDNA and genomic sequences
of BnX.SUT1. Forty-four cDNA sequences were isolated
from various organs/tissues of ‘Eagle’ and ‘S-1300’ and
were classified into four clusters (Additional file 2). Two
clusters showed non-variation sequences and non-

Table 1 Details of SCAR markers from BnA7.SUT1
showing significant associations (P value) with yield-
related traits in the set of 55 genetically diverse Brassica
napus genotypes

Symbol Primer Primer sequence Length Product
(bp)

name Eagle S-1300

PT1 PT1-L ATGTTCGCTGGCATACCTAG 1600 –

PT1-R TTCCGACCAATCCACTCAAC

PT5 PT5-L ATATACAGCATGAACGCAAC – 600

PT5-R ATGAGAGAGGACCATTTGTG

ET3 ET3-L GTTGTAGAGACACAGCCACCTTC 1250 –

ET3-R CGGCAGTTTTCCGGTGAC

ET4 ET4-L GTTGTAGAGACACAGCCACCTTC – 850

ET4-R TTCGTCGCCGGAGTTTGG
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distinguished expression in six B. napus lines (data not
shown) and were not included in further work in this
investigation. The other two clusters were designated as
BnA7.SUT1.a and BnA7.SUT1.b, obtained from ‘Eagle’
and ‘S-1300’, respectively.
Both putative ORFs of BnA7.SUT1.a and BnA7.SUT1.b
contain 1545 bp and encode a protein of 514 amino
acids. The combination of the cDNA and genomic DNA
sequences revealed that the BnA7.SUT1 gene is 2593 bp
in length, containing four exons and three introns. The
hydrophobicity profile analysis of BnA7.SUT1 revealed
the presence of 12 transmembrane spanning domains,
arranged in two sets of six putative transmembrane
domains separated by a long central hydrophilic loop,
with both terminal domains and a large central loop
located on the intracellular side of the plasma membrane.
BnA7.SUT1 belongs to the subgroup SUT1 (Additional
file 3). The two predicted protein sequences are 98%
identical, having seven amino acid differences between
BnA7.SUT1.a and BnA7.SUT1.b (Figure 1), none of them
in transmembrane domains. The cDNA of BnA7.SUT1
shared 76% sequence identity with a published BnSUT
(GenBank accession no. EU570076), which has 508
amino acids. The BnA7.SUT1 sequence is very similar to
the homologues from related species and showed more
than 85% sequence similarity with AtSUC1 (AT1G71880)
and BoSUC1 (AY065839) and 81% sequence similarity
with AtSUC5 (NM_105847). Hence, the isolated BnA7.
SUT1 alleles, homologous with Arabidopsis and B. olera-
cea, are novel SUT genes in B. napus.

Nucleotide sequence analysis
Seventeen primer pairs were designed to generate frag-
ments of about 400 bp to 1700 bp. Ten primer pairs
were designed from the sequences of BnA7.SUT1.a and
seven from the diverse domains of BnA7.SUT1.b. Four
markers (Table 1 Figure 1) showed polymorphisms
between ‘Eagle’ and ‘S-1300’. ET3 and PT1, which were

developed from BnA7.SUT1.a and its promoter, gener-
ated the expected fragments in ‘Eagle’ but not in ‘S-
1300’. By contrast, ET4 and PT5, amplifying BnA7.
SUT1.b and its promoter, generated the expected bands
in ‘S-1300’ exclusively (Figure 1). The four sequence-
characterized amplified region (SCAR) markers were
used to analyze the 55 cultivars/lines. And the panel
lines were distinguished as three groups by these
markers.
The 55 partial BnA7.SUT1 genomic fragments of

~1570 bp were amplified from the panel lines using pri-
mer pairs PT1-L/PT1-R and PT5-L/PT1-R (Figure 1),
which are located 382 bp upstream and 1191 bp down-
stream from the start codon of BnA7.SUT1. In total,
142 single nucleotide polymorphism (SNP) sites were
detected among the lines, including 120 SNPs in the
promoter and 5’-UTR, 12 SNPs in exons, and 10 in
introns. The genetic diversity between two regions was
analyzed according to distinct different diversities in the
5’-end and gene regions. Nucleotide diversity was lower
in gene regions (π = 0.00534) compared with 5’-end
regions (π = 0.13502). Tajima’s D of gene regions indi-
cated non-significance, while the 5’-end of BnA7.SUT1
had a positive and significant Tajima’s D value (Table
2). The results indicated that selection was present at
the 5’-end and that the selection effect had not extended
to the entire gene.
Linkage disequilibrium (LD) was estimated between 51

pairs of polymorphic sites (SNPs and indels) in the
BnA7.SUT1 sequence; two LD blocks were observed at
the 5’-end and gene regions, respectively (Figure 2).
Abundant SNPs resulted in the same haplotypes among
the lines, which could be classified into three clusters
consistent with the results of the neighbor-joining dis-
tance tree (Additional file 4). Overall, we found interest-
ing results indicating that the BnA7.SUT1.a promoter
regulates only BnA7.SUT1.a and that the BnA7.SUT1.b
promoter regulates both BnA7.SUT1.a and BnA7.SUT1.

Figure 1 Comparison of the nucleotide sequences of BnA7.SUT1.a and BnA7.SUT1.b. The gray bars and black lines denote exons and
introns in the CDS, while thick black lines indicate the promoter of BnA7.SUT1. The black rhombus and arrowhead with names distinguish amino
acid sites and the locations of primers, respectively.
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b, designated as pBnA7.SUT1.a- BnA7.SUT1.a (type I),
pBnA7.SUT1.b- BnA7.SUT1.a (type II), and pBnA7.
SUT1.b- BnA7.SUT1.b (type III). Nucleotide diversity
was also separately evaluated for type I, type II, and type
III based on 382-bp sequences of the 5’-end (Table 2).
Type III and type I presented no polymorphisms and
one indel (s330) among 18 and 16 lines, respectively.
However, type II showed one SNP (s95) and three indels
(s98, s229, and s330) among 21 lines (Figure 3).

Allelism analysis and genetic mapping
To identify the allelism of BnA7.SUT1.a and BnA7.
SUT1.b, ‘3715’ (type III) and ‘3769’ (type I) were used to
develop F1, F2, and BC1 populations. With these popula-
tions, segregation ratios were analyzed using the mar-
kers PT1 and PT5. The segregation of heterozygous F1
plants to single-band plants in the F2 population showed
the expected Mendelian ratio of 1:2:1 (number of plants
was 45:119:61) (c2 = 3.03, 0.10 <P < 0.25), and the
expected ratio of 1:1 (number of plants was 46:49) in
the BC1 population (c2 = 0.074, 0.75 <P < 0.90). There-
fore, BnA7.SUT1.a and BnA7.SUT1.b appeared to be
alleles at a single locus.
BnA7.SUT1 showed high similarity with the BAC

(AC189334) from B. rapa, and three simple sequence
repeats (SSR) markers were developed according to the
BAC sequence. Additionally, gene-specific primers were
designed based on BnA7.SUT1.b. An SSR marker (sRsut1)
and a gene-specific marker (lo-sut1) showed the same
polymorphisms found in the ‘Tapidor-NY7’ (TN) doubled
haploid (DH) population. Hence, BnA7.SUT1 was mapped
to the A7 linkage group of the TN DH genetic map (Fig-
ure 4), consistent with result of Li et al. [31].

Association of BnA7.SUT1 with yield-related traits
The mean phenotypic values for individual lines across
four environments ranged from 4.1 to 9.8 for the num-
ber of effective first branches (EFB); 111.6 to 312.2 for
the number of siliques per plant (SP); 11.5 to 32.5 for
the number of seeds per siliques (SS); 5.0 to 19.5 g for
seed yield per plant (PY); 174.0 to 842.1 g for block

yield (BY); and 2.2 to 5.4 g for seed weight (TSW) (n =
1000), respectively. Analysis of variance showed signifi-
cant (P = 0.01) phenotypic variation for all six yield-
related traits among the 55 lines (Table 3), indicating
that the assembled panel is suitable for association ana-
lysis. Heritabilities were 83.7%, 82.4%, 91.4%, 62.6%,
78.7.6%, and 95.1% for EFB, SP, SS, PY, BY, and TSW,
respectively (Table 3). Significant positive phenotypic
and genetic correlations between EFB and SP and
between yield and silique traits (SP and SS) were
observed (Table 3), indicating that an increase in any of
the EFB, SP, or SS traits can increase seed yield.
The panel lines evaluated for yield-related traits were

mostly modern cultivars and breeding materials. There
were considerable differences among the panel lines
according to UPGMA cluster (Additional file 5). Popula-
tion structure was observed among the 55 cultivars/lines
based on the method by Hasan et al. [32].The slope of
average likelihoods for the overall population was mod-
eled at K = 4 (Figure 5); the most stable prediction
(standard deviation = 1.99) was obtained with four
groups. Each group consisted of 18, 16, 16, and 5 oilseed
lines, respectively. Taking the LD (r2 > 0.8) level among
sites into account and eliminating same-haplotype SNPs,
five sites were significantly associated with at least one
of the six yield-related traits (P < 0.05). Information
including location, genotype, frequency, and probability
value for each site is shown in Table 4. Of interest, the
SNP sites (s60 and s222) from the promoter and s1448
from the exon of BnA7.SUT1 were associated with EFB
and TSW and explained an average 12% and 11% of
phenotypic variation throughout the four environments,
respectively. The s222 SNP at the promoter in turn
affected SP (Table 4). Phenotypic distributions of the
previous four yield-related traits are illustrated in three
genotypes by box-plots in Figure 6. Promoter BnA7.
SUT1.b was associated with an increased EFB number
and SP number. For TSW, no significant differences
were observed between type I and type II with BnA7.
SUT1.a. However, a significant difference was observed
between type I and type III and between type II and

Table 2 Nucleotide diversity and Tajima’s test of BnA7.SUT1

Region Size(bp) Hb π Tajima’s D

5’-end 382 3 0.13502 3.39254**

gene 1194 2 0.00534 1.03602

total 1576 5 0.03586 2.91072**

baa 382 4 0.00178 -1.10746

bba 382 0 0 NAc

aaa 382 1 0.00034 -1.13284

**, P < 0.01
a ba, bb, aa represent 5’-ends of genotypes pBnA7.SUT1.b-BnA7.SUT1.a, pBnA7.SUT1.b-BnA7.SUT1.b, and pBnA7.SUT1.a-BnA7.SUT1.a, respectively
b Number haplotypes, number in cell, ba, bb, and aa represent total polymorphism sites of each genotype.
c NA, not available
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type III with different BnA7.SUT1 alleles. Hence, poly-
morphisms at the promoter and coding domain
sequence (CDS) of BnA7.SUT1 affect yield-related traits
interactively.

Expression pattern analysis by real-time PCR
Spatial and developmental expression profiling of BnA7.
SUT1 was performed using real-time PCR on all three
genotypes, type I, type II, and type III, to extract RNA
from different organs/tissues at the seed-filling stage.
BnA7.SUT1 mRNA showed a higher expression level in

vegetative organs, reaching its highest level in stems and
leaf blades (Figure 7A). Greater abundance was detected
in stems of type II and type III genotypes, indicating
that the effect of the BnA7.SUT1.b promoter was stron-
ger than BnA7.SUT1.a promoter in stems. On the other
hand, BnA7.SUT1 showed lower expression levels in
reproductive organs. In flower buds, BnA7.SUT1 showed
similar transcript levels in all three genotypes.
When pods reached 25 days after flowing (DAF), tran-

scription of BnA7.SUT1 showed variations in pods, peri-
carp, and young seeds in different genotypes. Higher

Figure 2 LD across the 51 BnA7.SUT1 loci. Positions of polymorphisms in the alignment are given. Positions 138, 357, 999, and 1085 are indel
polymorphisms, and the remaining polymorphisms are SNPs.
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abundance was detected in pods and pericarp of type III
genotypes and in developing seeds of type I genotypes.
The expression level of BnA7.SUT1.b was 3-fold higher
than that of BnA7.SUT1.a in pods, and 10-fold higher in
pericarp. However, the expression of BnA7.SUT1.b
decreased by three times in developing seeds as com-
pared to BnA7.SUT1.a, which showed that BnA7.SUT1.b
accumulated at higher levels in pods and pericarp, while
BnA7.SUT1.a produced higher expression levels when
regulated by the promoter of BnA7.SUT1.a (Figure 7A).
Different alleles of BnA7.SUT1 also exhibited diverse
expression levels when regulated by the same promoter
of BnA7.SUT1.b, indicating that alleles of BnA7.SUT1
also present different gene expression patterns.
In different developmental phases, source leaves were

sampled 100 days after sowing (DAS) initially, then at
monthly intervals. The abundance of the BnA7.SUT1
transcript declined to a low level at flowering. As pods
matured, the expression of BnA7.SUT1 again showed
increased expression levels (Figure 7B). In the develop-
ing pods, BnA7.SUT1 was highly expressed in the pistil
when pods were rapidly elongating and remained at a
relatively high level at 3 DAF and 12 DAF. However,
expression decreased to a low level at 25 DAF, when the
dry weight of pods reached the maximum (Figure 7C).

Discussion
Isolation and genetic variations of BnA7.SUT1
Our current research describes the isolation of a novel
SUT gene BnA7.SUT1 and its two alleles BnA7.SUT1.a
and BnA7.SUT1.b in B. napus. The cDNAs of BnA7.
SUT1.a and BnA7.SUT1.b showed 18 polymorphic sites
and variations in seven amino acids, none of which are
located in the SUT transmembrane. The predicted pro-
teins showed similarity with all the other SUTs in
amino acid sequence and protein secondary structures
with histidine residue position 65 [6,33]. A higher

similarity of BnA7.SUT1 with other functional SUTs
indicated that BnA7.SUT1 proteins may play an impor-
tant role in sucrose transport.
We observed frequent sequence exchanges in BnA7.

SUT1 that resulted in generation of two alleles of BnA7.
SUT1. Gene conversion and unequal crossing-over are
important in generating variation at gene sequences,
and recombination events produce novel genotypes [34].
Sequence analysis of 55 B. napus lines showed that the
BnA7.SUT1 gene could be classified into three geno-
types. The type III genotype showed 98% genomic
sequence similarity with the type II genotype. The poly-
morphisms were located in the 5’UTR, and there was a

Figure 3 Sequence comparison of three genotypes in the
promoter and 5’UTR of BnA7.SUT1. a G, genotype; aa, ba, bb
represent the 5’-ends of pBnA7.SUT1.a- BnA7.SUT1.a, pBnA7.SUT1.b-
BnA7.SUT1.a, and pBnA7.SUT1.b- BnA7.SUT1.b, respectively.

Figure 4 Mapping of BnA7.SUT1 in the TN DH linkage map. The
marker sRsut1 was derived from the BAC containing BnA7.SUT1.
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3-bp indel polymorphism at position 229-231 between
the type I and type III genotypes; the type II genotype
contained either polymorphism. Upstream of the indel,
type II and type III genotypes showed the same poly-
morphisms among the three genotypes; in contrast,
downstream of the indel, type I and type II presented
the same polymorphisms. Hence, we hypothesized that
type II is the result of rearrangements between type I
and type III, although this hypothesis requires further
molecular evidence. Newly generated chimeras were
selected and maintained in a population; however, the
BnA7.SUT1.a- BnA7.SUT1.b genotype could not be
found in association with the promoter of BnA7.SUT1.a
and may have been selected against during the breeding
process. Similar recombination of HvFT1 (barley) has
generated various alleles [35], which support our find-
ings. The Zep allele was generated as a result of

recombination with different promoters and regulated
the expression level of Zep [36].

Association between BnA7.SUT1 and yield-related traits
SUTs drive translocation of sucrose and in turn affect
seed yield and fruit size [18,37]. In another study carried
out in our laboratory, identification of yield-related
QTLs in a B. napus functional map [38] indicated that a
functional marker from SUT in the A7 linkage group
was related to EFB, SP, and TSW in the A7 linkage
group [31,39]. Here, we report likely polymorphisms in
BnA7.SUT1 associated with yield-related traits, and alle-
lic variation at the promoter and CDS of BnA7.SUT1
correlated with expression pattern and phenotype. Poly-
morphisms at the promoter and CDS regions with an
effect on expression abundance are likely candidates for
causative QTPs [40,41]. Similarly, allelic polymorphism

Table 3 Descriptive statistics, variance components, correlation coefficients, and heritability for six yield-related traits

Category EFB SP SS PY(g) BY(g) TSW (g)

Descriptive satistics Range 4.1-9.7 111.6-312.2 11.5-32.5 5.0-19.5 174.0-842.0 2.2-5.4

Mean ± SD 6.5 ± 0.8 196.6 ± 30.7 20.0 ± 3.3 10.8 ± 1.3 474.0 ± 75.5 3.7 ± 0.5

Variance components Genotype 7.6** 5.4** 16.5** 3.2** 5.5** 33.4**

Envrionment 7.3** 26.6** 5.3** 106.5** 64.8** 7.9**

G×E 1.3* 0.9 1.5** 1.3* 1.3* 1.7**

Correlation coefficientsa EFB 0.74** -0.30* 0.05 0.13 -0.26*

SP 0.71** -0.54** 0.20 0.27* -0.21

SS -0.25 -0.45** 0.17 0.28* -0.48**

PY(g) 0.06 0.34* 0.14 0.79** -0.05

BY(g) 0.17 0.3* 0.22 0.69** -0.07

TSW (g) -0.24 -0.18 -0.46** -0.01 -0.04

Heritability% 83.70 82.40 91.40 62.60 78.70 95.10

EFB, number of effective first branches; SP, number of siliques per plant; SS, number of seeds per siliques; PY, seed yield per plant; BY, block yield; TSW, seed
weight (n = 1000); **, P < 0.01; *, P < 0.05
a The numbers above the diagonal are genetic correlation coefficients, and the numbers below the diagonal are phenotypic correlation coefficients.

Figure 5 Estimation of the most appropriate group K values, calculation SD over 10 independent runs. Mean L(K) over 10 runs for each
K value. (B) Change rate of likelihood value calculated as L’(K) = L(K) -L(K-1). We followed the method of Evanno et al. [64].
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at the promoter and intron of HvFT1 in barley contri-
bute to variation in flowering time [35].
SUTs have three types of clades designated as protype

SUT1 (clade I), SUT2 (clade II), and SUT4 (clade III)
[38,42-44], and BnA7.SUT1 falls into the protype SUT1
(clade I). Generally, SUT1 mRNA and protein, notably
OsSUT1, AtSUC2, and StSUT1, are present in mature
phloem and primarily involved in phloem loading. The
rice SUT, OsSUT1, plays a significant role in sucrose
transport in developing shoots and roots, which is a
decisive factor for seed germination and early seedling
growth [42]. AtSUC1 also has a role in vegetative
growth and for normal gametophyte functioning [16]. In
higher plants, sugars and hormones interact and form
an intricate regulatory sensing and signaling network
[45], and altered sucrose levels can change the quantity
of sucrose-derived metabolites and sucrose-specific sig-
naling [46]. In the current work, BnA7.SUT1 showed
higher expression levels in the stem of type II and type
III genotypes, consistent with increased EFB. These
results indicated that blocking translocation of sucrose
at the stem influences either carbon abundance for
metabolism or signals.
Oilseed plants with lush branches and leaves, in con-

trast, produce many empty pods and shrunken seeds at
maturity, resulting from insufficient import to the devel-
oping seeds [47]. Breeding experiences indicated that
translocation of carbohydrate assimilate from source to

sink is a major constraint on seed yield [29,48]. The
lower expression of BnA7.SUT1 in type I genotypes
resulted in the lowest yield in the three genotype lines,
suggested that retardation of photoassimilate transloca-
tion leads to decreased yield. At the pod-filling stage,
most leaves abscise and the pod remains primarily a
photosynthetic organ [49]. The volume of the pod is
estimated at 20 DAF, and the dry weight of the pod
reaches a maximum at 25 DAF when sucrose is stored
in the pericarp for the later period of seed development
[48]. The lower expression observed here of BnA7.SUT1
in the pod and developing seed suggests an effective
role in the photoassimilate unloading process. BnA7.
SUT1 showed a reduced expression trend as the pod
reached maximum weight (25 DAF). The low expression
level of BnA7.SUT1 in the pod may be the result of the
failure of transportation of sucrose in the developing
seed. In our investigation, seed weight was negatively
correlated with seed yield. Plants with fewer branches
and siliques could distribute more storage substance
into each seed with a resulting larger seed weight, indi-
cating that ‘sink’ is sufficient in general oilseed plants.
‘Source’ is also not the limitation for seed yield in oil-
seed [29,30]. Therefore, ‘flow’ is the most important fac-
tor and controls seed yield. Our results support this
reasoning. The promoter BnA7.SUT1.b correlation with
increasing EFB number may be a potential resource for
breeding.

Table 4 Associations among six yield-related traits and the polymorphisms of BnA7.SUT1

Site Loc G F Env EFBa SPa SSa PYa BYa TSWa

s60 Pro T/A 16/39 08WH 0.0145

09WH 0.0446 0.0374 0.0358 0.0419

09YC 0.0016 0.0392

09HG 0.0192 0.0190 0.0120

s95 Pro C/A 16/34 08WH 0.0158 0.0465

/T /5 09WH

09YC 0.0058 0.0345

09HG 0.0391 0.0401

s222 Pro A/T 15/40 08WH 0.0098 0.1005

09WH 0.0482 0.0255 0.0444 0.0440

09YC 0.0010 0.0170 0.0355

09HG 0.0397 0.0197 0.0067

s1083 Intron A/C 36/19 08WH 0.0121 0.0481 0.0009

09WH 0.0272 0.0076

09YC 0.0104

09HG 0.0004

S1448 Exon C/T 37/18 08WH 0.0090 0.0028

09WH 0.0088 0.0430 0.0269

09YC 0.0276

09HG 0.0209 0.0009
a Significant probabilities

Loc, Location; Pro, Promoter; G, Genotype; F, Frequency; Env, environment; 08WH, year 2008 Wuhan; 09WH, year 2009 Wuhan; 09YC, year 2009 Yichang; 09HG,
year 2009 Huanggang
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Some key genes are closely correlated with yield-
related traits. Of great interest, application of dwarfing
genes caused a green revolution in the 1960s and
doubled grain production only in 40 years [50-52]. On
the other hand, most phenotypic variation of agronomic
traits is continuous and remarkably influenced by differ-
ent alleles. In tomato, alleles of fw2.2 result in fruit size
variation up to 30% and appear to have been responsible
for a key transition during domestication [53]. Plant
architecture is very important for improving yield traits;
tb1 acts as a major contributor to apical dominance in
maize and regulates lateral branching in rice [54,55].
Moreover, GS3 and Ghd7 show significant effects on
grain size and multiple yield-related traits in rice,
respectively [56,57]. Thus, characterization and applica-
tion of crucial genes/alleles may be an effective means
of improving yield. Our investigation indicated that SUT
may play an important role in sucrose translocation and

affect seed yield in B. napus. Investigations with larger
and/or natural sets of B. napus are necessary to validate
the association. Furthermore, alteration of sucrose con-
centration will provide convincing evidence. However,
the current characterization of allelic variation and asso-
ciation with yield may be a potential basis for breeding.

Conclusions
Previous QTL analysis of seed yield-related trait associa-
tions with functional markers showed that SUT was
located in the QTL interval associated with branch
number and seed weight. In this study, we isolated dif-
ferent alleles of BnA7.SUT1 and identified three geno-
types. Lines with the BnA7.SUT1.b promoter exhibited
better seed yield-related traits. At the pod development
phase, BnA7.SUT1 showed an increased expression level
and a decreasing trend with increasing seed weight.
These results indicate reduced transport of

Figure 6 Box-plots showing distributions of EFB, SP, BY, and TSW within types I, II, and III. (A) (B) (C) (D) are phenotypic details for EFB,
SP, BY, and TSW, respectively. 08WH, year 2008 Wuhan; 09WH, year 2009 Wuhan; 09YC, year 2009 Yichang; 09HG, year 2009 Huanggang. aa
represents genotype pBnA7.SUT1.a- BnA7.SUT1.a; ba represents genotype pBnA7.SUT1.b- BnA7.SUT1.a; and bb represents genotype pBnA7.SUT1.b-
BnA7.SUT1.b. * t-test between ba genotype and aa genotype, between bb genotype and aa genotype significant at P = 0.05, ** significant at P =
0.01; ※ t-test between bb genotype and ba genotype significant at P = 0.05, ※ ※ significant at P = 0.01.

Li et al. BMC Plant Biology 2011, 11:168
http://www.biomedcentral.com/1471-2229/11/168

Page 9 of 14



photoassimilate from source to sink. BnA7.SUT1 may
play an important role in photoassimilate accumulation
and storage, in turn affecting seed yield.

Methods
Plant materials
Two B. napus lines ‘S-1300’ and ‘Eagle’, showing varia-
tion in vegetative and reproductive traits, were grown
under field conditions and used to isolate BnX.SUT1. ‘S-
1300’ is a Chinese semi-winter self-incompatible line,
and ‘Eagle’ is a Swedish spring line. A panel of 55 semi-
winter B. napus cultivars/lines maintained at Huazhong

Agricultural University, Wuhan, PRC, were used for
association in this study. F1, F2, and BC1 populations,
resulting from the cross ‘3715’×’3769’, were employed
for allelism analysis. The TN DH population, resulting
from a cross between ‘Tapidor’ and ‘NY7’ [58], served
for mapping BnA7.SUT1. Marker-differentiated culti-
vars/lines were planted during 2008-2010 at Huazhong
Agricultural University. Their leaves, shoots, flower
buds, pods, pericarps of pods, and young seeds at the
filling stage (20 DAF), leaves, and pods at different
developmental stages were used for expression analysis
by real-time PCR.

Figure 7 Real-time PCR analysis of BnA7.SUT1 expression. (A) Expression of BnA7.SUT1 in different organs, including source leaf and stem,
bud, pod 25 DAF, pericarp of pod, and young seeds among diverse genotypes. (B) Expression in leaf including various developmental stages. 70
DAS is the reproductive stage of winter B. napus. (C) Expression in the pod during the developmental period. Pistil was dissected from the bud.
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Field experiments and trait measurements
The experiments were conducted in three locations
(Wuhan, Huanggang, Yichang) in Hubei Province, China.
Fifty-five B. napus cultivars/lines were grown for two con-
secutive growing seasons during 2007/08 and 2008/09 at
Huazhong Agricultural University, Wuhan, China; they
were also grown at the local Academy of Agricultural
Science sites in Yichang and Huanggang during 2008/09.
Rapeseed plots were subsequently followed by rice crops
in all experimental fields. All trials were designed as ran-
domized blocks with three replications in each environ-
ment. Each plot consisted of three rows, 3.5 m length with
0.25 m distance between rows. Seeds were sown between
the last 5 days of September and the first 5 days of Octo-
ber with the distance between plants in each row reduced
to 0.15 cm at 40 days post-emergence. All trials were man-
aged following normal, standard agricultural practices.
At maturity, 12 plants in the middle row were ran-

domly harvested from each plot for evaluation of the
following quantitative traits: number of EFB, number of
SP, number of SS, TSW, and seed YP. Residual plants of
each block were harvested and used to determine BY
(Additional file 6).

DNA extraction and genetic mapping of BnA7.SUT1
Genomic DNA of the planted materials, including par-
ents, segregating population, and the panel of 55 culti-
vars/lines, was extracted from young leaves according to
CTAB methodology [59], and DNA from three indivi-
duals in each variety/line was mixed for PCR analysis.
Based on sequences of the BAC (AC189334) and BnA7.
SUT1, the SSR marker and gene-specific primers were
designed and used to map the gene in the TN DH
population using JoinMap 3.0 http://www.kyazma.nl/
index.php/mc.JoinMap.

Sequencing and analysis
Promoter and partial CDS regions of BnA7.SUT1 were
generated using primer pairs as follows: PT1-L/PT1-R and
PT5-L/PT1-R. PCR was performed in reaction volumes of
20 μL containing the following: 50 ng genomic DNA, 1
unit Taq polymerase (MBI Fermentas, Lithuania), 2 μL
10× Taq buffer with (NH4)2SO4, 2 mM MgCl2, 0.2 mM
dNTP mix (Sangon, China), and 0.5 μM of each primer.
PCR conditions were initial denaturation for 4 min at 94°C,
30 cycles of 45 s at 94°C, annealing at 60°C for 45 s, and
extension for 60 s at 72°C, followed by an extension of 10
min at 72°C. PCR products were separated by 1.2% agarose
gel electrophoresis and detected by staining with ethidium
bromide. The PCR products were purified using the Gel
Purification Kit (Sago, Shanghai, China) and ligated into
the pMD18-T vector (TaKaRa, Japan). Positive transformed
clones were selected for sequencing. The fragments were

analyzed using the SEQMAN application of the DNAS-
TAR software suite (Windows version 5.0.2; DNASTAR,
Madison, WI, USA) and aligned in MEGA 4.0 [60]. Single-
tons, which occurred only once as polymorphisms among
the sequenced materials, were analyzed until they were
confirmed as correct. The LD level between sites and Taji-
ma’s D statistic were calculated using TASSEL 2.1 [61].

Population structure and statistical analyses
The AFLP technique, following the protocol of Vos et al.
[62] with minor modifications by Lu et al. [63], was
employed to genotype the 55 breeding lines. AFLP pri-
mers amplify different marker alleles at multiple loci in
the allotetraploid B. napus genome. It is difficult or
impossible to assign the different marker alleles to indivi-
dual loci in genotypes with high allelic diversity. All
AFLP alleles were scored as present or absent in each
genotype. In total, 139 polymorphisms were obtained
with restriction enzymes PstI/MseI. Subsequently, the
data were used to infer the population structure (Q) with
the model-based Bayesian clustering approach in the
software STRUCTURE 2.2 [64]. The membership coeffi-
cients were calculated as 10 independent runs for each k
(set from 1 to 10) with a burn-in of 50, 000 iterations fol-
lowed by 50, 000 interactions. A summary of the average
of data likelihoods (LnP(D)) is shown in Additional file 7.
Mean values, variance components of each yield-

related trait, heritability, and correlation coefficients
were calculated, respectively. Variance components were
computed for lines, environments, interaction between
lines and environments, and error. Broad-sense herit-
ability was estimated according to the formula
h2 = σ2g /(σ

2
g + σ2gl/n + σ2e /nr) , where σ2g is the genotypic

variance, σ2gl is the interactional variance of genotype

and environment, σ2e is the error variance, r is the num-
ber of replicates of each environment, and n is the num-
ber of environments [65].
Associations between polymorphism sites and yield-

related traits were implemented using general linear
model analysis in the software package TASSEL 2.1
[61]. The Q matrix was used as the covariate in the ana-
lysis to control the population structure. All polymorph-
isms were tested, and P values for individual
polymorphisms were estimated based on 10, 000 permu-
tations. The rescaled P value accounts for the propor-
tion of the random marker with a permuted P value less
than or equal to 0.05. Data from each test environment
were calculated independently.

RNA extraction and real-time PCR
Total RNAs were extracted from respective tissues using
Tripure reagent (Bioteke, http://www.bioteke.com/chn/).
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Subsequently, the cDNAs were synthesized with M-
MLV reverse transcriptase and an oligo (dT) primer
(Fermentas, USA) in a 20 μL volume according to the
manufacturer’s instructions. The resultant first strand
cDNA mixture was diluted with sterile distilled water
and used as a template for PCR and for real-time PCR.
Real-time quantitative PCR was performed using the
SYBR Green Realtime PCR Master Mix (TOYOBO,
Osaka, Japan). The PCR reactions contained 400 nM of
both forward and reverse gene-specific primers and 8.4
μL of the 50-fold diluted reverse transcriptase (RT) reac-
tion in a final volume of 20 μL. The thermal cycling
protocol was followed by DNA polymerase activation at
95°C for 3 min. The PCR amplification was carried out
with 45 cycles of denaturation at 95°C for 10 s, primer
annealing at 60°C for 15 s, and extension at 72°C for 30
s. Optical data were acquired following the extension
step, and the PCR reactions were subject to melting
curve analysis beginning at 65°C through 95°C, at 0.1°C
s-1. The amplified products were sequenced to ensure
that each primer pair amplified one specific gene. The
data are presented as an average ± SD of three indepen-
dently produced RT preparations used for PCR runs,
each having four replicates. The relative expression
levels were calculated using the 2-ΔΔCT method [66].

Additional material

Additional file 1: Sequence of primers used to isolate BnA7.SUT1
and analyze the expression pattern of BnA7.SUT1. M1-M4 were used
to generate the main genomic segments of BnA7.SUT1; STAs and STBs
were used to generate promoter sequences of BnA7.SUT1.a and BnA7.
SUT1.b with degenerate primers for TAD1-6, respectively; RT-A and RT-B
were used to analyze the BnA7.SUT1 expression pattern, with AC (derived
from B. napus Actin, GeneBank accession number: AF111812) as an
endogenous control.

Additional file 2: Comparison of 44 cDNA sequences isolated from
various organs/tissue.

Additional file 3: An un-rooted tree was developed using the
ClustalX program based on available amino acid sequences of
SUTs. Sucrose transporters (SUTs) are from Asarina barclaiana: AbSUT1
(AAF04294); Apium graveolens: AgSUT3 (ABB89051); Alonsoa meridionalis:
AmSUT1 (AAF04295); Arabidopsis thaliana: AtSUC1 (CAA53147), AtSUC2
(CAA53150), AtSUC3 (AAC32907), AtSUC4 (NP_172467), AtSUC5
(AAG52226), AtSUC6 (NP_199174), AtSUC7 (NP_176830), AtSUC8
(NP_179074), AtSUC9 (NP_196235), Brssica napus: BnSUTx (ACB47398);
Brassica oleracea: BoSUC1 (AAL58071), BoSUC2 (AAL58072); Bambusa
oldhamii: BoSUT1 (AAY43226); Citrus sinensis: CsSUT2 (AAM29153); Datisca
glomerata: DgSUT4 (CAG70682); Daucus carota: DcSUT1 (BAA89458);
Euphorbia esula: EeSUCx (AAF65765); Eucommia ulmoides: EuSUT2
(AAX49396); Hevea brasiliensis: HbSUT2a (ABJ51934), HbSUT2b (ABJ51932),
HbSUT5 (ABK60189); Hordeum vulgare: HvSUT1 (CAB75882), HvSUT2
(CAB75881); Juglans regia: JrSUT1 (AAU11810); Lycopersicum esculentum:
LeSUT2 (AAG12987), LeSUT4 (AAG09270); Lotus japonicus: LjSUT4
(CAD61275); Malus domestica: MdSUT1 (AAR17700); Manihot esculenta:
MeSUT2 (ABA08445), MeSUT4 (ABA08443); Nicotiana tabacum: NtSUT1
(X82276), NtSUT3 (AAD34610); Oryza sativa: OsSUT1 (AAF90181), OsSUT2
(AAN15219), OsSUT3 (BAB68368), OsSUT4 (BAC67164), OsSUT5
(BAC67165); Plantago major: PmSUC1 (CAI59556), PmSUC2 (X75764),
PmSUC3 (CAD58887); Populus tremula×Populus tremuloides: Pt×PtSUT1-1
(CAJ33718); Pisum sativum: PsSUT1 (AAD41024); Ricinus communis:

RcSCR1 (CAA83436); Solanum demissum: SdSUT2 (AAT40489); Saccharum
hybridum: ShSUT1 (AAV41028); Spinacea oleracea: SoSUT1 (Q03411);
Solanum tuberosum: StSUT1 (CAA48915), StSUT4 (AAG25923); Triticum
aestivum: TaSUT1A (AAM13408), TaSUT1B (AAM13409), TaSUT1D
(AAM13410); Vicia faba: VfSUCx (CAB07811); Vitis vinifera: VvSUCy
(AAL32020), VvSUC11 (AAF08329), VvSUC12 (AAF08330), VvSUC27
(AAF08331); Zea mays: ZmSUT1 (BAA83501), ZmSUT2 (AAS91375),
ZmSUT4 (AAT51689). The BnA7.SUT1 is classified into SUT1 clade.

Additional file 4: A neighbor-joining distance tree for BnA7.SUT1
from different genotype lines. The numbers on nodes are bootstrap
values, and values lower than 60 are not shown. The sequences from
pBnA7.SUT1.a- BnA7.SUT1.a, pBnA7.SUT1.b- BnA7.SUT1.a, and p BnA7.SUT1.
b- BnA7.SUT1.b form exclusive clades, respectively.

Additional file 5: UPGMA cluster of the panel lines.

Additional file 6: Phenotypic means for six yield-related traits
across four environments. a breeding country.

Additional file 7: Summary of the average of the probability of data
likelihoods (LnP(D)) for the set of Brassica napus genotypes.
Likelihoods were averaged over 10 independent runs with a burn-in of
50, 000 iterations. The set of 55 Brassica napus genotypes was tested for
K = 1-10 subpopulations.
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