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Abstract

found to be differentially regulated.

Background: Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit
crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi
which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts
are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on
its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies
against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST
data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots.

Results: 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using
the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were
classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to
identify and quantify the expression of nine defence-related genes that were differentially regulated in response to
P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related Pseml, mlo and profilin were

Conclusions: This is the first study in elucidating the avocado root transcriptome as well as identifying defence
responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has
been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in
identifying defence-related genes as well as providing gene information for other studies looking at processes such
as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado
transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of
the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms.

Background

Avocado (Persea americana Mill.) is an important agri-
cultural crop in over 50 countries worldwide and is
native to Mexico and Central America [1]. It belongs to
the genus-Persea, subgenus-Persea, family-Lauraceae
and falls under the clade of magnoliids that are sister to
eudicot and monodicot clades. P. americana is a diploid
angiosperm consisting of 24 chromosomes with approxi-
mately 8.83 x 10® (883 Mb) base pairs (bp). To date, the
avocado genome is not yet available and only a limited
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number (16558) of expressed sequence tags (ESTs) gen-
erated from only fruit and flowers have been sequenced,
annotated and released on the NCBI database.
Phytophthora root rot (PRR), caused by Phytophthora
cinnamomi Rands, is considered the most destructive
pathogen-induced disease to the avocado industry [2-4]
with production relying heavily on the use of phosphite
trunk injections and tolerant rootstocks such as Dusa®
[4,5] supported by planting in high organic matter soils
and mulching to promote antagonistic microbial growth
against P. cinnamomi. Metalaxyl has also showed pro-
mising results when used in conjunction with the toler-
ant rootstock Duke 7 in California in the 1980s [6].
However in South Africa it was reported that after
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successful application for a period of two years, meta-
laxyl application became inefficient in controlling the
disease [7]. Recently P. cinnamomi has shown a decrease
in sensitivity to phosphite treatments after prolonged
usage [8]. The authors demonstrated that P. cinnamomi
isolates exposed to long periods of phosphite treatment
in south west Australia showed reduced sensitivity to
the fungicide when evaluated on avocado, lupins and
eucalyptus. The population of P. cinnamomi isolated
from phosphite treated sites colonized phosphite treated
plant material easier than isolates not previously
exposed to the fungicide. This decreased sensitivity to
phosphite could indicate the onset of resistance to the
fungicide.

As early as 1926 avocado researchers identified that
the success of the avocado industry lay in rootstock
improvement [9]. The world’s largest rootstock germ-
plasm is maintained in California since 1957, with the
hope of identifying more tolerant rootstocks for cultiva-
tion [6,10]. To date a small number of rootstocks have
been identified with partial resistance to P. cinnamomi
such as Thomas, Martin Grande, Barr Duke, Duke 7
and D9 [11]. In South Africa, the devastation caused by
P. cinnamomi in the 1970s prompted the importation of
clonal rootstocks and the development of a large scale
selection program in the 1980s. For many years Duke 7
remained the industry standard in South Africa, until
2002 with the release of the Dusa”™ rootstock by Westfa-
lia Technological Services. Dusa® gave avocado farmers
a better alternative to Duke 7 that showed improved tol-
erance to P. cinnamomi as well as good fruit yields. The
avocado breeding program at Westfalia is a continuing
process and uses previously identified tolerant root-
stocks as parents to undergo open pollination. Recently,
field trials were conducted on a selection of rootstocks
in Queensland, Australia with some selections such as
‘SHSR-02’, ‘SHSR-04’, un-grafted ‘Hass’ and Dusa®
demonstrating their tolerance to PRR [12].

Despite the importance of avocado and a 60 year
attempt to unravel the host pathogen interaction, our
knowledge is based on; the analysis of root exudates[13],
chemical analysis of roots [12], the application of chemi-
cals to aid in suppression of the pathogen [14], and bio-
chemical studies [15]. Histological studies on roots
infected with P. cinnamomi have aimed to try and
understand the plant pathogen interaction [16]. It was
observed that necrophylactic periderm and periclinal
cell wall division occurred, which limited the pathogens
progress but did not affect the viability of the pathogen
or reduce its ability to infect the host plant. P. cinna-
momi infect the plants roots via motile zoospores pre-
sent in the soil. The attraction of zoospores was
investigated by Botha and Kotze in 1989 and it was
found to be influenced by the composition of 14 amino
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acids in avocado root exudates [13]. Sdnchez-Pérez and
colleagues tested crude root exudates for P. cinnamomi
myecelial inhibition and subsequently the compound
known as stigmastan-3, 5-diene was identified as the
inhibitory compound [12]. Garcia-Pineda et al. (2010)
investigated reactive oxygen species (ROS) formation
and the role of nitric oxide (NO) against P. cinnamomi
[15]. The authors observed an increase in ROS and NO
levels and deduced that the increase in ROS observed
may assist in weakening host tissue early in infection
with the sharp increase in NO possibly resulting in sal-
icylic acid (SA) accumulation. This accumulation could
cause an SA mediated H,O, burst by the suppression of
H,O, degradation. The authors hypothesize that (cyto-
solic tobacco catalase) CAT is bound by SA, which inhi-
bits CATs H,0O, degrading activity. The effect of
externally applied SA on root colonisation was also
investigated and indicated that decreased root colonisa-
tion was associated with SA application. SA has been
implicated in regulating cell death, inducing resistance
responses and activating various defence genes such as
pathogenesis-related (PR) genes [17] but the mode of
action has not been elucidated. The production of NO
and ROS have previously been demonstrated to activate
cell death. These early attempts on investigating the
interaction between avocado and P. cinnamomi have
illustrated the complexity of the defence response, high-
lighting the need for the molecular elucidation of
defence genes.

Molecular research on avocado has comprised of
genetic relationship studies and the molecular character-
ization of the fruit and flowers. There has been some
gene characterization of avocado fruit ripening genes
[18-22]. The greater part of molecular detail exists due
to a continuous effort in marker development to assist
in either elucidating genetic relationships amongst
scions [23-28], or scion improvement [29-32]. There is
currently a preliminary genetic map available based on
microsatellites, random amplified polymorphic DNA
(RAPD) markers and DNA fingerprint (DFP) markers
[33]. The most recent molecular development in the
fight against PRR was the identification of 70 microsa-
tellite markers that were developed from over 8000
ESTs in the hope of aiding in marker assisted breeding
against PRR. The ESTs were however from a floral gene
database generated for comparative genomics research
of basal angiosperms. Their efficacy has yet to be tested
for use in identifying tolerant rootstocks, but it is
known that they amplify across all avocado varieties and
can be used for investigation of genetic relations [34,35].
The University of California Riverside (UCR) has
recently employed 61 polymorphic AFLP markers to
characterise PRR tolerance in 83 rootstocks from various
locations including South Africa and Israel with the



Mahomed and van den Berg BMC Plant Biology 2011, 11:167
http://www.biomedcentral.com/1471-2229/11/167

majority of rootstocks from the UCR collection [36].
The study concluded that resistance mechanisms vary
between tolerant cultivars and no trend was observed in
the cluster analysis.

The avocado/P. cinnamomi interaction has not pre-
viously been elucidated on a molecular level. Current
knowledge is based on research of the non-host plant,
Arabidopsis. A study conducted on Arabidopsis infected
with P. cinnamomi revealed that ROS induction, HR
activation, lignin synthesis and callose production was
initiated upon infection. The non-host showed activation
of the ethylene and jasmonic acid pathways and only a
minor involvement of the SA pathway [37] in contrast
to the study conducted by Garcia-Pineda et al (2010) on
avocado which indicated that SA is a major inhibitor of
pathogen colonisation. Macroscopic changes such as cal-
lose production have also been observed during P. cin-
namomi infection in maize [38] and although model
plants like Arabidopsis provide an insight to defence
responses there are differences between non-host and
host-specific defence responses. In order to fully under-
stand tolerance in avocado it is important to conduct
molecular level studies on the host specific interaction
between P. americana and P. cinnamomi.

Since there is no genome data available for avocado,
the identification and characterisation of genes is diffi-
cult. EST generation supplements the lack of genome
data by providing transcript specific information and
excluding non-coding regions of the genome. High-
throughput sequencing is well suited for large scale EST
discovery, providing a tool for gene discovery in non-
model crops to evaluate the changes in gene expression
to abiotic or biotic stresses [39-41]. The cost of pyrose-
quencing is also lower than conventional EST sequen-
cing, small transcripts are not lost, and the time in
sequence generation from tissue isolation is greatly
shortened [39]. More specifically, it is advantageous for
commercial crops that lack substantial molecular data-
bases and will aid in their unconventional improvement
[40]. Avocado is one such commercial crop that is in
need of development of molecular tools for the
improvement of the crop. Avocados’ importance as an
agricultural crop has justified molecular investigation
and the application of modern molecular tools for its
improvement [26,27,31,33,42,43]. The application of
high-throughput sequencing to avocado is the next step
in improving breeding of this economically important
crop.

In this study ESTs of a tolerant avocado rootstock
infected with Phytophthora cinnamomi were generated.
The 454 GS-FLX platform was used to generate
sequence data for several time points including the
uninfected, 6, 12, 24, 48 and 72 hours after infection, as
well as to identify transcripts that were associated with
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the defence response. We identified 371 transcripts
from avocado and studied the gene expression of a
selection of these ESTs, thereby providing the first
molecular data for the avocado/P. cinnamomi
interaction.

Results

454 pyrosequencing and assembly

Three cDNA libraries-uninfected (0 hr), library 1 (6 &
12 hr) and library 2 (24, 48 & 72 hr) were sequenced
on a single lane on the GS FLX platform and generated
a total of 2 Mb of data (after trimming and quality con-
trol) consisting of 9953 reads and resulted in the assem-
bly of 371 contigs (Table 1). These contigs comprised of
1407 reads from the uninfected library, 3584 reads from
infection library 1 and 4962 reads from infection library
2. The average read lengths for the libraries were 216.4
bp for uninfected, 217.5 bp for library 1 and 215.9 bp
for the library 2 (Figure 1). The pyrosequencing run
was efficient based on the maximal amount of data
obtainable being 2.5 Mb with a maximal read length of
250 bp.

EST identification and classifications

After analysis using the dCAS software, 367 novel ESTs
were identified for P. americana. The program used
BLASTX amino acid comparisons to screen for homol-
ogy of the contigs against the NCBI non-redundant
(NR) database. A large proportion of the sequences gen-
erated showed homology to hypothetical proteins and
45 of the 371 contigs had no similarity to previously
annotated sequences (Table 2). Of the 371 contigs iden-
tified, only two sequences showed homology to pre-
viously identified fructose-bisphosphate aldolase and
metallothionein type-II proteins from avocado, with the
remaining 369 not having any avocado sequence homo-
log in the NR database. Manual BLAST annotation did
not influence transcript identification.

Contigs were grouped into functional classes accord-
ing to the GO (Gene Ontology) and KOG (Eukaryotic
Orthologous Groups) databases. Nine percent of contigs
were grouped into the unknown functional class in the
KOG database while 44.5% of contigs from the GO clas-
sification were represented by unknown functions

Table 1 Excerpts of newblermetric reports from the
uninfected, library 1 and library 2 libraries of
Phytophthora cinnamomi infected avocado roots.

Uninfected response  Library 1  Library 2
Total Reads 1407 3582 4961
Total Bases 288885 737254 1017064
Number of Contigs 43 139 189

The total number of reads and contigs are shown to illustrate the efficiency of
the pyrosequencing run.
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Figure 1 Read length distributions of uninfected, library 1 and library 2 infection Dusa® cDNA. Pyrosequencing was performed on the
454 GS-FLX platform (a) Uninfected library contains reads with the highest frequency at around 245 bp. (b) Library 1 reads have the highest
frequency at around 252 bp. (c) Library 2 reads have the highest frequency at around 240 bp.
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(Figure 2 & Table 3). The categories of post-transla-
tional modification; translation, ribosomal structure and
biogenesis; signal transduction mechanisms and general
function prediction contained a combined total of 34.8%
of all contigs. According to the GO database the

Table 2 Contig classification for cDNA libraries of
Phytophthora cinnamomi infected avocado roots.

Uninfected Library 1 Library 2 Total
Unidentified 5 16 24 45
Hypothetical protein 23 54 75 152
Genes identified 15 69 89 173

Contigs were classed as unidentified, identified or hypothetically identified if
the sequence homology search revealed that there was no similarity,
significant similarity or inferred structural function respectively. The total
number of genes identified was 173 with only 45 of the total 370 contigs
generating no identification using the non-redundant (NR) database on the
NCBI.

functional classifications of cell wall related; protein
binding; stress response; ribosomal structural constitu-
ent; cytoplasmic biological processes; cellular compo-
nent and other categories comprised 40.8% of all contigs
with 3% (12/371) of the contigs linking directly with
stress responses. Over 20 putative defence related genes
were identified ranging from general defence-related
genes (metallothioneins, thaumatin and universal stress
genes) to more specific oomycete defence-related genes
(pathogenesis related protein PR10 and the oxysterol-
binding gene) (Tables 4&5).

Species similarity between avocado and other plants

We observed significant sequence homology between
Vitis vinifera (grape) and avocado when the species ori-
gin of the sequence similarity was investigated. The top
three represented species according to amino acid
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Figure 2 KOG (euKaryotic Orthologous Groups) classifications of avocado transcripts identified in three cDNA libraries. The contigs
generated from the 454 data were compared against the KOG database to assign functional classifications.
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homology on the NCBI were V. vinifera, Arabidopsis
thaliana and Oryza sativa, with V. vinifera having the
majority of the hits in all three libraries. Twenty two
percent of sequences showed homology to V. vinifera

sequences with 7.5% belonging to A. thaliana and 7.8%
of sequences to O. sativa. Homology to P. americana
was found in only 1% of sequences (4/371) (Figure 3).
Only two genes were represented by the 1% in which
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Table 3 Contigs of avocado transcripts grouped into functional classes according to GO database

Gene ontology

Number of contigs

Unknown

Other

ATP binding

Biological process - cytoplasm

Cellular component

Response to stress

RNA binding

Cell wall related

Structural constituent of ribosome - translation - ribosome
Transcription factor activity - regulation of transcription
Transferase activity/cell wall biogenesis

Translation elongation factor activity - translation factor activity, nucleic acid binding

Transporter activity - transport

Water channel activity - transport - membrane
Protein binding

Mitochondrion

Kinase activity

Protein folding - cellular component
Membrane

Lipid binding - lipid transport

165
48
7
20
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A large proportion of contigs (44.5%) fell into the category of unknown classification while contigs that link directly with stress responses constituted 3% of the

total number of contigs.

the metallothionein transcript featured three times and
fructose-bisphosphate aldolase featured once. Grape
vine featured among the top ten homologous hits of
every contig that was annotated. Thirty seven percent of
the annotated contigs were represented by various plant
species such as Prunus armeniaca, Solanum tuberosum,
Hevea brasiliensis with the variety of plant species not
biased to any particular family or order. The majority of
the species similarities relate to a large variety of plants
that have been collectively categorised as other.

Quantitative gene expression analysis
Expression analyses of nine genes were conducted at 0,
3, 6, 12, 24 and 48 hours post infection (hpi) to validate
if the pyrosequencing data reflected their gene expres-
sion. This was normalized against 18S and actin refer-
ence genes to give the relative gene expression. The
expression data was then compared against the pyrose-
quencing data which revealed that six of the nine genes
showed similarities between the two methods, showing
the highest expression at a time point belonging to the
library from which the transcript emanated (Table 6).
Thaumatin expression was significantly greater at 48
hpi (1.1) as oppose to the uninfected (0.4), as well as the
3 & 6 hpi (Figure 4a). The expression pattern indicated
that thaumatin was only regulated in response to P. cin-
namomi by 12 hpi and increased by nearly threefold
over a 36 hour period. Thaumatin levels were

significantly higher in the later infection time points
when compared to the earlier time points-thus correlat-
ing with the pyrosequencing data.

The pathogenesis-related (PR-10) pseml gene showed
significant increases in expression at 6 & 24 hpi. At 24
hpi pseml reached the highest expression level of 1.5
when compared to all time points (Figure 4b). By 48 hpi
pseml expression had decreased significantly to 0.1,
reaching levels comparable to 3 hpi.

Cytochrome P450-like TBP (TATA box binding pro-
tein) showed a significant early response at 3 hr after
infection with P. cinnamomi reacting with an increase of
ten-fold. At 6 hpi the gene was significantly down-regu-
lated followed by a substantial increase at 12 hpi- a
similar level found at 3 hpi. The gene was then signifi-
cantly down-regulated to 1.0 at 24 hpi and remained
unchanged at 48 hpi (Figure 4c). Cytochrome P450-like
TBP levels were constantly up- and down-regulated
showing significant variation over time points. The data
was consistent with the pyrosequencing data for this
transcript.

The gene encoding for a metallothionein-like protein
was constitutively expressed at 0.6 and showed no sig-
nificant changes in expression over the first 6 hpi. This
was however followed by a significant increase in the
expression at 12 hpi when compared to all other time
points reaching levels of 3.2, the expression then
decreased to 0.5 at 24 hpi and remained unchanged at
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Table 4 List of putative stress related genes isolated from Phytohpthora cinnamomi infected avocado roots.

Contig Putative identity E Species
Value

library 1
contig0020 leucine-rich repeat resistance protein-like protein 8e'°  Gossypium hirsutum
contig0070 4-coumarate-CoA ligase-like protein 5% Arabidopsis thaliana
contig0088 seven transmembrane protein Mlo 1e?®  Zea mays
contig0106 pathogenesis-related protein Pseml 5e"  Pseudotsuga menziesii
contig0109 drought-induced protein 8e'®  Retama raetam
contig0076 metallothionein-like protein type 2 6" Persea americana
library 2
contig00007 translationally controlled tumour protein like protein 2% Nicotiana tabacum
contig00011 thaumatin 2% Vitis riparia
contig00043 cinnamate-4-hydroxylase 3e'®  Gossypium arboreum
contig00064 metallothionein-like protein type 2 7™ Persea americana
contig00065 AP2 domain containing protein 2e™" Prunus armeniaca
contig00073 oxysterol-binding protein 3¢ Solanum tuberosum

thaumatin-like protein, putative 3e?°  Arabidopsis thaliana
contig00095 AP2 domain containing protein 7e?” Prunus armeniaca
contig00108 profilin-like protein se’" Cinnamomum camphora
contig00163 Translationally-controlled tumour protein homolog (TCTP) translationally controlled tumour 1€ Hevea brasiliensis

protein
contig00169 cysteine proteinase 8e>?  Elaeis guineensis
contig00175 putative universal stress protein 2% Cicer arietinum
contig00187 cytochrome P450 like TBP 2% Nicotiana tabacum
contig00054 metallothionein-like protein class Il 4¢3 Nelumbo nucifera
contig00057 dormancy/auxin associated family protein 6e'°  Arabidopsis thaliana
contig00081 putative aquaporin PIP2-1 57 Vitis berlandieri x Vitis

rupestris

Six genes were isolated from library 1 cDNA while 15 genes were identified from the library 2 cDNA. These transcripts play a role in either biotic or abiotic stress

responses showing the species to which the sequence showed homology.

48 hpi (Figure 4d). The data showed similarity to the
pyrosequencing data for this transcript.

The profilin-like gene was expressed constitutively at
1.9 prior to infection. Three hours after infection the
transcript was significantly down-regulated to 0.6 (a 3
fold decrease) and remained unchanged at 6 hpi. There
was a significant up-regulation from 6 hpi to12 hpi with
expression peaking at 2.6, followed by a significant

decrease to 0.9 at 24 hpi and remained unchanged at 48
hpi as opposed to 12 hpi (Figure 4e).

The MLO transmembrane protein encoding gene was
constitutively expressed at 2.2 followed by a significant
reduction at 6 hpi compared to the uninfected time
point. At 12 hpi the tolerant rootstock responded with a
significant increase to 5.7. Expression at 24 hpi was sig-
nificantly down-regulated when compared to 12 hpi and

Table 5 Defence-related genes isolated from Phytophthora cinnamomi infected avocado roots.

Gene E-value Response against

thaumatin 2e?° Vitis riparia Armellaria mellea [65]
metallothionein-like protein type 2 7e™ Persea americana Agrobacterium rhizogenes [53]
pathogenesis-related protein P sem | 5¢ ' Pseudotsuga menziesii Phellinus weirii [49]

putative universal stress protein 2e0 Cicer arietinum -

profilin-like protein 57!/ Cinnamomum camphora Phytophthora infestans [60]
oxysterol-binding protein 3e?® Solanum tuberosum Phytophthora spp [66]

LRR resistance protein-like protein 8e'® Gossypium hirsutum Phytophthora infestans [64]

seven transmembrane protein Mlo 1e%8 Zea mays Blumeria graminis f. sp. hordei [62]

Certain transcripts could be related directly to oomycete infection in other plants. Strong E-values indicate confidence in the identification of these defence-

related genes.
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Figure 3 Number of contigs grouped according to sequence homology between avocado and other plant species. The sequence
similarities were analysed to establish which species was most represented by the 454 data. There is an observable lack of avocado sequence
data available on public databases.

reached a level of 1.5 at 48 hpi (Figure 4f). The mlo
expression data was in agreement with the pyrosequen-
cing data for this transcript.

The universal stress protein showed the maximum
expression at 12 hpi but did not show a significant
increase when compared to 0 and 6 hpi. An overall
increase in expression was viewed until 12 hpi, followed
by a significant down-regulation to 0.4 at 48 hpi com-
pared to 12 hpi (Figure 4g).

Two genes encoding respectively for the thaumatin-
like protein and the leucine rich repeat (LRR) resistance
protein-like protein were constitutively expressed at 0.8.
Both genes showed no statistically significant change in
regulation over the 48 hour time course, however simi-
lar to the majority of genes in this experiment, both
genes showed the highest increase in expression at 12
hpi. The highest level of up-regulation achieved was 1.1
and 1.47 respectively (Figure 4h &4i).

Table 6 Similarities between pyrosequencing data and gene expression profiles of defence-related genes

Sequence ID GenBank accession cDNA Library Max gRT-PCR Similarities between 454 and qRT-
number expression PCR
Thaumatin 10840464 Library 2 48 hpi yes
LRR resistance PLP 10840460 Library 1 12 hpi yes
Metallothionein like protein 10840461 Uninfected, Library 1 12 hpi yes
Thaumatin-like protein 10840465 Library 2 12 hpi yes
Seven transmembrane protein  JO840462 Library 1 12 hpi yes
MIo
Pathogenesis-related protein 10840463 Library 1 24 hpi no
Psem|
Proflin-like protein 10840466 Library 2 12 hpi no
Putative universal stress protein 0840467 Library 2 12 hpi no
Cytochrome P450 like TBP 10840468 Library 1 and Library 3/12 hpi yes

2

All the genes chosen for expression profiling from the tolerant avocado rootstock infected with Phytophthora cinnamomi showed the highest expression from a
time point related to the cDNA library of their identification except the pathogenesis-related protein, profilin-like protein and the universal stress protein.
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Discussion
We have sequenced the first set of avocado root tran-
scriptomic data for the avocado-P. cinnamomi interac-
tion. A single lane of pyrosequencing on the GS FLX
platform generated 2.0 Mb (of a potential 2.5 Mb) of
data, consisting of 9953 reads that assembled into 371
contigs of which 367 ESTs are novel for P. americana
and have not previously been identified. In addition, we
were also able to identify and quantify the expression of
nine defence-related genes that were regulated in
response to P. cinnamomi. The primary objective of this
study was to generate EST data of a tolerant avocado
rootstock infected with the root pathogen P. cinnamomi.
This data identified the genes involved in cellular pro-
cesses and defence mechanisms thereby providing the
first platform for studying molecular mechanisms under-
lying tolerance in the roots of one of the important agri-
cultural hosts of P. cinnamomi.

The 371 contigs were grouped into 38 and 21 func-
tional classes based on the KOG and GO databases
respectively using the dCAS program. As expected, the

majority of sequences had unknown functions. Due to
the high sensitivity of sequencing, transcriptome studies
identify many transcripts that have not yet been charac-
terised and many that have unknown functions even
when annotated using a database such as Gene ontology
[44]. The lack of EST and genome sequence data for
avocado in general, specifically rootstocks, also accounts
for the high frequency of unknown functions. The top
ten functional groupings according to the GO classifica-
tion revealed that 44.5% of assembled contigs were
represented by unknown functions followed by the func-
tional groups of ‘other’, ‘cellular components’, ‘biological
processes’, ‘stress responses’, ‘ribosome structure’, ‘cell
wall related’, ‘protein binding’, ‘mitochondrion and
‘ATP-binding’. According to the KOG database much of
sequence data matched categories of ‘general function
prediction’, which means that these transcripts show
homology to transcripts that are poorly characterised
according to the NCBIL. The KOG database revealed that
the top ten classes that the contigs grouped into were
firstly; ‘general function prediction’ followed by ‘signal
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transduction’, ‘unknown function’, ‘translation and ribo-
somal structure’, ‘chaperones’, ‘carbohydrate metabo-
lism’, ‘intracellular trafficking’, ‘transcription’,
‘cytoskeleton’ and ‘inorganic ion transport and metabo-
lism’. Furthermore, the presence of unidentified reads in
this study is not unique to avocado, other studies have
also produced sequence that did not align to any
sequence present in NCBI datasets [39].

We investigated the sequence homology between the
avocado sequence data and the plant species that our
data showed homology to. Only 1% (4/371) of the
sequenced contigs showed homology to P. americana,
while 20-30% of the contigs generated showed similarity
to grapevine (V. vinifera). The lack of similarities to any
avocado sequence data observed in our study empha-
sizes the lack of genetic data on the NCBI. The knowl-
edge we have gained by sequencing avocado rootstock
ESTs may provide some insight into other magnoliids or
phylogenetically related plants. The sequence and
expression data generated in this study can form a basis
for functional genomics of basal angiosperms - a group
which has no other model [27].

As expected we isolated a number of ESTs with
homology to genes previously associated with defence
responses in plants against pathogens and in some
cases, against oomycetes. Interesting defence ESTSs
included thaumatin, metallothionein, a PR10 pathogen-
esis-related protein, a mlo transmembrane protein and
profilin. Nine genes were quantified with qRT-PCR to
elucidate the early gene response of a tolerant avocado
rootstock infected with P. cinnamomi as well as to vali-
date the pyrosequencing data.

Thaumatin, a PR5 protein associated with the SA
pathway [45,46], was significantly upregulated at 48 h in
response to P. cinnamomi infection. The gene showed
no changes in regulation during the first 6 hours after
inoculation with a mycelial suspension. At 12 and 24
hpi expression showed an insignificant but steady
increase in response to the infection. PR5 is induced by
biotic stress and further linked to increased pathogen
resistance [47]. Garcia-Pineda et al (2010) showed
decreased root colonization in the Arabidopsis-P. cinna-
momi system linked to SA. The significant up-regulation
of thaumatin in the P. cinammomi tolerant avocado
rootstock indicates the importance of the SA pathway in
the early inhibition of the hemibiotroph P. cinnamomi.
Hemibiotrophs have an initial biotrophic phase prior to
becoming necrotrophs and PR5 gene activity in the SA-
dependant pathway has been previosuly shown to be
effective against biotrophs [48].

PsemI was highly expressed at 24 hpi in tolerant avo-
cado roots infected with P. cinnamomi. The PR10 gene
was identified in the response of Douglas -fir infected
with Phellinus weirii [49]. The authors showed that very
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high concentrations of Pin m III (Pseml gene homolo-
gue) was responsible for resistance to the rust pathogen
Cronartium ribicola. This PR-10 gene has also been
used as a marker in screening for P. weirii resistance in
Douglas-fir and could therefore be valuable in screening
for PRR tolerance in avocado.

The gene encoding for the cytochrome P450-like TBP
was the only transcript to be significantly induced by P.
cinnamomi as early as 3 hpi. This enzyme features in
oxidative metabolism and the production of ROS. This
rapid response could be attributed to the universal nat-
ure of the protein in cell metabolism and growth. Addi-
tionally it has been reported to be involved in biotic and
abiotic environmental responses as well as in the HR
response to infection [44,50-52].

Our data revealed a noticeable host response at 12 hpi
with the up-regulation of four transcripts, the metal-
lothionein-like gene, the universal stress protein, profilin
&mlo. Metallothioneins inhibit programmed cell death
(PCD) and Fumonisin Bl-induced root death in tomato
infected with Agrobacterium rhizogenes through interfer-
ence of the ROS pathway. ROS accumulation was signif-
icantly reduced under metallothionein over-expression,
validating its function in ROS scavenging [53]. The sig-
nificant induction of metallothionein in the highly toler-
ant avocado rootstock at 12 hpi implies that this protein
may play a role in conferring disease tolerance to P. cin-
namomi by scavenging ROS. ROS generation is indica-
tive of the activity of the hypersensitive response (HR),
which leads to cell death and is effective against bio-
trophic organisms [54].

The up-regulation of the universal stress protein at 12
hpi indicates the plant’s response to the stress of infec-
tion by P. cinnamomi. Universal stress proteins are
mediated by ethylene [55], and our results may therefore
implicate the involvement of the ethylene pathway in
response to P. cinnamomi, a pathway that has shown
activation in the Arabidopsis/P. cinnamomi interaction
[37].

Both profilin &mlo play a role in actin filament polari-
zation [56,57] and actin rearrangement has been
observed in plant-fungus interactions with successful
pathogen infection resulting in the suppression of the
rearrangement [58,59]. Profilin is known to localize to
the site beneath the cell wall, that is penetrated by the
oomycetous appresorium [60] and either promotes or
prevents actin polymerization in the actin cytoskeleton
[56]. Cell wall thickening during fungal attack also
involves the re-orientation of actin filaments as a
defense response in order to prevent pathogen ingress
[61]. The up-regulation of profilin in avocado roots sug-
gests that profilin is being produced in response to P.
cinnamomi penetration. MLO, a transmembrane pro-
tein, modulates actin cytoskeleton polarization in
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resistant barley in response to a biotrophic fungus- Blu-
meria graminis f. sp. hordei [62]. Successful defence
against pathogens results in cell wall strengthening and
is correlated with increased actin accumulation at sites
of attempted penetration [57].

The thaumatin-like gene expression showed no signifi-
cant response to the oomycete infection. This might be
explained by the fact that it is usually induced by viral,
bacterial and fungal infection [46], and is believed to
destroy fungal cell walls using a variety of enzymatic
activities [63]. The LRR (leucine rich repeat) resistance
protein-like gene also demonstrated no significant
response to P. cinnamomi. Although resistance related
LRR proteins have been found to interact specifically
with other Phytophthora species, (Solanum tuberosum-
Phytophthora infestans interaction) [64], no such inter-
action has to our knowledge been described for P. cin-
namomi and its hosts, specifically avocado. However,
the identification of a LRR-like gene from P. cinnamomi
infected tolerant avocado roots warrants further
investigation.

Conclusions

This study identified an interesting set of genes regu-
lated by the infection of the hemibiotroph P. cinnamomi
by using 454 pyrosequencing. Defence genes included
general defence-related transcripts (universal stress pro-
tein, metallothionein and thaumatin-like genes as well
as cytochrome P450) and Phytophthora specific response
genes such as (thaumatin, PR-10 and the LRR resistance
protein-like gene) [44-47,49-52,55,64].

We inoculated avocado roots with a mycelial suspen-
sion, based on the genetic response by the plant, we
hypothesize that the plant response is delayed due to
the slower infection rate of mycelia as opposed to zoos-
pores that are able to germinate and encyst within 2 hr
of release from sporangia. Despite this delay five of the
nine defence-related transcripts showed a significant
early response to the pathogen between 3 and 12 hpi.
Based on this first set of transcriptome data we hypothe-
size that the tolerance of the rootstock in this study is
most likely polygenic and based on the early detection
of P. cinnamomi followed by a response that included
ROS and cell-wall strengthening. Ongoing research in
our laboratory has generated a second set of transcrip-
tome data and has included a variety of rootstocks with
different levels of PRR tolerance and susceptibility as
well as additional time-points.

We have successfully produced the first molecular
data for the avocado-Phytophthora cinnamomi interac-
tion and believe that this data will contribute to the
understanding of host defence against this devastating
pathogen thereby aiding in the selection of tolerant avo-
cado rootstocks.
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Methods

Plant material inoculation

Nine month old tolerant Dusa® clonal avocado plantlets
were provided by Westfalia Technological Services
(Tzaneen, South Africa) and inoculated with a Phy-
tophthora cinnamomi mycelial suspension containing
mycelia and zoospores. A total of 33 g of mycelia was
homogenised in 65 L of distilled water giving a final
concentration of 0.5 g/L. This was then mixed into 112
kg of vermiculite in a mistbed. Plantlets were randomly
grounded in vermiculite and constantly irrigated over a
period of six weeks. Scanning electron microscopy and
confocal microscopy were used to confirm P. cinna-
momi infection, germination and root colonization
which was then used to determine time points for root
harvesting. Based on the results obtained, zoospores ger-
minated within 1 hr & hyphae were visible at 6 hr, we
selected our time points accordingly. Root material was
harvested at 0 hour (uninfected), 3, 6, 12, 24, 48 and 72
hours post infection (hpi), snap frozen in liquid nitrogen
and stored on dry ice (-78°C) until the root material
could be transported back to a -80°C freezer. A subset
of plants was left in the mistbed for six weeks as a posi-
tive control for disease.

Generation of cDNA libraries for pyrosequencing

RNA isolations were done using the CTAB method [24].
Roots were ground in liquid nitrogen and 2-3 g of root
material was used per RNA extraction. The Chloroform:
isoamyl alcohol wash step was repeated 6 times followed
by washing with ethanol thrice. Total RNA concentra-
tions were quantified using the Nanodrop ND-100 Spec-
trophotometer (Nanodrop Technologies, Inc.,
Montchanin, USA) and verified on a 2% non-denaturing
TAE agrose gel. Total RNA from three biological repli-
cates (per time point) was combined before mRNA puri-
fication. Three technical replicates per biological
replicate were performed for RNA isolation.

Prior to mRNA isolation, different time points were
combined into three libraries for pyrosequencing and
designated as uninfected, library 1 and library 2. The 0 hr
time point and was regarded as the uninfected library
with library 1 containing the 6 & 12 hr infection time
points while library 2 contained the 24, 48 and 72 h time
points. Purification of mRNA was done according to
manufacturer’s instructions using Oligotex (Oligotex™
mRNA kit, Qiagen, Valencia, California, USA). The
mRNA purification was performed twice per sample to
ensure the removal of any DNA contamination as well as
to reduce the amount of rRNA available in the sample.

DNA contamination was assessed by using intron
flanking primers. F3H forward:

(5-TCTGATTTCGGAGATGACTCGC-3) and F3H
reverse:
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(5-TGTAGACTTGGGCCACCTCTTT-3) to amplify
a 300 bp fragment of the flavanone-3-hydroxylase gene
from RNA as opposed to the 1200 bp fragment which is
obtained from DNA.

c¢DNA libraries were synthesized with the Roche
c¢DNA synthesis system (Roche Diagnostics, Mannheim,
Germany) according to manufacturer’s instructions and
purified using the Qiagen MinElute PCR Purification Kit
(Qiagen, Valencia, California, USA) before being
sequenced. DNA contamination was assessed in cDNA
as previously mentioned.

Pyrosequencing and Bioinformatics

Libraries were sequenced by Inqaba Biotec (Sunnyside,
South Africa) on the GS-FLX platform. Approximately 3
pg of cDNA was supplied for each library. A third of
each library was tagged with a different ten nucleotide
tag (Uninfected tag- 5’CGTGTCTCTA’3, library 1 infec-
tion tag- 5’CTCGCGTGTC’3, library 2 infection tag-
5TAGTATCAGC’3) and sequenced on a single lane.

A total of 9950 reads were assembled into 371 contigs
using the Newbler assembler version 1.1.02.15 (Roche).
Reads were trimmed before contig assembly. Low qual-
ity reads were not included and the assembly was ana-
lyzed and annotated using dCAS (Desktop cDNA
Annotation System) Version 1.4.1 Build 3791 and CLC
Free Workbench software (CLC bio, Cambridge, MA).
The BLASTX tool was used (using the PAM 30 matrix)
in order to produce short and nearly exact matches.
The sequence data generated in this study is available
on the NCBI Transcriptome Shotgun Assembly
Sequence Database BioProjectID: PRINA72155. Gene
sequences for genes quantified are available through
accession numbers TSA JO840460-JO840468.

Quantitative gene expression analysis
Nine genes were selected for gene expression analysis and
included: Thaumatin, thaumatin-like, metallothionein-
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like, leucine rich repeat resistance protein-like, pathogen-
esis-related protein Pseml, putative universal stress, profi-
lin-like, transmembrane protein MLO and cytochrome
P450-like TBP (TATA box binding protein). Reference
genes chosen for the study were actin and 18s rRNA
genes. The time points used to analyze the gene expres-
sion were 0 hours prior infection and, 3, 6, 12, 24 and 48
hours post infection.

cDNA synthesis was performed for qRT-PCR with
starting material of 1-2 pg total RNA of each time
point. The ImProm-II™ single strand cDNA system
from Promega (Promega Corporation, Madison, Wis-
consin, USA) was used in conjunction with random hex-
amer primers from Invitrogen (Invitrogen Life
Technologies, Mississauga, ON, Canada). Reverse tran-
scription was carried out under the following conditions:
25°C for 5 min, 42°C for 60 min and 70°C for 10 min.

Quantitative PCR

Primers were designed using Primer Designer 4 for
Windows, version 4.2°, (scientific and educational soft-
ware, Durham, NC) based on sequence homology. Pri-
mers were designed to amplify products of no more
than 150 base pairs, the selection was then auto adjusted
using more aggressive criteria and primers were chosen
within a 58-61°C range. Primers were synthesised by
Southern Cross Biotechnology (Cape Town, South
Africa) (Table 1).

Quantitative PCR was carried out using the Bio-Rad
CFX96 real-time PCR detection system (Bio-Rad
Laboratories, Hercules, CA). Reactions were performed
in a 20 ul tube containing 5 pl of each cDNA sample,
10 pl of iQ SYBR Green supermix (Bio-Rad), 1 pl of
each set of fragment specific forward and reverse pri-
mers and 3 pl SABAX water.

Thermocycling was carried out at 95°C for 10 min,
followed by 55 cycles of 95°C for 10 sec an fragment
specific annealing temperatures (Table 7) for 15 sec and

Table 7 Primer sequences of selected putative avocado defence-related genes from Phytophthora cinnamomi infected

avocado roots.

Sequence ID Fwd primer (5'-3’) Rev primer (5’-3') Product length (bp) Annealing °C
Thaumatin CACCCTGTAGTTCACTCC CCAGATGCTTACAGTTACC 75 585
LRR resistance PLP GACATTCTTATAGCCATC ATAAACAATCTGATTTTG 135 56
Metallothionein like protein type 2 AGTCTTCATCCCTAATACATATCCC  GTTTGTGCGTGTCTGGTTTC 76 585
Thaumatin-like protein AAGCAGTCCTCAAGGTTC TTTCCGTTAGTGTCAAAGC 79 65
MLO protein TCGTGGATGGAAGGAGTG ATGGGCAAATCTAAATCTTGTTG 85 585
Pathogenesis-related protein Pseml  GAAGATGGAGTACAAATAC CACCTTGATGTGATAAAC 82 58.5
Proflin-like protein TTCGGTATCTATGATGAG ACGATATGACATTCAATAG 110 585
Putative universal stress protein GACATTCTTATAGCCATC ATAAACAATCTGATTTTG 135 56
Cytochrome P450 like TBP GTCAAAGTGAAGAAATTC AATCTCGTTAATCCATTC 119 585
185 GTCAAAGTGAAGAAATTC AATCTCGTTAATCCATTC 59
Actin GAATCTGGACCATCTATTG TACCAACCAAACCAAATC 114 585

Sequences were chosen from the library 1 and library 2 based on differential expressions. Two reference genes-actin and 18s were included.
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elongation of 72°C for 15 sec. Three biological replicates
were used with three technical replicates of each. The
specificity of each primer pair was thoroughly investi-
gated by standard PCR before the quantitative PCR was
conducted and then verified by the presence of a single
melting temperature peak. For the qPCR, the cycle
threshold (CT) values were automatically determined
using the accompanying Bio-Rad CFX manager (Bio-
Rad CFX Manager™ version 1.5).

Statistical analysis

A Student T-test was carried out to determine signifi-
cant differences between gene expression levels for
quantitative gene expression analysis. Statistical analysis
was performed using the JMP® program version 9.0.0
(SAS Institute, Inc., Cary, NC) with a 95% confidence
interval.
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