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Abstract

Background: Genetic mapping has proven to be powerful for studying the genetic architecture of complex traits
by characterizing a network of the underlying interacting quantitative trait loci (QTLs). Current statistical models for
genetic mapping were mostly founded on the biallelic epistasis of QTLs, incapable of analyzing multiallelic QTLs
and their interactions that are widespread in an outcrossing population.

Results: Here we have formulated a general framework to model and define the epistasis between multiallelic
QTLs. Based on this framework, we have derived a statistical algorithm for the estimation and test of multiallelic
epistasis between different QTLs in a full-sib family of outcrossing species. We used this algorithm to genomewide
scan for the distribution of mul-tiallelic epistasis for a rooting ability trait in an outbred cross derived from two
heterozygous poplar trees. The results from simulation studies indicate that the positions and effects of multiallelic
QTLs can well be estimated with a modest sample and heritability.

Conclusions: The model and algorithm developed provide a useful tool for better characterizing the genetic
control of complex traits in a heterozygous family derived from outcrossing species, such as forest trees, and thus
fill a gap that occurs in genetic mapping of this group of important but underrepresented species.

Background
Approaches for quantitative trait locus (QTL) mapping
were developed originally for experimental crosses, such
as the backcross, double haploid, RILs or F2, derived
from inbred lines [1-3]. Because of the homozygosity of
inbred lines, the Mendelian (co)segregation of all mar-
kers each with two alternative alleles in such crosses can
be observed directly. In practice, there is also a group of
species of great economical and environmental impor-
tance - out-crossing species, such as forest trees, in
which traditional QTL mapping approaches cannot be
appropriately used. For these species, it is difficult or
impossible to generate inbred lines due to long genera-
tion intervals and high heterozygosity [4], although

experimental hybrids have been commercially used in
practical breeding programs.
For a given outbred line, some markers may be het-

erozygous, whereas others may be homozygous over the
genome. All markers may, or may not, have the same
allele system between any two outbred lines used for a
cross. Also, for a pair of heterozygous loci, their allelic
configuration along two homologous chromosomes (i.e.,
linkage phase) cannot be observed from the segregation
pattern of genotypes in the cross [5,6]. Unfortunately, a
consistent number of alleles across different markers
and their known linkage phases are the prerequisites for
statistical mapping approaches described for the back-
cross or F2. Grattapaglia and Sederoff [7] proposed a so-
called pseudo-test backcross strategy for linkage map-
ping in a controlled cross between two outbred parents.
This strategy is powerful for the linkage analysis of
those testcross markers that are heterozygous in one
parent and null in the other, although it fails to consider
many other marker cross types, such as intercross
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markers and dominant markers, that occur for an
outbred cross. Maliepaard et al. [8] derived numerous
formulas for estimating the linkage between different
types of markers by correctly determining the linkage
phase of markers. A general model has been developed
for simultaneous estimation of the linkage and linkage
phase for any marker cross type in outcrossing popula-
tions [9,10]. Stam [11] wrote powerful software for inte-
grating genetic linkage maps using different types of
markers.
Statistical methods for QTL mapping in a full-sib

family of outcrossing species have not received adequate
attention. Lin et al. [12] developed a model that takes
into account uncertainties about the number of alleles
across the genome. Wu et al. [13] used this model to
reanalyze a full-sib family data for poplar trees [14],
leading to the detection of new QTLs for biomass traits
which were not discovered by traditional approaches.
With increasing recognition of the role of epistasis in
controlling and maintaining quantitative variation [15],
it is crucial to extend Lin et al.’s model to map the epi-
static of QTLs by which to elucidate a detailed and
comprehensive perspective on the genetic architecture
of a quantitative trait. However, the well-established the-
ory and model for epistasis are mostly based on biallelic
genes [16] and their estimation and test are made for a
pedigree derived from inbred lines [17]. Until now, no
models and algorithms have been available for charac-
terizing the epistasis of multiallelic QTLs in an outcross-
ing population.
In this article, we will extend the theory for biallelic

epistasis to model the epistasis between different QTLs
each with multiple alleles. The multiallelic epistatic the-
ory is then implemented into a statistical model for
QTL mapping based on a mixture model. We have
derived a closed form for the estimation of the main
and interactive effects of multiallelic QTLs within the
EM framework. Our model allows geneticists to test the
effects of individual genetic components on trait varia-
tion. The estimating model has been investigated
through simulation studies and validated by an example
of QTL mapping for poplar trees [18]. The algorithm
has been packed to a newly developed package of soft-
ware, 3FunMap, derived to map QTLs in a full-sib
family [19].

Quantitative Genetic Model
Additive-dominance Model
Randomly select two heterozygous lines as parents P1
and P2 to produce a full-sib family, in which a QTL will
form four genotypes if the two lines have completely dif-
ferent allele systems. Let μuv be the value of a QTL geno-
type inheriting allele u (u = 1,2) from parent P1 and allele

v (v = 3, 4) from parent P2. Based on quantitative genetic
theory, this genotypic value can be partitioned into the
additive and dominant effects as follows:

μuv = μ + αu + βv + γuv, (1)

where μ is the overall mean, au and bv are the allelic
(additive) effects of allele u and v, respectively, and guv is
the interaction (dominant) effect at the QTL. Consider-
ing all possible alleles and allele combinations between
the two parent, there are a total of four additive effects
(a1 and a2 from parent P1 and b3 and b4 from parent
P2 and four dominant effects (g13, g14, g23 and g34). But
these additive and dominant effects are not independent
and, therefore, are not estimable. After parameterization,
there are two independent additive effects, a = a1 = -a2

and b3 = b3 = -b4, and one dominant effect, g = g13 =
-g14 = -g23 = g24, to be estimated.
Let u = (μuv)4 × 1 and a = (μ, a, b, g)T, which can be

connected by a design matrix D. We have

u = Da,

where

D =

⎡
⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦ .

The expression of a can be obtained from the expres-
sion of u by

a = D−1u. (2)

Additive-dominance-epistatic Model
If there are two segregating QTL in the full-sib family,
the epistatic effects due to their nonallelic interactions
should be considered. The theory for epistasis in an
inbred family [16] can be readily extended to specify dif-
ferent epistatic components for outbred crosses. Con-
sider two epistatic multiallelic QTL, each of which has
four different genotypes, 13, 14, 23, and 24, in the
outbred progeny. Let μu1v1/u2v2 be the genotypic value
for QTL genotype u1v1/u2v2 for u1,u2 = 1,2 and v1,v2 =
3,4 and u = (μu1v1/u2v2) be the corresponding mean vec-
tor. The two-QTL genotypic value is partitioned into
different components as follows:

μu1v1/u2v2 = μ + α1 + β1 + γ1 + α2 + β2 + γ2

+ Iαα + Iαβ + Iβα + Iββ + Jαγ + Jβγ + Kγα + Kγβ + Lγ γ
(3)

where

(1) μ is the overall mean;
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(2) a1 is the additive effect due to the substitution
from allele 1 to 2 at the first QTL;
(3) b1 is the additive effect due to the substitution
from allele 3 to 4 at the first QTL;
(4) g1 is the dominant effect due to the interaction
between alleles from different parents;
(5) a2 is the additive effect due to the substitution
from allele 1 to 2 at the second QTL;
(6) b2 is the additive effect due to the substitution
from allele 3 to 4 at the second QTL;
(7) g2 is the dominant effect due to the interaction
between alleles from different parents;
(8) Iaa is the additive × additive epistatic effect due
to the interaction between the substitutions from
allele 1 to 2 at the first and second QTLs;
(9) Iab is the additive × additive epistatic effect due
to the interaction between the substitutions from
allele 1 to 2 at the first QTL and from allele 3 to 4
at the second QTL;
(10) Iba is the additive × additive epistatic effect due
to the interaction between the sub-stitutions from
allele 3 to 4 at the first QTL and from allele 1 to 2
at the second QTL;
(11) Iab is the additive × additive epistatic effect due
to the interaction between the sub-stitutions from
allele 3 to 4 at the first and second QTLs;
(12) Jag is the additive × dominant epistatic effect
due to the interaction between the substitutions
from allele 1 to 2 at the first QTL and the dominant
effect at the second QTL;
(13) Jbg is the additive × dominant epistatic effect
due to the interaction between the substitutions
from allele 3 to 4 at the first QTL and the dominant
effect at the second QTL;
(14) Kga is the dominant × additive epistatic effect
due to the interaction between the dominant effect
at the first QTL and the substitutions from allele 1
to 2 at the second QTL;
(15) Kgb is the dominant × additive epistatic effect
due to the interaction between the dominant effect
at the first QTL and the substitutions from allele 3
to 4 at the second QTL;
(16) Lgg is the dominant × dominant epistatic effect
due to the interaction between the dominant effects
at the first and second QTLs.

Genetic effect parameters for two interacting QTL are
arrayed in a = (μ, a1, b1, g1, a2, b2, g2, Iaa, Iab, Iba, Ibb,
Jag, Jbg, Kga, Kgb, Lgg)

T. We relate the genotypic value
vector and genetic effect vector by

u = Da,

where design matrix

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1 −1
1 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 1 −1 −1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1
1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 −1 1 1
1 1 −1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1
1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1 1 1 −1
1 −1 1 −1 1 1 1 −1 −1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 −1 1 −1 1
1 −1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1
1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, the genetic effect vector can be expressed, in
terms of the genotypic value vector, as

a = D−11u. (4)

If we have alleles 1 = 3 and 2 = 4 for an outbred
family, Equations 1 and 3 will be reduced to traditional
biallelic additive-dominant and biallelic additive-domi-
nant-epistatic genetic models, respectively [20].

Statistical Model
Likelihood
Suppose there is a full-sib family of size n derived from
two outbred lines. Consider two interacting QTLs for a
quantitative trait. Let u1v1 and u2v2 denote a general
genotype at QTL 1 and 2, respectively, where u1 and u2
(u1,u2 = 1,2) are the alleles inherited from parent P1 and
v1 and v2 (v1,v2 = 3,4) are the alleles inherited from par-
ent P2. The linear model of the trait value (yi) for indivi-
dual i affected by the two QTLs is written as

yi =
2∑

u1=1

4∑
v1=3

2∑
u2=1

4∑
v2=3

ξiu1v1/u2v2μu1v1/u2v2 + ei, (5)

where ξiu1v1/u2v2 is the indicator variable for QTL geno-
types defined as 1 if a particular genotype u1v1/u2v2 is
considered for individual i and 0 otherwise, and ei is the
residual error normally distributed with mean 0 and var-
iance s2. The probability with which individual i carries
QTL genotype u1v1/u2v2 can be inferred from its marker
genotype, with this conditional probability expressed as
ωu1v1/u2v2|i[20].
The log-likelihood of the putative QTLs given the trait

value (y) and marker information (M) is given by

L(�|y,M) =
n∏
i=1

2∑
u1=1

4∑
v1=3

2∑
u2=1

4∑
v2=3

ωu1v1/u2v2|ifu1v1/u2v2(yi), (6)
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where Θ is the vector for unknown parameters that
include the QTL position expressed by the conditional
probabilities

(
ωu1v1/u2v2|i

)
, QTL genotypic values(

μu1v1/u2v2

)
and the residual variance (s2). The first para-

meters, denoted by Θp, are contained in the mixture
proportions of the above model, whereas the second
two, denoted by Θq, are quantitative genetic parameters.
Normal distribution density f u1v1/u2v2(yi) has mean
μu1v1/u2v2 and variance s2.

EM Algorithm
The standard EM algorithm is developed to obtain the
estimates of the unknown vector. By differentiating the
log-likelihood of equation (6) with respect to two groups
of unknown parameters (Θp, Θq), we have

∂

∂�
log L(�|y,M)

=
n∑
i=1

2∑
u1=1

4∑
v1=3

2∑
u2=1

4∑
v2=3

fu1v1/u2v2(yi)
∂

∂�p
ωu1v1/u2v2|i + ωu1v1/u2v2|i

∂

∂�q
fu1v1u2v2(yi)∑2

u′
1=1

∑4
v′
1=3

∑2
u′

2=1

∑4
v′
2=3 ωu′

1v′1/u′
2v′2|i f u′

1v′1/u′
2v′2(yi)

=
n∑
i=1

2∑
u1=1

4∑
v1=3

2∑
u2=1

4∑
v2=3

⎡
⎢⎢⎣

ωu1v1/u2v2|if u1v1/u2v2(yi) 1
ωu1v1/u2v2|i

∂

∂�p
ωuv|i∑2

u′
1=1

∑4
v′
1=3

∑2
u′

2=1

∑4
v′
2=3 ωu′

1v′
1/u′

2v′
2|i fu′

1v′
1/u′

2v′
2 (yi)

+

ωu1v1/u2v2|i fu1v1/u2v2(yi)
∂

∂�q
log fu1v1 /u2v2(yi)∑2

u′
1=1

∑4
v′
1=3

∑2
u′

2=1

∑4
v′
2=3 ωu′

1v′
1/u′

2v′
2|i fu′

1v′1/u′
2v′

2
(yi)

⎤
⎥⎥⎦

=
n∑
i=1

2∑
u1=1

4∑
v1=3

2∑
u2=1

4∑
v2=3

∏
u1v1/u2v2 |i

[
1

ωu1v1/u2v2|i
∂

∂�p
ωu1v1/u2v2|i +

∂

∂�q
log fu1v1/u2v2(yi)

]
,

where we define

∏
u1v1/u2v2|i =

ωu1v1/u2v2|i fu1v1/u2v2(yi)∑2
u′

1=1

∑4
v′
1=3

∑2
u′

2=1

∑4
v′
2=3 ωu′

1v′
1/u′

2v′
2|i f u′

1v′
1/u′

2v′
2
(yi)

(7)

which could be thought of as a posterior probability
that individual i has a QTL genotype u1v1/u2v2.
In the E step, calculate the posterior probabilities of

QTL genotypes given the marker genotype of individual
i by equation (7). In the M step, estimate the maximum
likelihood estimates (MLEs) of the unknown parameters

by solving
∂

∂�
log L(�|y,M) = 0.. The closed forms for

estimating the genotypic values and residual variance
are derived as

μ̂u1v1/u2v2 =

∑2
u1=1

∑4
v1=3

∑2
u2=1

∑4
v2=3

∏
u1v1/u2v2|iyi∑2

u1=1

∑4
v1=3

∑2
u2=1

∑4
v2=3

∏
u1v1/u2v2|i

σ̂ 2 =
1
n

n∑
i=1

2∑
u1=1

4∑
v1=3

2∑
u2=1

4∑
v2=3

(
yiμ̂u1v1/u2v2

)2 ∏
u1v1/u2v2|i·

(8)

By giving initial values for the parameters, the E and
M steps are iterated until the estimates are stable. The
stable values are the MLEs of the unknown parameters.
Note that the QTL position within a marker interval

can be estimated by treating the position is fixed. Using
a grid search, we can obtain the MLE of the QTL posi-
tion from the peak of the profile of the log-likelihood
ratio test statistics across a chromosome.

Hypothesis Tests
After the parameters are estimated, a number of hypoth-
esis tests can be made. The existence of a QTL can be
tested by formulating the null hypothesis expressed as

H0 : μu1v1/u2v2 ≡ μ, for u1, v1 = 1, 2 and u2, v2 = 3, 4

H1 : at least one of the equalities abovedoes not hold.
(9)

The likelihoods under the reduced (H0) and full model
(H1) are calculated and their log-likelihood ratio (LR) is
then estimated by

LR = −2 In

[
L0(�̃p, �̃q|y)

L0(�̂p, �̂q|y,M)

]
, (10)

where the tildes and hats are the MLEs under the H0

and H1, respectively. The critical threshold for declaring
the existence of a QTL can be empirically determined
from permutation tests [21].
Hypothesis tests for different genetic effects including

the additive (a1, b1, a2, b2), dominant (g1, g2) and addi-
tive × additive (Iaa, Iab, Iba, Ibb), additive × dominant
(Jag, Jbg), dominant × additive (Kga, Kgb) and dominant ×
dominant (Lgg) epistatic effects can be formulated, with
the respective null hypotheses:
Under each null hypothesis, the genotypic values

should be constrained by

μ13/13 + μ13/14 + μ13/23 + μ13/24 + μ14/13 + μ14/14 + μ14/23 + μ14/24

= μ23/13 + μ23/14 + μ23/23 + μ23/24 + μ24/13 + μ24/14 + μ24/23 + μ24/24
(11)

for H0 : a1 = 0,

μ13/13 + μ13/14 + μ13/23 + μ13/24 + μ23/13 + μ23/14 + μ23/23 + μ23/24

= μ14/13 + μ14/14 + μ14/23 + μ14/24 + μ24/13 + μ24/14 + μ24/23 + μ24/24
(12)

for H0 : b1 = 0,

μ13/13 + μ13/14 + μ14/13 + μ14/14 + μ23/13 + μ23/14 + μ24/13 + μ24/14

= μ13/23 + μ13/24 + μ14/23 + μ14/24 + μ23/23 + μ23/24 + μ24/23 + μ24/24
(13)

for H0 : a2 = 0,

μ13/13 + μ13/23 + μ14/13 + μ14/23 + μ23/13 + μ23/23 + μ24/13 + μ24/23

= μ13/14 + μ13/24 + μ14/14 + μ14/24 + μ23/14 + μ23/24 + μ24/14 + μ24/24,
(14)

for H0 : b2 = 0,

μ13/13 + μ13/14 + μ13/23 + μ13/24 + μ24/13 + μ24/14 + μ24/23 + μ24/24

= μ14/13 + μ14/14 + μ14/23 + μ14/24 + μ23/13 + μ23/14 + μ23/23 + μ23/24,
(15)

for H0 : g1 = 0,

μ13/13 + μ13/24 + μ14/13 + μ14/24 + μ23/13 + μ23/24 + μ24/13 + μ24/24

= μ13/14 + μ13/23 + μ14/14 + μ14/23 + μ23/14 + μ23/23 + μ24/14 + μ24/23,
(16)
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for H0 : g2 = 0,

μ13/13 + μ13/14 + μ14/13 + μ14/14 + μ23/23 + μ23/24 + μ24/23 + μ24/24

= μ13/23 + μ13/24 + μ14/23 + μ14/24 + μ23/13 + μ23/14 + μ24/13 + μ24/14,
(17)

for H0 : Iaa = 0,

μ13/13 + μ13/23 + μ14/13 + μ14/23 + μ23/14 + μ23/24 + μ24/14 + μ24/24

= μ13/14 + μ13/24 + μ14/14 + μ14/24 + μ23/13 + μ23/23 + μ24/13 + μ24/23,
(18)

for H0 : Iab = 0,

μ13/13 + μ13/14 + μ14/23 + μ14/24 + μ23/13 + μ23/14 + μ24/23 + μ24/24

= μ13/23 + μ13/24 + μ14/13 + μ14/14 + μ23/23 + μ23/24 + μ24/13 + μ24/14,
(19)

for H0 : Iba = 0,

μ13/13 + μ13/23 + μ14/14 + μ14/24 + μ23/13 + μ23/23 + μ24/14 + μ24/24

= μ13/14 + μ13/24 + μ14/13 + μ14/23 + μ23/14 + μ23/24 + μ24/13 + μ24/23,
(20)

for H0 : Ibb = 0,

μ13/13 + μ13/24 + μ14/13 + μ14/24 + μ23/14 + μ23/23 + μ24/14 + μ24/23

= μ13/14 + μ13/23 + μ14/14 + μ14/23 + μ23/13 + μ23/24 + μ24/13 + μ24/24,
(21)

for H0 : Jag = 0,

μ13/13 + μ13/24 + μ14/14 + μ14/23 + μ23/13 + μ23/24 + μ24/14 + μ24/23

= μ13/14 + μ13/23 + μ14/13 + μ14/24 + μ23/14 + μ23/13 + μ24/13 + μ24/24,
(22)

for H0 : Jbg = 0,

μ13/13 + μ13/14 + μ14/23 + μ14/24 + μ23/23 + μ23/24 + μ24/13 + μ24/14

= μ13/23 + μ13/24 + μ14/13 + μ14/14 + μ23/13 + μ23/14 + μ24/23 + μ24/24,
(23)

for H0 : Kga = 0,

μ13/13 + μ13/23 + μ14/14 + μ14/24 + μ23/14 + μ13/24 + μ24/13 + μ24/23

= μ13/14 + μ13/24 + μ14/13 + μ14/23 + μ23/13 + μ23/23 + μ24/14 + μ24/24,
(24)

for H0 : Kgb = 0, and

μ13/13 + μ13/24 + μ14/14 + μ14/23 + μ23/14 + μ23/23 + μ24/13 + μ24/24

= μ13/14 + μ13/23 + μ14/13 + μ14/24 + μ23/13 + μ23/24 + μ24/14 + μ24/23,
(25)

for H0 : Lgg = 0, respectively. Each of these constraints
is implemented with the EM algorithm as described
above, which will lead to the MLEs of the genotypic
values that satisfies equations (11) - (25), respectively.
The critical thresholds for each of the tests (11) - (25)
can be determined from simulation studies.

Results
A Worked Example
We use a real example of a forest tree to illustrate our
multiallelic epistiatic QTL mapping method in an
outbred population. The material was an interspecific F1
hybrid population between Populus deltoides (P1) and P.
euramericana (P2). A total of 86 individuals were
selected for QTL mapping. A genetic linkage map was
constructed by using 74 SSR markers of segregating
genotypes 12 × 34, which covers 822.35 cM of the
whole genome and contains 14 linkage groups. The
total number of roots per cutting (TNR) was measured
and showed large variation in the hybrid population

during the later development stage of adventitious root-
ing in water culture.
Through a systematic search over these linkage

groups, the multiallelic espistatic model identifies six
significant pairs of QTLs from different groups for
TNR at the 5% significance level (Figure 1). The
group × group-wide LR threshold for asserting that a
pair of interacting QTLs exist was determined from
1000 permutation tests. Linkage group 2 has multiple
regions that contain QTLs, which are located between
markers L2_G_3592 and L2_O_10, markers L2_P_422
and L2_P_667, markers L2_P_667 and L2_G_876, and
markers L2_O_286 and L2_O_222. These QTLs form
five epistatic combinations by interacting with each
other or with those on linkage groups 4, 7, 12 and 14
(Table 1). The sixth pair comes from linkage groups 6
and 12.
Table 1 gives the estimates of genetic effect para-

meters for the six pairs of interacting QTLs. At QTLs
on linkage group 2, parent P. euramericana tends to
contribute unfavorable alleles to root number, as seen
by many negative b values, although this parent shows a
better rooting capacity than parent P. deltoides. At these
QTLs, parent P. deltoides generally contributes a small-
effect allele to root number, as seen by small a values.
At the QTL on linkage group 6, this parent triggers a
large positive additive effect. It is interesting to find that
there are pronounced interactions between alleles from
these two parents, as seen by large g values, suggesting
the importance of dominance in rooting capacity. In
many cases, additive × additive epistatic effects are
important, as indicated by many large I values. Our
model can further discern which kind of additive ×
additive epistasis contribute. For example, the additive ×
additive epistasis between QTLs from linkage group 2 is
due to the interaction between alleles from parent P.
euramericana, while for QTL pair from linkage groups
2 and 14 this is due to the interaction between alleles
from parent P. deltoides. The pattern of how the QTLs
interact with each other in terms of additive × domi-
nant, dominant × additive, and dominant × dominant
epistasis can also be identified (Table 1).

Monte Carlo Simulation
We performed simulation studies to investigate the sta-
tistical properties of the multiallelic epistatic model. We
simulated a full-sib family of sample size 400, 800 and
2000 derived from two outcrossing parents. Two QTLs
were assumed at different locations of a 100 cM-long
linkage group with 6 even-spaced markers. Phenotypic
values of a quantitative trait for each individual were
simulated as the genotypic values at these QTLs plus
normally distributed errors (scaled to have different her-
itabilities, 0.1 and 0.4). Genotypic values are expressed
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Figure 1 The landscapes of log-likelihood ratio (LR) values testing the existence of two interacting QTLs controlling the total number
of roots per cutting over different linkage groups. A. one QTL from linkage group 2 interacting with the second QTL from linkage group 2.
B. one QTL from linkage group 2 interacting with the second QTL from linkage group 4. C. one QTL from linkage group 2 interacting with the
second QTL from linkage group 7. D. one QTL from linkage group 2 interacting with the second QTL from linkage group 12. E. one QTL from
linkage group 2 interacting with the second QTL from linkage group 14. F. one QTL from linkage group 6 interacting with the second QTL from
linkage group 12. In each case, the peak of the LR landscape (shown by an arrow) beyond the threshold surface (indicated in grey) shows the
positions of two epistatic QTLs. The names and positions of markers at each group are indicated.
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in terms of genetic actions and interactions with true
values tabulated in Table 2.
It was found that the QTL positions can well be esti-

mated using our model (Table 2). The additive effects at
individual QTLs and additive × additive epistatic effects
can be reasonably estimated even when a modest sample
size is used for a modest heritability. The other genetic
effect parameters, especially dominant × dominant epi-
static effects, need a large sample size to be reasonably
estimated especially when the heritability is low. Because
of a large number of parameters involved, the outcross-
ing design requires much larger sample sizes than back-
cross or F2 designs.

Discussion
The past two decades have seen a tremendous interest
in developing statistical models for QTL mapping of
complex traits inspired by Lander and Botestin’s (1989)
pioneered interval mapping [2,3,17,22-25]. However,
model development for QTL mapping in outbred popu-
lations, a group of species of great environmental and
economical importance [26], has not received adequate
attention. Only a few publications are available to QTL
mapping in outcrossing species [12,13]. In this article,
we present a quantitative genetic model for studying the

epistasis of multiallelic QTLs and a computational algo-
rithm for estimating and testing epistatic interactions.
The central issue of QTL mapping for outcrossing

populations is how to model genetic actions and interac-
tions between multiple alleles at different QTLs. Tradi-
tional quantitative genetic models have been developed
for biallelic genetic effects [16] and their extension to
multiallelic cases have not been clearly explored. This
study gives a first attempt to characterize epistatic inter-
actions between multiallelic QTLs that pervade out-
crossing populations. We partition additive effects at
each QTL into two subcomponents based on different
parental origins of alleles. Similarly, we partition the
additive × additive epistasis into four different subcom-
ponents, the additive × dominant epistasis into two sub-
components, and the dominant × additive epistasis into
two subcomponents based on the interactions of alleles
of different parental origins. These subcomponents have
unique biological meanings because they are derived
from distinct parents. In practice, hybridization is made
between two genetically distant parents, thus an under-
standing of each of these subcomponent helps to study
the genetic basis of heterosis.
We tested the new multiallelic epistasis model through

simulation studies. In general, because of a number of

Table 1 Parameter estimates of interacting QTLs for root numbers in a full-sib family of poplars

Parameter Estimate

L2 G 3592 L2 P 422 L2 P 667 L2 O 286 L2 P 422 L6 P 2235

QTL 1 Position | | | | | |

L2 O 10 L2 P 667 L2 G 876 L2 O 222 L2 P 667 L6 G 1809

L2 P 422 L4 P 2696 L7 G 3269 L12 P 2786 L14 P 2786 L12 P 2786

QTL 2 Position | | | | | |

L2 P 667 L4 G 1589 L7 G 1629 L12 O 149 L14 O 149 L12 O 149

μ 2.0536 2.0578 2.0306 2.088 2.0438 2.0715

a1 -0.0081 0.0382 0.0113 -0.0462 0.0457 0.1275

b1 -0.1126 -0.1637 -0.2318 -0.181 -0.2119 0.0394

g1 0.0452 0.1798 0.0907 0.1888 0.1785 0.1662

a2 0.0584 -0.0607 -0.0344 -0.1208 -0.0281 -0.0667

b2 -0.1898 -0.0096 -0.1207 0.0073 0.0758 0.0067

g2 0.1276 -0.1329 0.1373 0.1029 0.1241 0.0435

Iaa -0.0638 -0.1602 -0.0113 -0.1002 0.1761 -0.0693

Iab 0.0329 -0.1755 0.0945 -0.1029 -0.0044 0.1519

Iba 0.0535 -0.0064 0.0306 -0.2074 -0.0799 -0.1880

Ibb 0.1380 0.0480 -0.1335 -0.3300 0.0738 -0.1594

Jag -0.0498 0.0886 -0.0412 -0.0422 0.0613 0.0721

Jbg 0.0592 0.0309 0.0317 0.1105 -0.1096 0.0716

Kga -0.0006 0.1228 0.054 -0.018 0.0165 0.2394

Kgb -0.0928 -0.0063 -0.1124 -0.0905 -0.0433 -0.1011

Lgg -0.0979 0.0886 -0.04 -0.1476 -0.0011 0.1952

s2 0.187 0.1481 0.1809 0.0763 0.1549 0.0808

LR 40.9709 51.6811 46.4261 50.3592 47.6986 52.4637

LR0.05 39.6061 46.4006 42.7068 45.3719 42.5698 48.0733
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parameters involved, a larger sample size is required to
obtain reasonably precise estimation for QTL mapping
in outcrossing populations. According to our experience,
the increased heritability of traits by precise phenotyping
can improve parameter estimation and model power
than augmented experiment scales. We recommend that
more efforts are given to field management that can
improve the quality of phenotype measurements than
experimental size. By analyzing a real data set from a
poplar genetic study, the new model has been well vali-
dated. It is interesting to find that interactions between
alleles from different poplar species contribute substan-
tially to rooting capacity from cuttings, larger than
genetic effects of alleles that operate alone. This result
may help to understand the role of dominance in med-
iating heterosis.

Conclusions
We have developed a statistical model for mapping
interactive QTLs in a full-sib family of outcrossing spe-
cies. By capitalizing on traditional quantitative genetic
theory, we define epistatic components due to interac-
tions between two outcrossing multiallelic QTLs. An
algorithmic procedure was derived to estimate all types
of outcrossing epistasis and test their significance in
controlling a quantitative trait. Our model provides a

useful tool for studying the genetic architecture of com-
plex traits for outcrossing species, such as forest trees,
and fill a gap that occurs in genetic mapping of this
group of important but underrepresented species.
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