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Genetic transformation of cotton with a
harpin-encoding gene hpa,,, confers an enhanced

defense response against different pathogens
through a priming mechanism
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Abstract

Background: The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops
including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the
breeding for cotton varieties with the resistance to Verticillium wilt has not been successful.

Results: Hpaly,, is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in
plants. When hpal,, was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated
transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Cells
of the transgenic T-34, when mixed with the conidia suspension of V. dahliae, had a higher tolerance to V. dahliae
compared to cells of untransformed Z35. Cells of T-34 were more viable 12 h after mixing with V. dahliae conidia
suspension. Immunocytological analysis showed that Hpaly,,, expressed in T-34, accumulated as clustered particles
along the cell walls of T-34. In response to the infection caused by V. dahliae, the microscopic cell death and the
generation of reactive oxygen intermediates were observed in leaves of T-34 and these responses were absent in
leaves of Z35 inoculated with V. dahliae. Quantitative RT-PCR analysis indicated that five defense-related genes,
ghAOX1, hinl, npr1, ghdhg-OMT, and hsr203J, were up-regulated in T-34 inoculated with V. dahliage. The up-regulations
of these defense-relate genes were not observed or in a less extent in leaves of Z-35 after the inoculation.
Conclusions: Hpal,,,accumulates along the cell walls of the transgenic T-34, where it triggers the generation of H,0O,
as an endogenous elicitor. T-34 is thus in a primed state, ready to protect the host from the pathogen. The results of this
study suggest that the transformation of cotton with hpal,,, could be an effective approach for the development of
cotton varieties with the improved resistance against soil-borne pathogens.

Background

The soil-borne fungal pathogen Verticillium dahliae Kleb
causes Verticillium wilt in a wide range of crops including
cotton (Gossypium hirsutum). V. dahliae can be found in
many cotton-growing areas and it has been considered as
a major threat to the cotton production worldwide [1].
The reduction of cotton biomass caused by Verticillium
wilt is mainly due to the discoloration of cotton leaves
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and stems vascular bundles, decreased photosynthesis,
and increased respiration [2,3].

V. dahliae infects cotton roots and then grows into the
host vascular system. Symptoms caused by V. dahliae in
cotton include the necrosis on leaves, wilting, and the dis-
coloration of vascular tissues. Plants infected with V.
dahliae often develop characteristic mosaic patterns
(leaves wilt with inter-veinal yellowing before becoming
necrotic) [4]. Light to dark brown vascular discoloration
is common in stems and branches of the infected cotton.
Pathogenesis of V. dahliae is complicated due to the exis-
tence of defoliating and non-defoliating strains. The defo-
liating strains are the most virulent, which can cause
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typical symptoms of Verticillium wilt and lead to the
complete defoliation of infected plants [1]. Cotton culti-
vars resistant to Verticillium wilt often show decreases in
the rate of the disease progress and the symptom severity
with a lower percentage of foliar symptoms [4] Verticil-
lium wilt in cotton is usually controlled by cultural prac-
tices, such as the crop rotation [5], biological control with
organic amendments [6], and fungicides [7]. Although
the crop rotation and the application of organic amend-
ments can be successfully in managing Verticillium wilt,
these methods are not always practical [6]. Chemical fun-
gicides are not environment-friendly and tend to raise
concerns about the public health and the development of
fungicide resistance in pathogens [8]. Moreover, none of
the available commercial upland cotton varieties is
immune to V. dahliae [9]. Conventional breeding meth-
ods for cotton varieties resistant to Verticillium wilt have
not been successful.

Genetic engineering utilizing plant genes conferring
disease resistance offers an alternative to conventional
breeding methods for the improved resistance against
pathogens, insects, or herbicides [10]. Genes encoding
antifungal proteins, such as endochitinase [11], 3-1,3-glu-
canases [12], and glucose oxidase [13], or components of
signaling pathways involved in the defense response [14-
17], have been used to generate transgenic plants resis-
tant to various plant pathogens.

Several attempts have been made to generate trans-
genic cottons with a higher tolerance to Verticillium wilt.
For example, a bean chitinase gene was transformed into
cotton and crude leaf extracts from the transgenic cotton
lines inhibited the growth of V. dahliae in vitro [18]. Fur-
thermore, the transgenic cotton line with an over-
expressed foreign Gastrodia anti-fungal protein was
more resistant to Verticillum wilt than the untransformed
cotton [19].

Harpins, encoded by krp (hypersensitive response and
pathogenicity) genes from Gram-negative plant patho-
genic bacteria, are secreted through the Type III protein
secretion systems (T3SSs) [20]. The T3SSs inject effector
proteins directly into the cytosol of eukaryotic cells and
allow the manipulation of host cellular activities to the
benefit of the pathogen. In plant pathogenic bacteria,
T3SSs are encoded by hrp (for hypersensitive response
and pathogenicity) genes, which are capable of inducing
host defense responses mediated by different signaling
pathways, such as salicylic acid (SA) [21], jasmonic acid
(JA) [21], and ethylene mediated pathways [22].
Harpiny,, is a harpin-like protein encoded by hpaly,,
derived from Xanthomonas oryzae pv. oryzae (Xoo),
which belongs to /ipa (hrp-associated) gene family related
to the pathogenicity of Xanthomonas and the induction
of hypersensitive response (HR) in non-host plants [23-
27]. Hpal,,, encodes a 13.69 kDa glycine-rich protein
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with an amino acid composition similar to harpins from
Pseudomonas syringae [28] and Erwinia species [29].
Hpaly,, also shares a high sequence similarity to PopA, a
harpin-like protein, from Ralstonia solanacearum [30]. It
has been proposed that Hpa could be involved in the
secretion of Type III-dependent proteins. HpaA from X.
campestris pv. vesicatoria promotes the secretion of pilus
and effector proteins and therefore appears to be an
important control protein of the T3SSs [31]. We had
shown previously that the transformation of hpaly,, into
tobacco conferred the improved resistance to Alternaria
alternata and tobacco mosaic virus in the transgenic
tobacco [32]. Similarly, a high level of resistance to all
predominant races of Magnaporthe grisea in China was
obtained in the rice line transformed with ipaly, , from
Xanthomonas oryzae pv. oryzae [33]. Several other hrp
genes have also been successfully transformed into differ-
ent plant species including tobacco [32,34], potato [35],
rice [33], and pear [36]. Unfortunately, the defense
responses elicited by harpins and their active sites in
hosts have not been fully understood.

In this study, a cotton transgenic line resistant to a
range of soil-borne pathogens, including V. dahliae, was
generated through the genetic transformation with
hpaly,, from Xoo. The localization of hpaly,, in the
transgenic cotton line was investigated. Furthermore the
defense response and the expressions of defense-related
genes in hpaly,,-expressing cotton line in response to V.
dahliae were investigated.

Results

Generation of a harpiny,-transformed cotton line, namely
T-34

Thirty transgenic T-34 plants and 5 untransformed Z35
plants were tested annually from 2003 to 2008. From T1
toT6, the transgenic cotton lines were screened for the
resistance to kanamycin, the presence of hpaly,, inser-
tion, and the expression of harpiny . Only plants tested
positive for these three attributes and showed an
improved resistance to Verticillium wilt were selected
and used for the further screening (see Additional file 1:
Table S1). Resistance in the T6 progeny of T-34 line to V.
dahliae segregated in a 3:1 ratio as a single Mendelian
trait.

Four plants from T-34 line (T6 progeny) were randomly
selected and used in the PCR analysis. Bands represent-
ing hpaly,,, 35S promoter, and NOS terminator (420 bp,
310 bp, and 180 bp, respectively) were detected in all four
T-34 plants but they were absent in wild type Z35 plants
(Figure 1a, b). Results of the PCR analysis were verified by
the sequencing of amplification products and BLAST
against appropriate sequences in the NCBI database
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Figure 1 Molecular analysis of hpaT,, -transformed T-34 and un-
transformed cotton. (Gossypium hirsutum)Z35. (a) The schematic
representation of recombinant plasmid pBI35S-hpaly,,-nptll. R and L
represent the right and left borders of T-DNA. (b) Ampilifications of
hpaly,, (1), 355 promoter (2), and NOS terminator (3) in PCR; hpaly,,
(h), 35S promoter (355), and NOS terminator (NOS) represented the
DNA fragment amplified from the positive control. M: marker; Four in-
dividual plants (1, 2, 3, 4) in T6 progeny of T-34 were tested. (c) South-
ern blot analysis of hrpTy,,insertions in T-34 and Z35. Ten micrograms
of genomic DNA was digested with EcoRland hybridized against a DIG-
labeled hpal,,, probe. M: marker. Four plants (1, 2, 3, 4) in T6 progeny
of T-34 were tested. (d) Western blot analysis of harpiny,, in T-34 trans-
geniclines. Four plants (1, 2, 3,4) in T6 progeny of T-34 were tested. Pu-
rified harpiny,, served as the positive control.

ence of hpaly,, inserts in transgenic plants was con-
firmed using Southern blot analysis against a DIG-labeled
hpaly,, probe. Three bands, approximately 4.5 kb, 6.5 kb,

and 10.5 kb in length, were detected using the DIG-
labeled hpaly,, probe in the genomic DNA extracted
from the four chosen T-34 plants. No positive signal was
detected in untransformed Z35 (Figure 1c). The expres-
sion of harpiny,, in cotton leaves was analyzed using a
harpiny,, polyclonal antibody. The band representing
harpiny,, was observed only in the total proteins
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extracted from leaves of hpaly,,-transformed T-34 (Fig-
ure 1d). All these results indicated that spal,,, had been
successfully transformed into T-34 and hpaly,, was con-
stitutively expressed in the transgenic line T-34.

Verticillium wilt resistance and the phenotype of
transgenic T-34

The typical symptoms of Verticillium wilt first appeared
on plants 10 days after the inoculation, and symptoms
develop only when the temperature is below 30°C [1]. In
our study, Verticillium wilt resistance of 45 hpaly,,-
transformed T-34 plants inoculated with V. dahliae
strains Vdps and V151 was assessed 10 days after the
inoculation based on the degree of the foliar damage and
vascular discoloration as described in the material and
method. All plants were individually scored. The suscep-
tible variety, Simian 3, and untransformed Z35 were used
as the control. Ten days after the inoculation, only few
chlorotic and necrotic spots were visible on leaves of T-34
whereas large chlorotic and necrotic areas were common
in leaves of untransformed Z35 and the susceptible line
Simian 3 (pictures not shown).

The resistance of T-34 to Verticillium wilt was evalu-
ated in field in 2008. A total of 200 plants were scored.
The characteristic mosaic pattern of Verticillium wilt was
rare in leaves of T-34 and no defoliation occurred during
the growing season. In comparison, most Z35 plants
showed severe Verticillium infections with the character-
istic mosaic pattern on leaves and the defoliation
occurred 2 or 3 months after the inoculation (Figure 2a).

The maximum temperature reached 32°C on August 5,
2008 and typical Verticillium symptoms were no longer
visible. Disease assessment made from 22 June to 5
August showed that Verticillium wilt was significantly
less severe in hpaly, -transformed T-34, compared to
untransformed Z35 and the susceptible variety Simian 3
(Figure 2b). The average Verticillium wilt ratings in
hpaly,,-transformed T-34 were 7.32%-26.22% lower than
those in untransformed Z35.

Although the defoliating strain V151 was more virulent
than the non-defoliating strain Vdps [1] on T-34, the dis-
ease severity caused by these two stains were both lower
on T-34, compared to the untransformed Z35 and the
susceptible control Simian 3 (Figure 2c).

The transgenic T-34 and untransformed Z35 line
shared similar phenotypic characteristics including the
leaf morphology, and fiber quality (data not shown).
Although the height of T-34 line was lower before the
flowering stage, there was no significant difference
between the height of T-34 and Z35 at and after the flow-
ering stage (see Additional file 2: Figure S1).
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Figure 2 Resistance of hpaTy, -transformed T-34 and untrans-
formed Z35 to Verticillium wilt. (a) Resistance phenotypes of
hpaly,,-transformed T-34 and untransformed Z35 to Verticillium wilt in
the nursery. (b) Disease severity of Verticillium wilt on hpaly,,-trans-
formed T-34 and untransformed Z35 in the nursery. (c) Disease severity
of Verticillium wilt on hpaly,-transformed T-34 and untransformed
Z35in plastic pots. Average values and standard errors were calculated
from 4 replicates. Simian 3 was the susceptible control. Asterisks repre-
sent significant differences at the level of 0.01.

Localizations of harpiny,, in transgenic cotton leaves and
stem apices

The localization of harpiny,, in tissues of hpaly,,-trans-
formed T-34 was investigated using the immuno-gold
localization method. The harpiny,, -labeled gold particles
were not found in leaf and stem samples collected from
the untransformed Z35 (Figure 3c and 3f) but they were
clearly visible in leaf and stem samples from T-34 (Figure
3b and 3e). Harpiny,-labeled gold particles were mostly
seen in clusters along the cell walls of leaves and in apical
tissue of stems (Figure 3b and 3e). Each cluster contained
an average of 10 to 20 gold particles. Only a few gold par-
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Figure 3 Immuno-gold localization of harpiny,, in leaves and
stem apices of hpa1y,,-transformed T-34 and untransformed Z35.
(a) and (b) Stem apices of hpal y,-transformed T-34. (c) Stem apices of
untransformed Z35. (d) and (e) Leaves of hpal -transformed T-34. (f)
Leaves of untransformed Z35. CW: cell wall, Cy: cytoplasm, V: vacuole,
IS: intercellular space, Ch: chloroplasts, M: mitochondria. Bars: a and d
=5um; b, ¢, e and f=0.2 um. Arrow points to gold particles labeled
with harpiny,, antiserum (15 nm particles). The squares indicate the re-
gions of b and e magnified in a and d, respectively. More than 20 ultra-
thin sections of each sample were examined with a JEM x 1200
transmission electron microscope (Nikon, Japan). The experiment was

repeated twice.

ticles were found in cell membranes and chloroplasts.
None was found in the mitochondria (Figure 3c).

Oxidative burst in transgenic cotton T-34 triggered by
inoculation

3, 3'-diaminobenzidine tetrahydrochloride (DAB) was
used to detect the production of reactive oxygen interme-
diates (ROI) [37]. No reddish or brown spots representing
the accumulation of H,O, were observed in T-34 and Z35
leaves dipped in water. After the inoculation, visible red-
dish or brown spots were only observed in T-34 leaves
collected 3 h after dipping in the conidial suspension of V.
dahliae (Figure 4a, b). H,O, content in T-34 and Z35
leaves dipped in the conidial suspension of V. dahliae was
quantified using the method described by Jiang and
Zhang (2001)[38]. The basal level of H,0, was higher in
leaves of transgenic T-34 than in leaves of Z35 prior to
dipping. The level of H,0, increased dramatically in
leaves of transgenic T-34 3 h after dipping and such
increase in H,O, content was not observed in the treated
Z35 leaves (Figure 4c).

The expressions of ghAOX1 [GenBank accession num-
ber DQ250028], hsr203] [GenBank accession number
X77136], hinl [GenBank accession number Y07563], and
nprl [39] were quantified using the real-time RT-PCR.
GhAOXI is a key gene involved in the production of
active oxygen species (AQOS) in plants [40,41] and /hsr203]
and hinl are marker genes for HR which express specifi-
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Figure 4 Generation of active oxygen species (AOS) in leaves of hpaTy,-transformed T-34 and untransformed Z35. (a) Oxygen burst in cot-
ton leaves dipped in the conidial suspension of Verticillium dahliae collected from 0 to 3 hr after inoculation (red arrow points to the location of oxygen
burst). (b) Light microscopy of the oxygen burstin leaves of untransformed Z35 (1) and hpal,-transformed T-34 (2) 3 h after the inoculation. (c) H,0,
content (ug/g fresh weight) in leaves of hpal-transformed T-34 and untransformed Z35 dipped in the conidial suspension of V. dahlige (mean val-
ues and standard errors calculated from three replicates). 1, non-inoculated; 2, inoculated. (d) Quantitative RT-PCR analysis of ghAOXT, hinl, nprl, gh-
dhg-OMT, and hsr203J expression in leaves of hpaly,-transformed T-34 (T-34-i) and untransformed Z35 (Z35-i) dipped in the conidial suspension of
V. dahliae compared with that of hpal-transformed T-34 (T-34) and untransformed Z35 (Z35) dipped in water (error bars indicate standard error). b
(1, 2) scale bars = 0.01 mm. The experiment was repeated three times. Asterisks represent significant differences at the level of 0.01.
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cally in plant tissues undergoing HRs [42,43]. The data
was normalized to a constitutive expressed ef-Ia. No up-
regulations of nprl, hsr203], hinl and ghdhg-OMT were
observed in the un-inoculated T-34 and Z-35 plants. The
basal expression level of GEAOX1 was higher in the un-
inoculated T-34, compared to that in wild type Z35. Npr1,
hsr203J, hinl and GhAOX1 were all up-regulated in T-34
and Z35 after plants were dipped in the conidial suspen-
sion of V. dahliae. Nevertheless, the up-regulations of
these genes were stronger in leaves of transgenic T-34 in
response to the dipping treatment (Figure 4d). In addi-
tion, the up-regulation of dhg-OMT [44] encoding hemi-
gosspol was only observed in T-34 after the dipping
treatment (Figure 4d).

Microscopic hypersensitive response in transgenic T-34
after root inoculation with Verticillium dahliae

Leaves were collected from T-34 and Z35 20 days after
the root inoculation with V. dahliae conidia suspension
in the green house and then stained with Trypan blue,
which selectively stained dead or dying cells. Leaves inoc-
ulated with sterile water were used as the control. The
results of microscopic examination were shown in Figure
5. No Trypan blue stained cells were observed in leaves of
T-34 and Z35 treated with water (Figure 5a, b) and in
leaves of Z35 inoculated with V. dahliae (Figure 5c). In
comparison, large regions (1 to 5 um?) of Trypan blue
stained cells were observed in leaves of T-34 inoculated
with V. dahliae indicating the occurrence of microscopic
hypersensitive response (HR) (Figure 5d). The occur-
rence of regions of Tyrpan blue stained cells representing
micro HRs (10-20 lesions per leaves) was observed in all

V. dahliae [

Figure 5 Microscopic hypersensitive response (HR) in hpaTy,-
transformed T-34 and untransformed Z35 20 days after root inoc-
ulations with Verticillium dahliae. (a) Leaves of uninoculated un-
transformed Z35. (b) Leaves of uninoculated hpaly,-transformed T-
34. (c) Leaves of untransformed 735 inoculated with V. dahliae. (d)
Leaves of hpaly,-transformed T-34 inoculated with V. dahliae (red ar-
row indicates microscopic HR). (a), (b), (c), and (d) scale bars =1 um.
The experiment was repeated three times.
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leaves (> 4 leaves per plant) collected from 10 T-34 plants
infected with V. dahliae (100%) whereas it was not
observed in the controls (T-34 and Z35 un-inoculated)
(0%).

Tolerance of harpiny,-transformed T-34 cells in suspension
to Verticillium dahliae

To determine the reaction of harpiny,,-transformed cot-
ton cells to V. dahliae, cell suspensions of harpiny,,-
transformed T-34 and untransformed Z35 were mixed
with the conidial suspension of V. dahliae in a ratio of 1:
20 by volume. The viability of cotton cells was counted at
3, 6,9, and 12 h after mixing with V. dahliae conidial sus-
pension under a fluorescence microscope by staining
with fluorescein diacetate (FDA). Fluorescence emitted
from T-34 cells was stronger than that from Z35 cells
(Figure 6a). The percentage of cell death in T-34 cell sus-
pension mixed with V. dahliae conidia was significantly
lower than that in Z35 cell suspension mixed with V.
dahliae from 3 to 12 h (Figure 6b). The viability of Z35
and T34 cells was similar in the absence of V. dahliae
conidia and almost 100% of untreated Z35 and T34 cells
were viable after 12 h (Figure 6c).

Discussion

In our previous study, we reported that harpiny,, applied
as a foliar spray, conferred cotton the resistance to Verti-
cillium wilt in a Verticillium cotton nursery [45]. In this
study, hpaly,, was transformed into a susceptible upland
cotton variety Z35. During the screening process, the
hpaly,,-transformed cotton lines were more resistant not
only to Verticillium wilt but also to Fusarium wilt caused
by Fusarium oxysporum £. sp. vasinfectum (see Additional
file 3: Figure S2). The non-specific resistance is often
related to the up-regulation of npri. NPR1 is thought to
be a key transcriptional regulator in plant defense
responses involving multiple signaling pathways [32]. In
this study, the up-regulation of mprl was observed in
hpaly,, transformed T-34 after the inoculation with V.
dahliae. This could indicate that the improved resistance
in cotton mediated by the transformation of hpaly,, is
likely to be non-specific. In addition, cells of the trans-
formed T-34 plants were more tolerant to V. dahliae,
compared to cells of Z35, when they were cultured with
V. dahliae conidia suspension (Figure 6). It is possible
that the improved resistance in hpal,, -transformed cot-
ton plants is also related to the improved tolerance of cot-
ton cells to V. dahliae.

It should be noted that the hpaly,, -transformed cotton
was not entirely immune to V. dahliae under our test con-
dition. Similarly several harpin expressing transgenic
plants only showed enhanced, but not complete, resis-
tance to a wide range of pathogens [32-34]. Since harpins
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Figure 6 Viability of cotton cells in the presence of conidia of Ver-
ticillium dahliae. (a) (1) Living (red arrow) or dead (white arrow) cells
in the cell suspension of untransformed Z35 mixed with conidia of V.
dahliae under a conventional light microscope. (2) Living (red arrow) or
dead (white arrow) cells in the cell suspension of hpal,-transformed
T-34 mixed with conidia of V. dahliae under a conventional light micro-
scope. (3) Fluorescence emitted from living cells (red arrow) of untrans-
formed Z35 mixed with conidia of V. dahliae under a fluorescence
microscope. (4) Fluorescence emitted from living cells (red arrow) of
hpaly,ytransformed T-34 mixed with conidia of V. dahliae under a flu-
orescence microscope. (1), (2), (3), and (4) scale bars = 300 um. (b) Per-
centage of the cell death in the cotton cell suspension mixed with V.
dahliae conidia. (c) Percentage of cotton cells in the absence of conidia
of Verticillium dahliae. Cotton cells and V. dahliae conidia were mixed in
aratio of 1:20. The percentage of cell death was counted at 3, 6,9, and
12 h after mixing. Error bars indicate standard error of the mean (n = 3).
Data points marked with asterisks are significantly different (Student's
ttest, p < 0.01). The experiment was repeated three times.
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often act as effectors which induce systemic acquired
resistance rather than the immunity in plants, these
results are not surprising. Secondly, Z35 is a very suscep-
tible variety. The highly virulent, defoliating strains were
dominant in the area where transgenic plants were tested.
The inoculum level of V. dahliae in the region was
extremely high due to the recent Verticillum wilt out-
break [46]. It is possible that the incomplete resistance of
hpaly,,-transformed cotton against V. dahliae is partially
due to the high level of inoculum and the aggressive V.
dahliae pathotype in the region [1].

To date, the action site of harpins in plants remains
unknown. An early study of harpinEa and harpinPss indi-
cated that the plant cell wall was critical for HR inducing
activity of harpinEa and harpinPss [47]. Tampakaki and
Panopoulos [48] suggested that the receptor(s) for harpin
could be extracellular in transgenic tobacco transformed
with hrpZPsph. More recently, immuno-cytological anal-
yses showed that HR phenotype of transgenic tobacco
was related to the presence of PopA at the plasma mem-
brane, which was involved in the formation of an ion-
conducting channel allowing the passage of true effectors
into plant cells [49,50]. This discrepancy indicates that
the binding sites of harpins in plants vary depending on
their origins. In our study, harpin,,, was detected as clus-
tered particles mainly along the cell walls of transformed
T-34. This result was in an agreement with that reported
by Hoyos et al. [47] and indicated that the cotton cell wall
could be important for the HR inducing activity of
harpiny,, in the transgenic cotton. Similarly, Sohn et al.
(2007) [34] reported that the action site of harpins
located in the plant cell walls. It remains not clear that
how Harpins were secreted to cotton cell walls in the
transgenic plants since the signal peptide was not
included in harpiny,, used for the trasnformation. Simi-
larly, several previous studies showed that transformation
of harpin-encoding genes without known signal peptides
into rice and tobacco resulted in the in vivo expression of
harpins, which conferred the improved resistance against
different pathogens [32-34]. The secretion of Harpins to
the plant cell wall in the harpiny,, transformed cotton
suggests the presence of unknown signal peptide in
harpiny,, which is recognized by cotton. It is also possible
that harpiny,, may utilize the plant signal peptide during
its in vivo expression. Although the even distribution of
immuno-gold labeled particle is normal in the immuno-
cytological study [51-53], the distribution of immuno-
gold particles in clusters is not uncommon [54,55].

It has been reported that the defense responses induced
by harpins were different between the endogenous and
exogenous applications. For example, visible HRs, accom-
panied by the up-regulation of HR marker genes, often
occur in tobacco leaves infiltrated with Harpins [21].
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Only microscopic HRs can be observed when Harpin is
sprayed onto leaves despite the similar up-regulation of
HR marker genes in treated plants [56]. In transgenic
plants expressing Harpin, the defense responses are more
complicated in response to the pathogen infection. The
transgenic plants show a stronger response to the patho-
gen infection resulting from the substantial increase in
the expression of the defense related genes, such as the
marker genes for HR and SAR and those encoding anti-
microbial proteins [32-34].

The defense response and transcriptional expression of
multi-defense genes were significantly enhanced in the
harpiny,, transformed T-34 compared to that seen in
untransformed Z35. In addition, we also compared the
transcriptional difference in a genomic wide analysis
between /hpaly,,-transformed T-34 and untransformed
735 through microarray analysis in which over 1000
genes involved in 162 pathways were found to be regu-
lated differently (unpublished data). These results suggest
an altered regulation of genes involved not only in the
disease resistance but also in many metabolic pathways in
the harpiny,, transformed plants. This unique physiologi-
cal condition is very similar to the so-called primed state
[57]. The primed plants often display faster and/or stron-
ger activation of cellular defenses to various stresses and
depend on the key regulator of induced resistance,
namely nprl. Over the past decade, the priming of defen-
sive responses in plants by pathogen-associated molecu-
lar patterns (PAMP; elicitor) triggered by plant pathogens
has been increasingly evident [57-60].

In our study, nprl was slightly more up-regulated in the
transgenic T-34 compared to that in wild type Z35 in
response to V. dahliae. Similarly the up-regulation of
nprl was also observed in the transgenic hpal,,, tobacco
but it was not found in the transgenic #paGEP tobacco in
response to the pathogen infection [32,34]. This differ-
ence in the expression of npr-1 in different transgenic
plants expressing Harpins could be due to the differences
either in the receptor of the target gene or in the sites of
their insertions in the plant genome.

In leaves of transgenic T-34, micro HR occurred in
response to the inoculation of V. dahliae. In addition, the
more rapid accumulation of H,O, and up-regulation of
ghAOX1I and hsr203] were observed in T-34, compare to
those in wild type Z35, after the inoculation. Harpin can
induce HR which is associated with the generation of
reactive oxygen intermediates as a proximal response. A
rapid burst of reactive oxygen species (ROS) followed by a
chain of events often occur in plants treated with harpins
[21,56]. It is still questionable whether the micro HR
observed in the transgenic T-34 is directly related to the
infection caused by V. dahliae since no V. dahliae was
observed in the sites of micro HRs. It is possible that such
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micro HR could augment the defense response in the
transformed T-34 by the gentle PCD (programmed cell
death) correlated with the enhanced expression of HR
marker genes. Micro HR could contribute to the resis-
tance against Verticillium wilt through a priming mecha-
nism. The primed state also explains the higher basal
levels of H,0, in leaves of the transgenic line (T-34). Dhg-
OMT was also up-regulated in T-34 after inoculations
with V. dahliae. Since dhg-OMT encodes one key enzyme
in the biosynthesis of terpenoids in cotton. It indicates
that the phytoalexin-like compound may be also involved
in the defense response of cotton against V. dahliae [44].

Conclusions

Hpaly,, accumulates along the cell walls of the transgenic
T34, where it could trigger the generation of H,0, as a
cell wall endogenous elicitor. T-34 is thus in a primed
state, ready to protect the hosts from pathogens. Multiple
defense responses are induced in the transgenic T-34 in
response to the infection caused by V. dahliae. Hinl
(ndrl) and hsr203j are up-regulated in T-34 indicating
that the genes related to HR are activated without any vis-
ible HR phenotype in the transgenic plants.

Methods

Plant transformation

ZhongMian 35 (Z35) (Gossypium hirsutum L.) was used
to generate transgenic cotton lines expressing harpiny,,
using an Agrobacterium tumefaciens-mediated method
described by Shao et al. (2008) [33]. A pGEM-T vector
containing hpaly,, (P(GEM-hpaly,,) was digested with
BamH1 and Sacl. The BamHI1- and Sacl-digested
hpaly,, fragment was ligated into a pBI121 vector (Clon-
tech, Palo Alto, CA, USA) to generate the recombinant
binary vector pBI35S-hpal,,,-nptll, which contained a
neomycin phosphotransferase II (nptll) with a nopaline
synthase (nos) promoter and terminator, a CaMV35S
promoter, an hpaly,, insert, and a nopaline synthase ter-
minator (Figure 1a). The binary vector pBI35S-hpal,,, -
nptll was mobilized into Agrobacterium tumefaciens-dis-
armed helper strain LBA4404 by the heat shock method
[61]. Hypocotyl segments of Z35 were used as explants
for the transformation, and the transformants were
selected using the method described by Sunilkumar and
Rathore (2001) [62].

Kanamycin resistance tests, PCR analysis, and South-
ern and Western Blot were used to screen T1 to T6 prog-
eny for transgenic harpiny,, cotton lines with desirable
phenotypes including improved resistance to Verticillium
wilt and fiber quality. Only T6 progeny from transgenic
line T-34 were used in this study and untransformed Z35
(receptor) was used as the negative control. Cultivated
cotton cultivar Simian 3 was used as the susceptible con-
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trol for evaluating resistance to Verticillium wilt in the
study.

Fungal materials

A non-defoliating V. dahliae strain Vdps and a defoliating
V. dahliae strain V151, obtained from Dr. Ling Lin at the
Jiangsu Academy of Agricultural Science (China), were
used in our the study. V. dahliae strains were maintained
on potato dextrose agar (PDA) at 25°C. For the prepara-
tion of the inoculum, PDA plates were flooded with a
conidial suspension of V. dahliae and the flooded plates
were incubated at 25°C for 7 days. The PDA plates were
then flooded with 50 ml sterile distilled water to collect
the conidia using the method described by Joost et al.
(1995) [63]. The conidia were washed once with 100 ml
sterile distilled water and the suspension was diluted to a
concentration of 1-3 x 107 conidia/ml. The conidial sus-
pension of V. dahliae strain Vdps was used to inoculate
the roots of cotton plants and for other experiments.

Evaluation of resistance to Verticillium dahliae

After the surface disinfection for 5 min with a 5% solution
of sodium hypochlorite, cotton seeds were sown in a pot-
ting mixture (mould and sand, 6:1, v/v). Fifteen 2-week-
old cotton seedlings were carefully uprooted and the
roots were immersed for 15 min in 100 ml of conidial sus-
pension containing 1-3 x 107 conidia per ml. Fifteen con-
trol plants were immersed in sterile distilled water. All
plants were then replanted in a plastic pot (9 cm in diam-
eter) and grown under 12 h of light at 25°C and 70%-90%
relative humidity.

Pathogenicity was determined based on both external
(foliar damage) and internal (vascular discoloration)
symptoms 10 and 20 days after inoculation, respectively.
Foliar damage was evaluated by rating the symptom on
the cotyledon and leaf of inoculated plant (X) according
to the following rating scale: 0 = no foliar symptoms; 1 =
yellowing or necrosis of 1-2 cotyledons; 2 = cotyledon fall
or yellowing of a leaf; 3 = more than 2 wilted or necrotic
leaves; 4 = dead leaf. Foliar alteration index (FAI) was cal-
culated for each inoculated plant: FAI = 100 X/(4n),
where (4) is the maximum score for each plant (maxi-
mum score for each plant = 4), (n) the total number of
inoculated plant. Vascular discoloration was evaluated
according to the method described by Yang et al. (2008)
[64]; discoloration was scored (y) for every internode
using the following scale: 0 = no discoloration; 1 = less
than 25% localized brown regions within the vascular tis-
sue of the same internode; 2 = 25%-70% localized brown
regions within the vascular tissue of the same internode;
3 = more than 70% browning of vessels but not of the
adjacent tissues; 4 = browning of both vessels and adja-
cent tissues. The browning Index (BI) was calculated as
follows; BI = 100 y/4d; where (d) is the total number of
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seedling internodes including hypocotyls and (4) is the
maximum score for an internode. Mean values of FAI
and/or BI as Disease severity (DS) were calculated based
on four replicates for both inoculated and control plants.

In 2008, the resistance of transgenic cotton was evalu-
ated in a naturally infested Verticillium wilt nursery in
DaFeng city, Jiangsu province, China. The soil in the
nursery is sandy-loam with pH of 8.5. Except for the
higher temperature (>30°C) in August, average tempera-
ture at the nursery usually ranges between 20°C and 25°C
during the growing season, which is conducive for the
development of Verticillium wilt.

Seeds of the transgenic cotton were sown in the field in
early May of 2008. Irrigation was provided as needed dur-
ing the growing season. The experimental plot was
divided into four subplots. Each subplot consisted of two
rows. Each row is 5 m long and 4 m wide and comprises
15 plants spaced 0.3 m apart. Each treatment was repli-
cated four times, and the replicates were arranged in a
randomized complete block design. Untransformed cot-
ton Z35 served as the negative control for Verticillium
wilt. The testing materials in each replicate were sown
randomly in each subplot. The trial plot was separated by
at least 50 m from other breeding materials of cotton and
sprayed with pesticides to control insect pests. Scoring
for disease severity started after the first symptoms
appeared on leaves; subsequently, the scoring was con-
ducted on 22 June, 5 August, and 30 August 2008.

Kanamycin resistance tests

Seedlings were screened for kanamycin resistance
(Amresco, Solon., Ohio, USA) at the 3- to 4- leaf stage.
Kanamycin was applied onto the leaf surface at a concen-
tration of 5000 mg/L. kanamycin-susceptible seedlings,
which changed from green to yellow, were discarded a
week after the Kanamycin treatment. The treatment was
repeated three times and only kanamycin-resistant plants
were retained for further study.

DNA extraction, PCR analysis, and Southern blot analysis
Total genomic DNA was extracted from leaves of trans-
genic cotton line T-34 and the untransformed Z35, using
a AxyPrep Multisource Genomic DNA Miniprep Kit
(Axygen Biosciences, California, USA). Primers for
hpaly,,, CaMV35S promoter, and NOS terminator (listed
in Table 1) were used in the PCR assays. PCR reactions
were carried out in a 25 pl reaction volume containing 1x
PCR buffer (Applied Biosystem), 1.5 mM MgCl,, 0.2 mM
dNTPs, 2.5 mM forward and reverse primers, 0.5 U Taq
polymerase, and 30 ng sample DNA. Amplifications were
performed in a thermal cycler (GeneAmp PCR 9700)
using the following temperature profile: initial denatur-
ation at 95°C for 2 min; 35 cycles at 95°C for 30 s, 60°C for
30 s, and 72°C for 1 min; and a final extension at 72°C.
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Table 1: Oligonucleotides used in PCR and quantitative RT-PCR
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Gene Primer sequence Anneal temperature Segment length (bp)
(°C)

hpa1Xoo(EF028092%) forward:5'- 56 438
TTCGGATCCATGAACTCTTTGAACACACAATT-3'
reverse:5'-GGTGAGCTCTTACTGCATCGATGCGCT-3'

35S forward:5'-AGAGGCTTACGCAGCAGGTC-3' 52 310
reverse:5'-GCCAGTCTTTACGGCGAGTT-3'

NOS forward:5'-GAACTGACAGAACCGCAACG-3' 50 180
reverse:5'-ACCGAGGGGAATTTATGGAA-3'

GhAOX 1(DQ250028) forward:5'-GCGCCTGGGGATGATGATGAGTCGTG-3' 57 1298
reverse:5'-GCGCTTCAGTGATAACCGAGCGGAG-3'

hsr203J(X77136) forward:5'-TGTACTACACTGTCTACACGC-3' 55 618
reverse:5'-GATAAAAGCTATGTCCCACTCC-3'

EF-1a (AJ223969) forward:5'-AGACCACCAAGTACTACTGCAC-3' 58 495
reverse:5'-CCACCAATCTTGTACACATCC-3'

Ghdhg- forward:5'-ATGAATATGGGCAATGCTAAT-3' 53 1087

OMT(GQ303569) reverse:5'-TCAGGGGTAAACCTCAATGAGA-3'

npr1(U76707) forword:5'- 62 1794
GGCCTCGAGATGGCTTATTTGTCTGAGCCATCATCT-3'
reverse:5'-
CGTCTCGAGTCACAATTTCCTATACTTGTAGG-3'

hin1(Y07563) forword:5'-GAACGGAGCCTATTATGGCCCTTCC-3' 55 867

reverse:5'-CATGTATATCAATGAACACTAAACGCCGG-3'

* GenBank accession numbers

For the Southern blot analysis, 3 pug genomic DNA
extracted from leaves of the transgenic T-34 and untrans-
formed Z35 was digested with restriction endonuclease
EcoR1 (TaKaRa Biotechnology (Dalian) Co. Ltd, China)
in a final volume of 50 pl. The digested genomic DNA
was separated on 1.5% (w/v) agarose gel and then trans-
ferred onto a hybond- N+ nylon membrane (Roche
Applied Science, Mannheim, Germany) after denatur-
ation using the method prescribed by the manufacturer.
The probe for hybridizations was amplified from an
hpaly,, fragment and then labeled with digoxigenin using
DIG-High Prime DNA Labeling Kit (Roche Applied Sci-
ence, Mannheim, Germany). The hybridization signal
was detected using a DIG-High Prime DNA Detection
Kit (Roche Applied Science, Mannheim, Germany).

Western blot analysis

Total proteins were extracted from leaves of transgenic T-
34 and untransformed Z35 according to the manufac-
turer's instructions for P-CelLytics Plant Cell Protein
Extraction Kit (Shenergy Biocolor Bioscience and Tech-
nology Co., Shanghai, China). Total proteins were sepa-
rated on a 15% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and then transferred
onto a polyvinylidene fluoride (PVDF) membrane (Roche
Applied Science, Mannheim, Germany). The membranes

were blotted with a polyclonal antibody developed
against harpiny,, and goat anti-rabbit IgG-HRP antibody
(Sino-American Biotech, Luoyang, China). The color was
developed using DAB.

Preparation of plant samples and immuno-gold labeling
Samples were collected from the second and the third
fresh leaves and stem apex of four T-34 and two Z35
plants at 4 to 5 leaf stage. The leaf samples were first fixed
in a mixture of 3% (v/v) paraformaldehyde and 1% glutar-
aldehyde in 50 mmol phosphate-buffered saline (PBS),
pH 7.2, at 4°C for 3 h. The samples were then washed
with the same buffer and dehydrated in 50% ethanol at
4°C for 1 h, followed by washings with 50%, 70%, 90%, and
100% ethanol (3 times each) at -20°C for 2 h. Finally, the
samples were embedded in K4M resin and polymerized
under UV array at -20°C for 3 days and incubated at the
room temperature for 2 days. Ultrathin sections were cut
with a diamond knife and collected on Formvar-coated
nickel grids.

Colloidal gold particles, 15 nm in diameter, were pre-
pared as described by Slot and Geuze (1985) [65] and
coated with Protein A at pH 6.0. Harpiny,, antiserum was
used for the localization of harpiny,, and the immuno-

labeling was performed at 28°C. The ultrathin sections
were floated on a drop of double-distilled water for 5 min;
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the samples were then transferred to the blocking solu-
tion (BL) and incubated for 60 min. Harpiny,, antiserum
was added to the BL in a dilution of 1:200; the samples
were incubated for 60 min; floated first on BL for 60 min
and then on PA-gold for 120 min. The samples were thor-
oughly washed with double-distilled water 3 times and
air-dried. More than 20 ultrathin sections of each sample
were examined with a JEM x1200 transmission electron
microscope (Nikon, Japan). The experiment was repeated
twice.

Preparations of cotton cell suspension and assay for
tolerance to Verticillium dahliae

Suspensions of Z35 and T-34 cells were prepared using
the method described by Wu et al. (2005) [66]. The cells
were cultured in a 500 ml round-bottom flask containing
200 ml modified MS medium (MS; 2,4-D 0.1 mg/L, kine-
tin 0.1 mg/L, maltose 30 g/L; pH 5.8). The flasks were
placed under illumination for 12 h with continuous shak-
ing (120 rpm). Cells were sub-cultured weekly by a 4-fold
dilution until harvest. The suspensions of cotton cells and
of the conidia were then mixed in a ratio of 1:20. The final
concentration of both the cells and the conidia in the mix
was the same, namely 1-3 x 107 cells/mL. Death of cotton
cells in the mixture was quantified using the FDA stain
method described by Amano et al. (2003) [67]. The num-
ber of viable cells emitting fluorescence was counted
under a fluorescence microscope (Olympus, Japan). The
percentage of dead cells was calculated as [(total cells -
cells emitting fluorescence)/total cells] x 100. The experi-
ment was repeated three times.

Microscopy for micro hypersensitive response

Roots of transgenic T-34 and untransformed Z35 plants
at the 2 to 3 leaf stage were inoculated with a conidial sus-
pension of V. dahliae (1-3 x 107/ml) according to the
method described above. Leaves were collected 10 days
after the inoculation and stained with Trypan blue using
the method described by Lipka et al. (2005) [68]. Stained
leaf samples were observed under a Leica light micro-
scope (Leica DMRB, Leica Microsystems, Germany) and
photographed with a Leica DFC camera (DM2500-3HF-
FL, Leica Microsystems, Germany). Leaves (> 4 leaves per
plant) without any wound or visible symptom of the dis-
ease from 10 independent T-34 plants were examined.

Observation of oxidative burst and quantification of H,0,
in cotton leaves

The second and third cotton leaves with freshly cut peti-
oles and no visible wounds were collected when the
plants were at the 5 leaf stage. Two-third of the petiole
was immersed into 10 ml of conidial suspension (1-3 x
107 ml) for 0, 1, or 3 h. To make the accumulation of H,O,
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in the cotton leaves visible, fresh inoculated leaf samples
were incubated in 1 mg/ml of DAB (pH 3.8) for 8 h and
then decolorized in 96% ethanol. The samples were
mounted on slides with 60% glycerol and examined under
an Olympus light microscope (BH-2). The accumulation
of H,O, was visible as a reddish or brown discoloration.
Furthermore, the production of H,0O, in leaves was quan-
tified. Leaves dipped in sterile water were used as the
negative control. The production of H,0, in leaves was
measured 0, 1, and 3 h after inoculation with a commer-
cial H,0, detection kit (Nanjing Jiancheng Bioengineer-
ing Institute, Nanjing, China) using the method described
by Jiang and Zhang (2001) [38] and expressed as a per-
centage of fresh weight. The experiment was repeated
three times.

Quantitative RT-PCR

The second and third fully grown leaves of cotton were
harvested when the plants were at the 5 leaf stage and
inoculated as described above. Leaves treated with sterile
distilled water served as control. The leaf blades were fro-
zen in liquid nitrogen immediately after the sampling.
Total RNA was extracted from the leaves using a com-
mercial kit, namely RNAiso, from TaKaRa Biotechnology
Co. Ltd, Dalian, China. RNA concentrations were quanti-
fied using a biophotometer (Eppendorf AG, Hamburg,
Germany). cDNA was prepared with a TaKaRa Prime-
Script RT-PCR kit (TaKaRa Biotechnology Co. Ltd,
Dalian, China). Two-step qRT-PCR was performed on an
ABI PRISM 7000 (ABI, Foster City, CA, USA) using a
SYBR Premix EX TaqTM kit (TaKaRa Biotechnology Co.
Ltd, Dalian, China). All PCR reactions were repeated
three times and the data were normalized to constitu-
tively expressed ef-la using the 2-AACT method
described by Livak and Schmittgen (2001) [69]. The
primer sequences used in the quantitative RT-PCR are
listed in Table 1.

Statistical analysis

For quantitative determination, the data were analyzed by
the ¢ test at P = 0.05 or 0.01 using the Microsoft Analysis
Tool. For differences in disease severity, each transgenic
plant was compared with an untransformed plant.

Additional material

Additional file 1 Table S1. Stability of resistance to Verticillium dahliae
in T1-T6 progenies of transgenic cotton line T-34. +: a score of 0-4 was
given based on both external (foliar damage) and internal (vascular discol-
oration) symptoms 10 and 20 days after inoculation, respectively. Plants
showed the ratings of 0 - 2 were counted as resistant (R) and those with the
ratings of 3-4 were counted as susceptible (S). ++: +/- represented the pres-
ence/absence of the amplification product using hpal,,, specific primers in
the PCR analysis.
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Additional file 2 Figure S1. The plant height of hpaTy, -transformed
T-34 and untransformed Z35 at different growing stages. The experi-
ment with three replications was performed at an independent field in
Dafeng city, Jiangsu, CHINA. The fertilizer, irrigation, plant protection and
other inter cultural practices were according to normal agronomic prac-
tices. The height of continued fifty plants was investigated each replication
at same time.

Additional file 3 Figure S2. Isolate F24 of Fusarium oxysporum f. sp.
vasinfectum (FOV) race 7 was used in this study. Inoculum was prepared
by autoclaving cotton seed (at 121°C and 103.4 kPa for 20 min) twice and
mixing it with monoconidial cultures of Fov that had been grown on PDA.
When fully colonized (10 days), the inoculum was mixed with pasteurized
UC potting mix (sorghum: potting mix, 1:10 v/v) in plastic bags and incu-
bated for 4 weeks. The colonized cotton seed-UC mix was then added to
more pasteurized potting mix (1:1, v/v) and distributed equally into pots 9
cm in diameter. The transgenic hpaly,, cotton line T-34, the receptor Z35,
and the susceptible cotton cultivar Simian 3 were grown from seed in the
potting mix containing the inoculum. One plant of each cultivar was grown
in each pot and there were 10 replications (pots) of each treatment (isolate
of Fov). The experiments were repeated three times. All plants were grown
under 12 h of light at 24-29°C and 70%-90% relative humidity. Individual
plants were rated for disease severity based on the following scale for vas-
cular discoloration. The discoloration was scored (y) for every internode. 0 =
no vascular staining evident, 1 = light vascular staining evident as spotty
areas, 2 = more contiguous staining covering an area equal to between
one-quarter and one-half of the transverse section of the stem, 3 = moder-
ate vascular staining (intensity of the brown/black color) evident as a band
extending over nearly all of the transverse section, 4 = vascular staining
darker or the plant dead. The disease index (DI) was calculated as follows: DI
=100 y/4d, where (d) is the total number of seedling internodes including
hypocotyls and (4) is the maximum score for an internode. Mean values of
DI were calculated based on four replicates for both inoculated and control
plants. Asterisks represent significant differences at the level of 0.01.
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