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Abstract

Background: Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual
conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from
developing bitter melon seeds was conducted to uncover key genes required for biotechnological transfer of
conjugated fatty acid production to existing oilseed crops. It is expected that these studies will also provide basic
information regarding the metabolism of other high-value novel fatty acids.

Results: Deep sequencing using 454 technology with non-normalized and normalized cDNA libraries prepared
from bitter melon seeds at 18 DAP resulted in the identification of transcripts for the vast majority of known genes
involved in fatty acid and triacylglycerol biosynthesis. The non-normalized library provided a transcriptome profile
of the early stage in seed development that highlighted the abundance of transcripts for genes encoding seed
storage proteins as well as for a number of genes for lipid metabolism-associated polypeptides, including Δ12 oleic
acid desaturases and fatty acid conjugases, class 3 lipases, acyl-carrier protein, and acyl-CoA binding protein.
Normalization of cDNA by use of a duplex-specific nuclease method not only increased the overall discovery of
genes from developing bitter melon seeds, but also resulted in the identification of 345 contigs with homology to
189 known lipid genes in Arabidopsis. These included candidate genes for eleostearic acid metabolism such as
diacylglycerol acyltransferase 1 and 2, and a phospholipid:diacylglycerol acyltransferase 1-related enzyme.
Transcripts were also identified for a novel FAD2 gene encoding a functional Δ12 oleic acid desaturase with
potential implications for eleostearic acid biosynthesis.

Conclusions: 454 deep sequencing, particularly with normalized cDNA populations, was an effective method for
mining of genes associated with eleostearic acid metabolism in developing bitter melon seeds. The transcriptomic
data presented provide a resource for the study of novel fatty acid metabolism and for the biotechnological
production of conjugated fatty acids and possibly other novel fatty acids in established oilseed crops.

Background
A target of plant biotechnology has been the engineer-
ing of novel fatty acid production in seeds of established
crops to enhance the industrial value of vegetable oils
[1]. This research has involved the identification of
genes for the synthesis of novel fatty acids from non-
agronomic species and the subsequent transfer of these

genes to crops for seed-specific expression. Targets for
this research have included epoxy and hydroxylated fatty
acids [1-3]. With only a few exceptions, these efforts
have resulted in the production of novel fatty acids at
levels significantly lower than those found in native
sources. The modest success of this research has under-
scored the lack of knowledge in the specialized metabo-
lism associated with the production and storage of novel
fatty acids in oilseeds.
Our research has centered on fatty acids containing

conjugated, or non-methylene interrupted double bonds,
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as a system for addressing gaps in our understanding of
novel fatty acid metabolism. Oils enriched in conjugated
fatty acids can be used as drying agents in coating mate-
rials such as paints, inks, and varnishes. The conjugated
double bonds of these fatty acids are highly prone to
oxidation, which enhances rates of polymerization or
“drying” of coating materials [4]. The most widely used
oil for these applications is tung oil extracted from
seeds of Vernicia fordii. The value of this oil as a drying
agent arises from its high content of the conjugated
fatty acid a-eleostearic acid (18:3 Δ9cis, 11trans, 13trans)
that comprises > 80% of tung oil [5]. Eleostearic acid
also comprises ~65% of the seed oil of Momordica char-
antia (bitter melon) [6]. Other conjugated fatty acids,
including calendic (18:3 Δ8trans,10trans,12cis), catalpic (18:3
Δ9trans,11trans,13cis), and punicic (18:3 Δ 9cis,11trans,13cis)
acids, can be found in seed oils from species of at least
nine different plant families [5,7-9].
Efforts to transfer eleostearic acid production to seeds

of temperate crops have been facilitated by the identifi-
cation of genes encoding variant forms of the Δ12 oleic
acid desaturase (or FAD2) termed “conjugases” [10-12].
These enzymes catalyze the removal of hydrogen atoms
from the carbon atoms that flank the Δ12 double bond
of linoleic acid, and convert the Δ12 double bond into
two conjugated Δ11, Δ13 double bonds [10]. The pro-
duct of this reaction is a conjugated triene with Δ9, 11,
13 unsaturation. In addition to Δ12-specific conjugases,
Δ9 conjugases have been described in Calendula offici-
nalis and Dimorphotheca sinuata that convert the Δ9
double bond of linoleic acid into conjugated Δ8, Δ10
double bonds [13-15].
Transgenic expression of Δ9 and Δ12 conjugase genes

under control of strong seed-specific promoters in Ara-
bidopsis and soybean have yielded conjugated fatty acid
levels of 10 to 15% of the total seed oils [9]. These levels
are well below amounts of conjugated fatty acids that
naturally accumulate in seeds of plants such as tung and
bitter melon. In the engineered Arabidopsis and soybean
seeds, conjugated fatty acids not only accumulate in sto-
rage form in triacylglycerols (TAGs) but are also
detected in aberrantly high amounts in membrane phos-
pholipids (10% to 25% of the total fatty acids of these
lipids), especially phosphatidylcholine [9]. In contrast,
conjugated fatty acids are only minor components of
phospholipids (< 1.5% of the total phospholipid fatty
acids) in seeds from plants that naturally accumulate
conjugated fatty acids to levels approaching 85% of the
total fatty acids [9,16].
Although conjugases are of central importance for

producing conjugated fatty acids, these results indicate
that additional enzymes are required for the metabolism
and accumulation of conjugated fatty acids in seeds of
transgenic plants. Similar conclusions have been reached

in efforts to engineer the production of hydroxy, epoxy,
and acetylenic fatty acids in seeds [1,17-19]. These fatty
acids are also produced by variant forms of the Δ12
oleic acid desaturase. As with conjugases, the variant
FAD2 hydroxylases, epoxygenases, and acetylenases use
fatty acids bound to phosphatidylcholine and possibly
other phospholipids, such as phosphatidylethanolamine,
as substrates [16,20,21]. The products of these enzymes
must be efficiently metabolized from phospholipids for
storage at high levels in TAGs. This can occur either by
the direct removal of the unusual fatty acid from phos-
phatidylcholine or by removal of the phosphocholine
head group of phosphatidylcholine to produce the dia-
cylglycerol for TAG synthesis [1]. Findings from seeds
engineered with conjugases and well as with acetyle-
nases suggest that specialized enzymes have evolved for
the metabolism of unusual fatty acids from their site of
synthesis on phosphatidylcholine to their storage in
TAGs [9,19]. These enzymes are presumably absent
from seeds of plants such as Arabidopsis and soybean
that do not normally produce unusual fatty acids. These
may include specialized phospholipases, acyltransferases,
and enzymes associated with the removal or transfer of
phospholipid head groups.
The production of high levels of conjugated fatty acids

and other unusual fatty acids formed by FAD2 variants
in seeds of transgenic plants will undoubtedly require
the identification of genes for these specialized meta-
bolic enzymes. To facilitate this effort, we have underta-
ken 454 pyrosequencing studies to obtain a
comprehensive profile of the transcriptome of develop-
ing bitter melon seeds during a period of rapid synthesis
and accumulation of eleostearic acid. Bitter melon seeds
offer a useful system to study the functional genomics
of eleostearic acid synthesis relative to tung seeds, which
accumulate higher levels of this fatty acid, because bitter
melon plants can be grown under controlled conditions
and seeds can be more easily staged for eleostearic acid
accumulation. As described here, we have identified
~14,000 unique gene transcripts from normalized and
non-normalized cDNA populations, including tran-
scripts for the majority of enzymes involved in lipid bio-
synthesis and metabolism. Candidate genes for potential
enzymes involved in eleostearic acid metabolism are
highlighted, and also a divergent class of FAD2 that may
be specialized for eleostearic acid biosynthesis in bitter
melon seeds is described.

Results and Discussion
Determination of a seed developmental stage for rapid
biosynthesis of eleostearic acid
Bitter melon seeds were initially analyzed at different
time points after floral pollination to determine the
developmental stages at which active synthesis and
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accumulation of eleostearic acid occur. It was antici-
pated that this information would provide the basis for
selection of an optimal time point during seed develop-
ment for the identification of genes associated with
eleostearic acid metabolism. For these studies, lipids
were extracted from developing seeds, consisting pri-
marily of embryo and progressively lesser amounts of
endosperm during seed development. Developing seeds
were sampled at intervals from 17 to 30 days after polli-
nation (DAP). The extracted lipids were partitioned by
silica solid phase extraction into fractions of neutral
lipids, comprised primarily of triacylglycerols (TAGs),
and phospholipids. From analysis of fatty acids from
these fractions, it was observed that rapid accumulation
of eleostearic acid begins between 18 and 19 DAP, and
the accumulation of eleostearic acid is detected almost
exclusively in the TAG-enriched neutral lipid fraction.
This accumulation coincides with the growth and
expansion of the embryo. Accompanying the accumula-
tion of eleostearic acid are large decreases in palmitic
acid (16:0) and a-linolenic acid (18:3) content in neutral
and phospholipids and large increases in stearic acid
(18:0) content in the neutral lipids. Consistent with the
transition in fatty acid profile, expression of genes for
the bitter melon conjugase, which produces eleosteraric
acid, and the oil body-associated oleosin was detected
by RT-PCR initially at 18 DAP (Figure 1B). These col-
lective data suggest that seeds at 18 DAP are enriched
in the transcripts for enzymes involved in the synthesis
and accumulation of eleostearic acid. This stage in seed
development therefore is a suitable time point for tran-
scriptomic analyses to identify metabolic genes specia-
lized for eleostearic acid accumulation.

Construction of non-normalized and normalized cDNA
libraries
Transcriptomic studies were conducted to identify genes
associated with the synthesis and metabolism of eleos-
tearic acid in bitter melon seeds. From previous
expressed sequence tag analysis of developing bitter
melon seeds [10], it was known that genes for enzymes
such as acyltransferases that may be specialized for
eleostearic acid metabolism are not highly expressed in
developing seeds of this plant. Therefore, in order to
enhance gene discovery, 454 pyrosequencing was con-
ducted using non-normalized and normalized cDNA
populations prepared from bitter melon seeds at 18
DAP. 454 pyrosequencing is now an established plat-
form for deep sequencing of genomes and transcrip-
tomes, and normalization of cDNAs was anticipated to
enrich for low abundance mRNA transcripts in develop-
ing bitter melon seeds.
Prior efforts to normalize cDNA libraries have

involved a number of different protocols including those

based on the use of subtractive hybridization, hydroxya-
patite (HAP)-bound column chromatography, and
duplex-specific nuclease (DSN) treatment [22-24]. The
normalization procedure used (as outlined in Figure 2)
was adapted from the Evrogen Trimmer-Direct kit that
uses kamchatka crab-based DSN to reduce amounts of
abundant cDNAs that more rapidly re-anneal following
melting and hybridization. This kit is also compatible
with the Clontech SMART cDNA library, allowing for
cloning of normalized cDNA inserts into a bacterial vec-
tor. This method has been previously used to normalize
cDNA libraries from a number of organisms including
lake sturgeon, asian seabass, and Medicago [25-27].
Prior to the 454 sequencing, a pilot experiment was

conducted to analyze the composition of transcripts
from both non-normalized and normalized cDNA pools
by sequencing of clones from each library. From the
non-normalized cDNA library, 40 independent colonies
were isolated and sequenced (Additional File 1). About
40% of these sequences were found to encode seed sto-
rage proteins such as napin- and trypsin inhibitor-
related polypeptides. In the normalized cDNA library, a
large reduction in percentage of the abundant tran-
scripts encoding seed storage proteins and a wider range
in size of transcripts were observed (Figure 3). The
sequencing results from the sequences derived from the
normalized library revealed many transcripts unrelated
to the seed storage proteins, confirming the effectiveness
of normalization (Additional File 1).
Following the pilot study, transcript sequences were
analyzed in both the normalized and non-normalized
cDNA populations using 454 deep sequencing. The
initial run of 454 pyrosequencing generated 404,468
reads from the non-normalized cDNA pools and
255,687 reads from the normalized cDNA pools (Table
1). After trimming and screening, about 228,000 and
177,991 clean reads remained in the non-normalized
and normalized cDNA pools, respectively. About 22%
singletons were found in both populations. The remain-
ing 78% reads were assembled into 10,072 and 18,245
contigs from non-normalized and normalized cDNA
population, respectively (Figure 4A and 4B). In both
libraries, the average length of ESTs was approximately
800 nucleotides (Table 1). The extra 80% assembled
contigs in the normalized cDNA pools suggests that
normalization played a critical role in enriching low-
abundant unique transcripts and increasing the total
number of cDNAs.
These assembled contigs were then searched against

both Arabidopsis TAIR7 and viridiplantae subdivision of
NCBI protein database with e-value cutoff of 1e-10, to
find their homologues using BLASTX program. In both
libraries, about 50% of the contigs assembled did not
have a match in either database (designated “no hit”
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transcripts). In the normalized cDNA library, about half
of these “no hit” sequences were fragments between 200
and 300 nucleotides (nt). For transcript contigs smaller
than 200 nt, about 74% were “no hit”. In contrast, 90%
of transcripts at 500-1,000 nt and 99% of transcripts
longer than 1,000 nt, were identified with homologs in
Arabidopsis and/or green plant genomes. The majority
of these “no hit” sequences probably result from primer
dimer and holopolymer formation casuing the short

sequences not to give high matches to known proteins.
These could also encode 5’- and 3’- untranslated regions
of transcripts, or small RNA species that do not encode
proteins. The number of transcripts generated from the
normalized library with either Viridiplant or Arabidopsis
homologues was almost three times more than from the
non-normalized populations (Table 1). This, as well as
the observation that normalization yielding 80% more
contigs, strongly suggests that normalization has played

Figure 1 Fatty acid compositions of lipids and detection of selected transcripts at different stages of bitter melon seed development.
(A). Distribution of fatty acids in phospholipids (PL, open circle) and the triacylglycerol (TAG)-enriched neutral lipids (NL, black square) during the
development of bitter melon. The fatty acids shown are palmitic acid, 16:0; stearic acid, 18:0; oleic acid, 18:1; linoleic acid, 18:2; linolenic acid,
18:3; and eleostearic acid, ESA. (B). RT-PCR detection of transcripts for the bitter melon conjugase (McConj) and oleosin (McOleo) during bitter
melon seed development. b-Tubulin (Mcb-Tub2)-specific primers were used as a control to assess the quality of first-strand cDNA. The seeds
were collected at the designated days after pollination (DAP).
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an important role in increasing the detection of low-
abundance transcripts and that the increase in the total
number of unique transcripts will facilitate the gene
mining processes. These sequences are publicly available
for web-based BLAST searches at http://genomics.msu.
edu/JO/blast/blast.html.

Non-normalized cDNA populations reflect an early stage
of seed development
Deep sequencing of the non-normalized cDNAs allowed
for analysis of gene expression profiles during an early
stage of seed development in bitter melon. After com-
paring each contig with the non-redundant (nr) protein
database of the NCBI and Arabidopsis proteins at TAIR
using the BLASTX program, 4,459 contigs (representing
152,989 total reads) were identified with 3,093 unique

Viridiplant homologs. Among the most abundant 50
contigs in the library, 20 of them had no identified
homologs (Additional File 2). The remaining contigs
encoded primarily seed storage protein- or ribosome-
inactivating protein-related polypeptides.
To further focus the analysis of developing seeds of

bitter melon, contigs with homologs for the same gene
were combined as a single cluster and used to rank the
most abundant sequences (> 250 read counts) in the
non-normalized cDNA population. The most abundant
sequences encoded seed storage proteins, which repre-
sented 25% of the total contigs (Table 2; Additional File
2). These included transcripts for genes related to napin
(most abundant, 169 contigs with 23,678 reads), napin-
like protein large chain, legumin-like seed storage pro-
tein, and 11 S globulin and its precursor. The second

Figure 2 Preparation of normalized cDNA library from total RNA. Abbreviations: ss cDNA, single-stranded cDNA; ds cDNA, double-stranded
cDNA.
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group of highly expressed genes (about 15% of total)
encode ribosome-inactivating proteins, including type I
and type II, MAP30, a-momorcharin [28], trichosanthin
and its precursor, and NeuAc-gal/GalNAc-binding
lectin.
Also abundant in non-normalized cDNAs from bitter

melon seeds at 18 DAP were reads for transcripts
encoding structural proteins associated with cell devel-
opment, including latex protein, extensin, ribosomal
associated membrane protein 4 (RAMP4), glycoprotein,
and sec61 protein (Table 2; Additional File 2). Genes

involved in gibberellin biosynthesis, such as gibberellin
20-oxidase and gibberellin 7-oxidase, are highly
expressed in the early developmental stage of bitter
melon seeds. Homologs for these genes were previously
shown to be upregulated during the fruit maturation of
morning glory [29]. Highly expressed genes were also
detected for polypeptides involved in redox balance in
seeds, including riboflavin biosynthase, oxygenase, cyto-
chrome P450, glutaredoxin, type-2 metallothionein,
cytosolic ascorbate peroxidase, and cytochrome P450
monoxygenase.

Figure 3 Illustration of normalized versus non-normalized library on agarose gel electrophoresis. (A). Analysis of equal loadings of non-
normalized and normalized cDNA populations on a 1% agarose gel. (B). DNA insert fragments were amplified by PCR from random individual
colonies in the normalized cDNA library, and analyzed on a 1% agarose gel. The 1 kb DNA ladder was loaded as control.
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Table 1 Assembly statistics of non-normalized and normalized cDNA libraries.

Non-normalized Normalized

Number of sequences 404,468 255,687

Number of high quality sequences 281,933 216,950

Number of the clean reads 228,000 177,991

Number of singlets 53,897 38,959

(23.6%) (21.8%)

Number of contigs 10,072 18,245

Average length of contigs 297 414

Average length of EST 828 796

Average read of contigs 23 10

Number of contigs match Viridiplants 4,459 11,558

Number of contigs match Arabidopsis 3,643 11,211

(# of unique homologs in Arabidopsis) (2,187) (6,737)

Lipid genes contigs 193 345

(# of unique homologs for known Arabidopsis lipid genes) (85) (189)

Figure 4 Distribution of sequence length (A) and number of reads (> = 2) (B) of contigs in both non-normalized and normalized
cDNA populations.
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Transcripts for many lipid-related genes are abundant in
developing bitter melon seeds
Genes encoding enzymes and other polypeptides asso-
ciated with lipid biosynthesis and metabolism were
detected among the 50 most abundant reads from the
non-normalized cDNAs (Table 2; Additional File 2).
These included lipoxygenase, Δ12 oleic acid desaturase
(FAD2), Δ12 fatty acid conjugase, and Class-3-type
lipases. The most abundant reads included those encod-
ing lipid or fatty acid-binding proteins, such as a phos-
phatidylethanolamine binding protein (PEBP)-homolog,
acyl-CoA-binding protein, and acyl-carrier protein.
Interestingly, sequences for PEBP (gi|157343662) (1,921
reads and 6 contigs) were the 11th most abundant in the
non-normalized cDNAs, PEBP has been implicated in
signal transduction in mammalian systems, and its role
in eleostearic acid metabolism, if any, is not clear.
Genes for oil body-associated proteins were also

highly represented in the bitter melon seed transcrip-
tome. Most notably, 212 reads representing three con-
tigs were detected for caleosin genes. Of lesser
abundance were oleosin genes representing homologs of

Table 2 List of gene products for the 50 most abundant
transcript reads in the non-normalized cDNA library from
bitter melon seeds.

Homologs # of
reads

# of
contigs

Gene products

gi|
21327881

23,678 169 Napin

gi|
29243138

15,142 34 hypothetical protein

gi|
11225518

8,197 45 MAP30

gi|
56788031

7,564 15 seed storage protein, legumin-related

gi|19528 6,861 60 a-momorcharin

gi|167492 6,340 42 11 S globulin beta-subunit precursor

gi|
13171073

6,309 3 ribosome-inactivating protein precursor

gi|
147798373

5,370 10 hypothetical protein BURP domain

gi|3808062 4,278 42 cupin 2, PV100

gi|976231 2,438 3 ribonuclease (RNase LC1)

gi|
157343662

1,921 6 unnamed protein product, PEBP

gi|
29165641

1,804 5 trichosanthin precursor

gi|
109895116

1,733 5 ribosome-inactivating protein

gi|
15215752

1,473 5 At5g59750, riboflavin biosynthesis
protein

gi|5381325 1,346 8 11 S globulin precursor

gi|4106063 1,282 8 trichoanguin

gi|
157358487

1,121 6 unnamed protein product

gi|
28371823

1,012 15 Δ12 oleate desaturase, FAD2/FAD2v

gi|
157335527

1,000 3 class-3 lipase

gi|
118482397

833 3 dehydroascorbate reductase 2

gi|170444 780 1 extensin (class II)

gi|1838961 714 2 acyl carrier protein

gi|
118482623

637 2 g-thionin family protein

gi|
157345129

616 1 class-3 lipase

gi|1938236 571 1 acyl-CoA-binding protein

gi|
164449275

565 6 caleosin

gi|
157327440

533 1 cytochrome P450

gi|1944181 492 4 aspartic endopeptidase

gi|
29243128

479 6 putative major latex protein

gi|
157340924

418 1 oxygenase

gi|1911803 407 36 napin-like protein large chain

gi|1666094 402 4 gibberellin 20-oxidase

gi|691752 379 5 cupin 2 preproMP27-MP32

Table 2: List of gene products for the 50 most abundant
transcript reads in the non-normalized cDNA library from
bitter melon seeds. (Continued)

gi|
156891145

374 2 glutaredoxin

gi|
157338378

363 1 Sec 61 protein

gi|
32170831

357 2 leaf ubiquitous urease

gi|
49532940

357 3 type-2 metallothionein

gi|
10129818

332 15 ribosome inactivating protein type I

gi|
19338630

311 3 48-kDa glycoprotein precursor

gi|
157329758

293 4 DUF588 unnamed protein product

gi|433609 292 1 enolase

gi|224797 291 2 urease

gi|6224716 284 3 Δ12 oleic acid desaturase-like, conjugase

gi|2331046 281 4 type 2 ribosome-inactivating protein
precursor

gi|1587207 271 12 NeuAc-gal/GalNAc-binding lectin

gi|
87162930

269 2 lipoxygenase, embryo-specific 3

gi|1669585 269 3 cytosolic ascorbate peroxidase

gi|
118484529

266 4 At2g37600, Ribosomal L36e

gi|2224892 260 1 gibberellin 7-oxidase

gi|
70724314

258 4 cytochrome P450 monooxygenase

The numbers of reads and contigs and most related homolog for each gene
product are also shown.
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Arabidopsis OLEO1 and OLEO4 (81 reads in two con-
tigs, and 16 reads in one contig were detected for
OLEO1 and OLEO4 homologs, respectively). Given the
variability of the amphipathic domain found in oleosins
from diverse sources [30,31], it is possible that one or
more of the bitter melon oleosins has specificity for
eleostearic-rich TAGs to promote their efficient packa-
ging and accumulation in oil bodies.
Reads for Class 3 TAG lipase were also detected at

high abundance in the non-normalized cDNA pool
(Table 2). Two groups of these homologs were present
in the bitter melon libraries: (gi|157335527 with 1,000
reads, 3 contigs) and (gi|157345129 with 616 reads, 1
contig). Although the role for Class 3 TAG lipases in
developing bitter melon seeds is not known, transcripts
for this enzyme class were also found to be abundant in
developing castor bean seeds (Ricinus communis) endo-
sperm [32].

Normalization enhances gene discovery in developing
bitter melon seeds
A major goal of this study was to deeply mine the tran-
scriptome of developing bitter melon seeds for fatty acid
biosynthetic and metabolic genes. From this pool,

candidate genes that are specialized for eleostearic meta-
bolism can be identified. Normalization of the bitter
melon cDNA pools was employed as a technique to
facilitate gene discovery efforts.
To assess the efficacy of normalization, the bitter

melon sequences from both non-normalized and nor-
malized libraries with Arabidopsis homologs were
counted to be 6,737 and 2,187, respectively (Table 1).
Distribution of these homologs in Arabidopsis covered
all aspects of cellular components, molecular functions,
and biological processes (Figure 5). The fold increase of
genes in normalized versus non-normalized over differ-
ent categories ranges from 1.3 (ribosome, abundant
transcripts) to 6 (signal transduction, low abundant
transcripts), averaging at 2.9, suggesting a higher effi-
ciency in gene discovery using the normalization library.
High levels of protein metabolism, cell organization and
biogenesis, and transport in molecular process were also
observed. Most genes in molecular function categories
encode activities of hydrolase, transferase, and protein
and nucleotide binding, activities typically found in the
active expansion of embryo and oil biosynthesis.
The top 50 genes with the largest numbers of reads in

the non-normalized library included primarily genes for

Figure 5 Go function analysis [55]of Arabidopsis gene homologous from both non-normalized and normalized cDNA libraries.
Distribution of genes associated with different cellular components, molecular functions and biological processes.
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Table 3 List of gene products for the 50 most abundant 454 transcript reads in the normalized cDNA library from
bitter melon seeds.

Normalized cDNAs Non-normalized cDNAs

Homolog ID # of
Reads

# of
Contigs

At Gene
Identifier

Gene Products # of
Reads

# of
Contigs

gi|11225518 3,291 6 - MAP30 8,197 45

gi|29243138 2,615 3 - hypothetical protein 15,142 34

gi|19150 2,110 1 - b-luffin 0 0

gi|13171073 1,701 1 - ribosome-inactivating protein precursor 6,309 3

gi|21327881 1,928 12 - napin [bitter melon charantia] 23,678 169

gi|3808062 632 1 At3g22640 cupin family protein 4,278 42

gi|29165641 618 1 - trichosanthin precursor 1,804 5

gi|4106063 584 3 - Trichoanguin 1,282 8

gi|147798373 767 4 At1g49320 BURP domain-containing protein 5,370 10

gi|157335527 414 2 At1g45201 similar to lipase class 3 family protein 1,000 3

gi|976231 460 2 At2g02990 ribonuclease (RNase LC1) 2,438 3

gi|170444 374 1 At2g02490 Extension (class II) 780 1

gi|157342180 274 1 At1g19100 ATP-binding region 41 1

gi|73808794 248 1 At4g09320 NDPK1 (nucleoside diphosphate kinase 1) 214 2

gi|18479082 238 1 At4g28520 11 S globulin-like protein 151 15

gi|84514139 231 1 At3g14610 CYP72A7; cytochrome P450 230 6

gi|157337377 230 1 At5g59750 riboflavin biosynthesis protein, putative 102 8

gi|157336060 219 1 At1g77460 C2 domain-containing protein 26 1

gi|118482397 202 1 At1g75270 DHAR2; glutathione dehydrogenase 833 3

gi|1838961 202 2 At4g25050 ACP4 (Acyl carrier protein 4) 714 2

gi|74229677 196 1 At1g08830 CSD1 (copper/zinc superoxide dismutase 1) 73 1

gi|162672646 170 1 - predicted protein 0 0

gi|17402469 167 1 At4g14960 TUA6 (tubulin alpha-6 chiain) 46 2

gi|157350920 162 1 At1g07040 similar to unknown protein 12 2

gi|118481513 152 1 At2g36620 RPL24A 0 0

gi|157352507 142 1 At1g61580 ARP2/RPL3B 40 1

gi|157327297 156 2 At1g18540 60 S ribosomal protein L6 (RPL6A) 212 3

gi|118482623 131 1 At2g02130 LCR68/PDF2.3 (LMW cysteine-rich 68) 637 2

gi|37721219 127 1 AtCg00900 ribosomal protein S7 0 0

gi|77999293 157 2 At5g02960 40 S ribosomal protein S23 (RPS23B) 154 2

gi|145910320 126 1 At5g35360 acetyl co-enzyme A carboxylase subunit 24 3

gi|1762945 125 1 At4g14420 lesion inducing protein-related 222 1

gi|118484529 142 2 At3g53740 60 S ribosomal protein L36 (RPL36B) 266 4

gi|13430182 141 2 At3g04400 ribosomal protein L17 172 1

gi|157342677 123 1 At4g29520 similar to Saposin B 44 4

gi|21304463 121 1 AtCg01310 chloroplast ribosomal protein L2 80 2

gi|157344877 119 1 At1g72150 PATL1 (PATELLIN 1); transporter 0 0

gi|49617323 119 1 At3g27660 OLEO4 (OLEOSIN4) 28 1

gi|2204236 121 2 At2g05990 Enoyl-[acyl-carrier-protein] reductase 0 0

gi|20514369 118 1 At4g35160 O-methyltransferase family 2 protein 59 1

gi|118482052 118 1 At3g05560 structural constituent of ribosome 0 0

gi|157340503 129 2 At1g75760 ER lumen protein retaining receptor family 194 1

gi|157358487 138 2 At1g27330 similar to unknown membrane protein 1121 6

gi|71842524 137 3 At1g70580 AlaT1 97 1

gi|157339643 152 3 At5g55190 RAN3; GTP binding 188 4

gi|13899097 108 1 At5g21090 leucine-rich repeat protein, putative 0 0

gi|38093741 107 1 At1g31812 ACBP (ACYL-COA-BINDING PROTEIN) 4 1

gi|118482799 106 1 At1g08830 CSD1 (copper/zinc superoxide dismutase 1) 50 1

gi|157343130 150 2 At4g30810 SCPL29 (serine carboxypeptidase-like 29) 13 2

gi|1666094 103 1 At5g51810 gibberellin 20-oxidase 402 4

Numbers of reads and contigs and most related homolog for each gene product are also shown. For comparison, the numbers of read and contigs for each
transcript in the non-normalized cDNA library are indicated.
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seed storage proteins, including those related to napin,
legumin, and 11 S globulin (Table 2). As an indication
of the power of normalization for reducing the represen-
tation of these abundant genes, reads for transcripts of
napin genes were reduced from 23,678 in the normal-
ized library to 1,928 after normalization (Table 3). This
resulted in a reduction in napin genes as the most abun-
dant in numbers of reads in the non-normalized cDNAs
to the fifth most abundant in the normalized cDNAs.
Normalization also uncovered a number of genes that
were not detected in the non-normalized library, includ-
ing transcripts for genes encoding b-luffin, RPL24A,
RPS17, PATL1, enoyl-reductase, and LRR proteins.
Notably, b-luffin ranked number 3 in the normalized
library with 2,110 reads, despite its absence from
sequences in the non-normalized library.
As a first step toward understanding eleostearic acid

biosynthesis and metabolism, we first attempted to iden-
tify all genes involved in lipid metabolism in developing
bitter melon seeds. Normalized library sequences were
compared with those in the annotated lipid metabolism
gene database compiled at Michigan State University
http://lipids.plantbiology.msu.edu/[33]. From this analy-
sis, bitter melon cDNAs encoding enzymes for known
lipid biosynthetic and catabolic pathways were identified.
From this analysis, almost all categories of lipid metabo-
lism, from synthesis of lipid in plastids and endomem-
branes, metabolism of acyl-lipids in mitochondria,
synthesis and degradation of storage oil, lipid signaling,
fatty acid elongation, wax and cutin metabolism, and a
group of miscellaneous genes were identified (Table 1,
Additional File 3). Among the genes not detected in
either library were those for enzymes in lipid degrada-
tion pathways, including DAD1-like acylhydrolase, allene
oxide cyclase, and patatin-like acyl-hydrolase. Tran-
scripts for several other hydrolases, including wax ester
hydrolase, fatty acid ω-hydrolase, and alcohol-forming
fatty acyl coenzyme A reductase, were also not detected

in the bitter melon seed transcriptome. Most of these
enzymes are involved in the synthesis of surface lipids,
such as waxes in leaves and flowers that are not present
in the embryo. In total, we identified 345 bitter melon
transcripts that share homology with 189 known lipid
genes in Arabidopsis (Table 4). This information is pro-
vided in a searchable database (Additional File 4).

Transcriptomic analysis and gene mining for eleostearic
acid metabolism in bitter melon seeds
To gain a global perspective of lipid metabolism in bit-
ter melon seeds, the abundance of 454 transcript reads
for enzymes involved in fatty acid and TAG biosynthesis
was compiled from 454 data obtained from non-normal-
ized and normalized cDNA populations (Figure 6). With
regard to de novo fatty acid synthesis in plastids, the lar-
gest numbers of reads in the non-normalized cDNAs
were transcripts for acyl carrier protein (ACP, 811
reads), 3-keto-acyl-ACP synthase (KAS) II (190 reads)
and 3-ketobutyl-ACP reductase (160 reads) (Figure 6). It
is also notable that 68 reads were detected for the FatA
acyl-ACP thioesterase, but no reads were detected for
the FatB acyl-ACP thioesterase in the non-normalized
cDNAs. This difference in numbers of reads and the
known substrate preferences of Fat A (i.e., most active
with 18:0- and 18:1-ACP) and Fat B (i.e., most active
with 16:0-ACP) [34-36] likely account for the relatively
high content of stearic acid (18:0) and low content of
palmitic acid (16:0) in bitter melon seeds (Figure 1).
Compared to de novo fatty acid synthesis, transcript
reads for ER-associated lipid enzymes were of low abun-
dance in the non-normalized cDNAs, except for FAD2
Δ12-oleic acid desaturases (1,089 reads) and fatty acid
conjugase (284 reads) (Table 4, Figure 6).
For ER-associated TAG synthesis enzymes, normaliza-

tion yielded significant enrichment of transcripts for
enzymes including glycerol 3-phosphate acyltransferase
9 (GPAT9), phosphatidic acid phosphatase (PA Pase),

Table 4 Numbers of total transcript reads and contigs comprising different categories of lipid genes from 454 analysis
of normalized cDNA from developing bitter melon seeds.

Categories Numbers of reads Numbers of contigs Numbers of Arabidopsis homologs

Fatty acid synthesis in plastids 1,462 63 31

Synthesis of plastid membrane lipids 100 10 6

Synthesis of endomembrane lipids 674 59 31

Acyl-lipid metabolism in mitochondria 492 33 19

Synthesis and storage of oil 235 10 7

Storage lipid and fatty acid degradation 482 38 19

Lipid signaling 761 97 48

Fatty acid elongation & wax and cutin

metabolism 108 7 5

Miscellaneous 845 78 43

Also shown are the numbers of unique homologs of known Arabidopsis genes in the assembled contigs. The categories are based on those used in the
Arabidopsis Lipid Gene database [33].
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Figure 6 Numbers of reads in the non-normalized and normalized 454 sequence analysis for genes encoding enzymes in the fatty
acid and TAG biosynthetic pathways in bitter melon seeds. Numbers after the gene (a/b) are the numbers of reads for the corresponding
genes in the 454 analysis of cDNA libraries: a, non-normalized; b, normalized. The dashed arrows in the plastid fatty acid biosynthetic pathway
indicate one or more cycles of acyl-chain elongation that is initiated by 3-ketoacyl-ACP synthase (KAS) I or II. Abbreviations: BCCP, biotin carboxyl
carrier protein subunit of acetyl-CoA carboxylase; BC, biotin carboxylase subunit of acetyl-CoA carboxylase; a-CT, a-carboxyltransferase subunit of
acetyl-CoA carboxylase; ACP, acyl carrier protein; FAB2/SAD, stearoyl-ACP desaturase; FatA, acyl-ACP thioesterase A; FatB, acyl-ACP thioesterase B;
GPAT, glycerol 3-phosphate acyltransferase; LPAT, lysophosphatidic acid acyltransferase; PA Pase: phosphatidic acid phosphatase; LPCAT,
lysophosphatidylcholine acyltransferase; AAPT, CDP-choline:diacyglyglycerol cholinephosphotransferase; PLC, phospholipase C-type enzymes;
DGAT, diacylglycerol acyltransferase; PDAT, phospholipid:diacylglycerol acyltransferase; FAD2, Δ12 oleic acid desaturase; FAD3, Δ15 (ω-3) linoleic
acid desaturase; G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid; PA, phosphatidic acid; LPC, lysophosphatidylcholine; PC,
phosphatidylcholine; DAG, diacylglycerol; TAG, triacylglycerol.
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diacylglycerol acyltransferase 1 (DGAT1), phospholipid:
diacylglycerol acyltransferase 1 (PDAT1). Normalization
also uncovered transcripts not detected in the non-nor-
malized cDNA population, including those for diacylgly-
cerol acyltransferase 2 (DGAT2), phospholipase C-type
enzymes (PLC), CDP-choline:diacyglyglycerol choline-
phosphotransferase (AAPT1). Notably, transcripts for
the recently reported phosphatidylcholine:diacylglycerol
cholinephosphotransferase (PDCT), a key enzyme in
polyunsaturated fatty acid synthesis in Arabidopsis seeds
[37], were not detected in either the non-normalized or
normalized libraries. Similar to the findings reported
here, no transcripts for PDCT were detected in a tran-
scriptomic analysis of developing tung seeds, which also
accumulate high levels of eleostearic acid (Shockey,
unpublished data). These findings suggest that metabolic
pathways independent of PDCT are associated with
eleostearic acid metabolism. FAD3 transcripts for the
Δ15 linoleic acid desaturase were also not detected in
either cDNA library, which is consistent with the near
absence of a-linolenic acid in developing bitter melon
seeds.
Eleostearic acid is synthesized by Δ12 conjugase activ-

ity on linoleic acid bound primarily to phosphatidylcho-
line [9]. Despite its site of synthesis, eleostearic acid is
found nearly exclusively in TAG and accounts for < 2%
of the fatty acids in phospholipids throughout the devel-
opment of bitter melon seeds (Figure 1A). This implies
that eleostearic acid is efficiently metabolized after its
synthesis on phosphatidylcholine to its point of accumu-
lation in TAG. To study the flux of eleostearic acid
from its synthesis on phosphatidylcholine to storage in
TAG, genes for lipid metabolism enzymes involved in
fatty acid esterification and removal from glycerol back-
bones and those catalyzing removal or transfer of phos-
pholipid head groups are of particular interest. Among
these enzymes are the two classes of diacylglycerol acyl-
transferases: DGAT1 and DGAT2. These enzymes cata-
lyze the esterification of fatty acids from acyl-CoA pools
to the sn-3 position of DAG to form TAG. DGAT1 has
been shown to be a major enzyme associated with TAG
synthesis in Arabidopsis seeds [38,39]. In contrast, stu-
dies of DGAT2 T- DNA mutants have failed to identify
a role for this enzyme in TAG accumulation in Arabi-
dopsis seeds [38]. However, transgenic expression of
DGAT2-type enzymes from castor bean and Vernonia
galamensis have been shown to enhance the accumula-
tion of ricinoleic acid in Arabidopsis seeds and vernolic
acid in soybean seeds, respectively [40,41]. Results from
tung also suggest that DGAT2 may be important in
eleostearic acid metabolism in seeds of this species
[42,43]. In the 454 sequence data, five reads for tran-
scripts for DGAT1 and zero reads for DGAT2 were
detected in the non-normalized cDNA library (Figure 6).

Following normalization, 35 reads for DGAT1 tran-
scripts and five reads for DGAT2 transcripts were
detected (Figure 6). It is unclear whether the larger
number of reads for DGAT1 transcripts indicates that
this enzyme, rather than DGAT2, is of greater impor-
tance for eleostearic acid metabolism in bitter melon
seeds. We are currently exploring this hypothesis by co-
expression of bitter melon DGAT1 and DGAT2 with
the bitter melon fatty acid conjugase in Arabidopsis
conjugase to compare the relative abilities of these
enzymes to enhance eleostearic acid accumulation. To
facilitate these studies, full-length cDNAs for bitter
melon DGAT1 and DGAT2 have been isolated. These
sequences represent a single gene for each DGAT class.
Alignments of the amino acid sequences of these
enzymes with known DGAT1 and DGAT2 polypeptides
are shown (Figure 7A and Additional File 5). The bitter
melon DGAT1 is most closely related to the grape
DGAT1 (70% identity) and Euonymus alatus DGAT1
(68% identity) but is more distantly related to DGAT1
enzymes from Arabidopsis (64% identity), castor (65%
identity), and tung (66% identity) (Figure 7B). The bitter
melon DGAT2 is most closely related to its homolog in
Arabidopsis (57% identity), but distantly related to
DGAT2 enzyme from castor (50% identity) and tung
(49% identity). As shown in Figure 7A and Additional
File 5, the N-terminal regions of the bitter melon
DGATs and other known DGATs are the most variable
portion of these polypeptides. One possibility is that the
N-termini of DGATs are important determinants of the
substrate specificities of these enzymes, especially with
regard to the metabolism of unusual fatty acids.
In addition to DGATs, phospholipid:diacylglycerol

acyltransferases (PDATs) are important enzymes for the
final acylation step in TAG synthesis. In this regard, the
activities of PDAT1 (At5g13640) and DGAT1 were
recently shown to account for the bulk of TAG synth-
esis in Arabidopsis seeds [38]. Arabidopsis also contains
a PDAT1-related gene (At3g44830) that displays seed-
specific expression [44]. The polypeptide encoded by
At3g44830 shares 57% amino acid sequence identity
with PDAT1; however, the function of this polypeptide
has yet to be established.
PDATs catalyze the transacylation of fatty acids from

phospholipid to the sn-3 position of DAG and share
homology with the well-studied enzyme lecithin:choles-
terol acyltransferase (LCAT), which catalyzes sterol ester
synthesis in blood plasma [45]. In plants, PDAT activity
with high specificity for the transfer of ricinoleic was
identified in microsomes of castor bean [46], suggesting
the possibility that PDAT-type activity may also be an
important contributor to eleostearic acid metabolism in
bitter melon seeds. In our normalized cDNA library,
two contigs (McCtg3028 and McCtg2714) were
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Figure 7 Amino acid sequence alignments of McDGAT1 and DGAT1 polypeptides from various species. (A) Alignment of various DGAT1
s. Sequences were aligned by Clustal × and displayed using GeneDoc Software. (B) Phylogenetic tree of DGAT1 polypeptides. Sequences of
DGAT1 are from the following species: Vitis vinifera (Vv) (gi 225444869), Euonymus alatus (Ea) (gi 54145459), Arabidopsis thaliana (At) (gi15224779),
Vernicia fordii (Vf) (gi 86279632), Ricinus communis (Rc) (gi 255546145). Phylogenetic tree was constructed using MEGA 4.0.1 software [52].
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identified with closest relation to the PDAT1-like gene
At3g44830. These two contigs were confirmed to one
gene by PCR amplification, and this gene was designated
McPDAT1 (data not shown). No close homologs for the
At5g13640-encoded PDAT1 were detected in the non-
normalized or normalized bitter melon sequence data.
The role of McPDAT1 in eleostearic acid metabolism is
currently being explored.
In addition to DGATs and PDATs, transcripts for

numerous other enzymes that may be specialized for
eleostearic acid metabolism were detected in the non-
normalized and normalized libraries. These include tran-
scripts for lysophosphatidic acid acyltransferasese
(LPAT), phospholipase A2- and phospholipase C-related
enzymes, and lysophosphatidylcholine acyltransferase
(LPCAT).

Identification of a FAD2 variant in developing bitter
melon seeds
An unexpected finding from the transcriptomic analysis
of developing bitter melon seeds was the discovery of
two divergent forms of FAD2, the Δ12 oleic acid desa-
turase. A detailed analysis of FAD2 contigs revealed two
related but different sequences. One designated
“McFAD2” was reported previously [10], and the second
is an evolutionarily divergent FAD2 designated
“McFAD2v” ("v” for variant). McFAD2 and McFAD2v
share 69% amino acid sequence identity (Figure 8A). In
addition, McFAD2 and McFAD2v share 60% and 63%
amino acid sequence identity with the bitter melon con-
jugase, respectively. McFAD2v is most closely related to
a variant FAD2 identified in seeds of snake gourd (Tri-
chosanthes kirilowii) that synthesizes the conjugated
fatty acid punicic acid (18:3 Δ9cis,11trans,13cis) (Figure 8B)
[12]. Although it is more distantly related to McFAD2,
McFAD2v lacks amino acid substitutions in the proxi-
mity of the catalytic His box domains that are character-
istic of functionally variant FAD2-type enzymes (e.g.,
conjugase, epoxygenase, hydroxylase) [47], suggesting
that McFAD2v is likely a typical Δ12 oleic acid desatur-
ase (Figure 8A).
To establish the functions of McFAD2 and McFAD2v,

the open-reading frames of these enzymes were
assembled under control of the GAL10 promoter in the
pESC-URA vector and expressed in Saccharomyces cere-
visiae. In galactose-induced cultures for both desa-
turases, production of 16:2 and 18:2 were detectable
(Figure 8C). Neither fatty acid was detected in induced
cultures containing the pESC-URA vector lacking cDNA
insert. In addition, no conjugated fatty acids were
detected in the induced McFAD2 or McFAD2v cultures.
As a control, the bitter melon conjugase was also
expressed in S. cerevisiae. Unlike McFAD2 and
McFAD2v, the conjugase displayed mixed functionality;

generating small amounts of 16:2 and 18:2 from Δ12
desaturase activity as well as eleostearic acid from con-
jugase activity with 18:2 (data not shown). These results
indicate that both McFAD2 and McFAD2v function as
Δ12 oleic desaturases despite their divergent sequences.
Gene expression studies were conducted to under-

stand the basis for two functional Δ12 oleic acid desa-
turases in developing bitter melon seeds. Using RT-PCR,
expression profiles of genes for McFAD2, McFAD2v,
and the conjugase were obtained during seed develop-
ment (Figure 8D). Interestingly, expression of the conju-
gase gene most closely mirrored the timing for
expression of McFAD2v during seed development. By
comparison, expression of McFAD2 was detected earlier
in seed development. Given the similarity in their gene
expression patterns, McFAD2v may have evolved to
function in concert with the conjugase for eleostearic
acid synthesis in bitter melon seeds. In this regard, the
Δ12 oleic acid desaturase provides the linoleic acid sub-
strate for production of eleostearic acid by the conju-
gase. It is notable that transgenic expression of the
bitter melon conjugase in Arabidopsis seeds and soy-
bean somatic embryos results in large increases in the
relative content of oleic acid, in a manner consistent
with the apparent inhibition of native Δ12 oleic acid
desaturase activity [9,10]. For example, relative amounts
of oleic acid in seeds of non-transformed Arabidopsis
Col-0 fad3/fae1 increase from ~28% of the total fatty
acids to nearly 55% of the total fatty acids in seeds that
express the bitter melon conjugase [9]. Although a num-
ber of biochemical scenarios could be proposed, one
possibility for future study is that McFAD2v and the
conjugase functionally interact to maintain efficient
synthesis of eleostearic acid in bitter melon seeds. The
role of two FAD2-related enzymes in the synthesis of an
unusual fatty acid has previously been demonstrated in
the synthesis of dimorphecolic acid in Dimorphotheca
sinuata seeds [15].

Conclusions
Deep sequencing of developing bitter melon seeds was
conducted to identify candidate genes that are asso-
ciated with the synthesis of the conjugated fatty acid
eleostearic acid and the efficient metabolism of eleostea-
ric acid from its synthesis on phosphatidylcholine to sto-
rage in TAG. By use of 454 pyrosequencing of non-
normalized cDNAs derived from bitter melon seeds at
18 DAP, 190 contigs with homology to 83 known lipid
genes in Arabidopsis were obtained from 10,072 total
contigs. The discovery of lipid genes was significantly
enhanced through the normalization of cDNAs based
on the use of duplex-specific nuclease. 454 sequence
data from a normalized library generated 345 contigs
with homology to 189 known lipid genes in Arabidopsis
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Figure 8 Characterization of FAD2 polypeptides and genes in bitter melon. (A) Alignment of amino sequences for divergent FAD2 s
(McFAD2, McFAD2v) and the FAD2-related conjugase (McConj) from bitter melon cDNA library. Sequences were aligned by Clustal X and
displayed using GeneDoc Software. (B). Phylogenetic tree of FAD2 s and conjugase. Sequences used to construct the tree include Arabidopsis
thaliana At FAD2 (gi 21536781), Trichosanthes kirilowii Tk FAD2 (gi 28371823), Tk Conj (gi 28371821), and Sorghum bicolor Sb DES2 (gi 242062720).
(C). Production of 16:2 and 18:2 in Saccharomyces cerevisiae by expression of McFAD2 and McFAD2v. As indicated, no 16:2 or 18:2 was detected
in yeast cells containing only the vector. (D) Expression of McFAD2, McFAD2v, and conjugase (McConj) during bitter melon seed development
as determined by RT-PCR. b-Tubulin (b-Tub) -specific primers were used as a control to assess the quality of first-strand cDNA.
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from 18,245 total contigs, although the total number of
clean reads from the normalized library was 22% lower
than that obtained from the non-normalized library.
Overall, transcriptomic analysis of bitter melon seeds
using 454 technology yielded sequence data for genes
encoding all of the known fatty acid biosynthetic
enzymes and nearly all of the known ER-associated fatty
acid modification and metabolic enzymes, including
acyltransferases such as DGAT1, DGAT2, and a
PDAT1-related enzyme that are likely central to efficient
metabolism of eleostearic acid. Also identified in the
transcriptomic analysis was a divergent FAD2 that was
demonstrated to have Δ12-oleic acid desaturase activity
and may be important in the synthesis of eleostearic
acid. The sequence information from developing bitter
melon seeds has been made publicly available in a
searchable format http://genomics.msu.edu/JO/blast/
blast.html; Additional File 4) and will likely serve as a
useful resource for studies of unusual fatty acid metabo-
lism in plants and for engineering of conjugated fatty
acid production in oilseed crops.

Methods
Growth conditions of plants and collection of seeds
Momordica charantia L. was grown under short-day
conditions with 8 h light at 25°C/16 h dark at 21°C, 50%
humidity, and 600 μmol m-1 s-1 of light. Independent
male flowers were used for hand pollination of female
flowers. Embryos were dissected from seeds of fruits
collected at specific DAP and frozen immediately in
liquid nitrogen. Embryos were stored at - 80°C until use
in RNA isolation or lipid analysis.

Lipid analysis of bitter melon embryos
Total lipids were extracted from frozen bitter melon
embryos as described [9] using a modified version of the
method reported by Bligh and Dyer [48]. Neutral lipids
(consisting predominantly of TAGs), glycolipids, and
phospholipids were partitioned from the total lipids by
solid phase extraction (SPE) using commercially pre-
pared silica columns (500 mg silica bed; Fisher Scienti-
fic). The total lipid extract was dissolved in one ml of
chloroform and applied to a SPE column that had been
equilibrated in chloroform. Neutral lipids were eluted
with ten ml of chloroform and five ml of chloroform:
acetone (80:20 v/v). Glycolipids were then eluted with
seven ml of acetone. Phospholipids were subsequently
eluted with five ml of methanol:chloroform:water
(100:50:40 v/v/v). To the phospholipid fraction, 1.3 ml
of water and 1.3 ml of chloroform were added. After
mixing and centrifugation, the lower organic phase con-
taining phospholipids was recovered. The neutral and
phospholipid fractions in glass screw cap test tubes (13
× 100 mm) were dried under nitrogen and then

transesterified with the addition of 1.5 ml of 1% sodium
methoxide in methanol (w/v) and 0.2 ml of toluene. For
quantification of fatty acids, triheptadecanoin (Nu-Chek,
Elysian, Minnesota USA) was also added to each frac-
tion as an internal standard. Transesterification and sub-
sequent recovery and analysis of fatty acid methyl esters
by gas chromatography was conducted as previously
described [9].

RNA extraction and RT-PCR analysis
RNA was extracted from bitter melon seeds using the
Trizol reagent as described by the manufacturer (Invi-
trogen). RT-PCR was carried out using the Advantage
RT-for-PCR kit from BD Biosciences Clontech. In brief,
1 μg of total RNA was reverse transcribed, and the
cDNA was used in PCR reactions to amplify the corre-
sponding genes with FAD2- or conjugase, oleosin, or b-
Tubulin-specific primers, respectively. The conjugase
primers were 5’-McConj-1 (5’ CTCCCTTCAGCAT-
CAGCCAG -3’) and 3’-McConj-1 (5’-TACAGCAAA-
TACCCGGTCGC-3’); the b-Tubulin primers were 5’-
McTUB2-1 (5’-AGATCGGTGCCAAGTTCTGG-3’) and
3’-McTUB2-1 (5’-GATGGACAGAGAGGGTTGCG-3’),
and oleosin primers were 5’-McC58-1 (5’-ATGGCC-
GAGCACCAGCAG-3’) and 3’-McC58-1 (TTAA-
GAAGTTGCAGTCTGGGGG-3’). The FAD2v primers
were 5’-McFAD2v-1 (5’-ATGGACAAGGCCGTT-
GATGC-3’) and 3’-McFAD2v-2 (5’-GTAGAGCAC-
GAAAGCCATGCTG-3’), and FAD2 primers were 5’-
McFAD2-1 (5’-TCCTCTCCTCCATCCCTCAAG-3’)
and 3’-McFAD2-1 (5’-CGTACGAGACGGCCAGCAAC-
3’). PCR was conducted for number of cycles as indi-
cated in the figures, with a primer-annealing tempera-
ture of 50°C. PCR products were analyzed by gel
electrophoresis.

cDNA library construction and normalization
Total RNA was extracted from developing bitter melon
seeds was ground to a fine powder in liquid nitrogen
using Trizol reagent (Invitrogen) according too the
manufacturer’s protocol. mRNA were purified from ~1
mg of total RNA by two passes through oligo-dT cellu-
lose columns by use of the Illustra mRNA purification
kit (GE Healthcare). cDNA libraries were constructed
using SMART PCR cDNA synthesis kit (Clontech).
First-strand cDNA was synthesized with 150 ng mRNA
in a volume of 10 μl using the provided SMART II pri-
mer, a modified CDS III/3’ cDNA synthesis primer (5’-
AAGCAGTGGTATCAACGCAGAGTGGCCGAGGCG
GCCGACATGTTTTGTTTTTTTTTC TTTTTTTTT
TVN-3’) and Superscript II reverse transcriptase (Invi-
trogen). Double stranded cDNA was prepared by PCR
(18 cycles) using 2 μl of the first-strand reaction in a 50
μl reaction volume. Following Proteinase K treatment,
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four PCR reactions were pooled before SfiI digestion
and size fractionated on the provided CHROMA SPIN-
400 column. Only fractions containing fragments larger
than 500 bp were collected, precipitated, and resus-
pended in TE buffer. Library normalization of this
cDNA was conducted by use of Trimmer-Direct cDNA
normalization kit (Evrogen). Briefly, four 250 ng aliquots
of cDNA were hybridized at 98°C for 2 min followed by
68°C for 5 h. The hybridized cDNAs were then treated
with 0, 0.25, 0.5, and 1 μl duplex-specific nuclease
(DSN), respectively, before stop with the DSN stop buf-
fer. cDNA (1 μl) from each aliquot was subjected to
PCR amplification. Based on the results from the sample
lacking DSN, the cycle number (9+2 cycles) was deter-
mined for the first round amplification of DSN treated
samples. After examination of the cDNAs on the agar-
ose gel, the selected aliquot of cDNAs were then diluted
10 times and subjected to a second round of PCR using
2 μl in 100 μl reaction (12 cycles). The amplified cDNA
pool was then treated with proteinase K, fractionated,
and precipitated for the non-normalized cDNA library
construction. For the pilot study, cDNA PCR fragments
were digested with SfiI enzyme and cloned into SfiIA
and SfiIB sites of pDNR-LIB vector (Clontech).

454 sequencing and data analysis
DNA sequencing was performed at the Michigan State
University Research Technology Support Facility using
the GS FLX sequencer (Roche). Reads were trimmed to
remove low quality and primer sequences using Seq-
Clean [49]. The reduced dataset then underwent two
rounds of assembly with CAP3. First-round CAP3 para-
meter settings for percent match, overlap length, maxi-
mum overhang percent, gap penalty, and base quality
cutoff for clipping were -p 90 -o 50 -h 15 -g 2 -c 17,
respectively. For the second round, -o was changed to
100. The resultant contigs were then annotated with a
translated BLAST against the TAIR7 and the viridiplan-
tae subdivision of the NCBI nonredundant protein
databases.
Sequence data have been deposited in the GenBank

Short Read Archive (SRA). The accession number for
the project in NCBI SRA is SRP004091. The accession
numbers in NCBI SRA for the individual experiments
are SRX030203 (normalized sequence data) and
SRX030204 (non-normalized sequence data). The
assembled sequence data are also available in a search-
able format at http://genomics.msu.edu/JO/blast/blast.
html, and lipid gene data are compiled in Additional
File 4.

Sequence alignment and phylogenetic analysis
Protein sequences were aligned using the clustal W
Multiple Sequence Alignment Program [50] using

Gonnet protein weight matrix (gap open penalty = 10,
gap extension penalty = 0.2, gap separation distance =
4) and displayed by GeneDoc [51]. Phylogenetic trees of
protein sequences (aligned with Clustal W) was gener-
ated in MEGA4.0.1 [52] using the neighbor-joining
method [53]. Pairwise deletion was used for handling of
sequence gaps, and 2000 bootstrap replicates were per-
formed. The evolutionary distances were computed
using the Poisson correction method [54].

Functional analysis of McFAD2 and McFAD2v genes
McFAD2 and McFAD2V were expressed in S. cerevisiae
using pESC-URA vector (Stratagene), which contains
separate GAL10 promoters for expression. Open reading
frames for McFAD2 and McFAD2V were amplified by
PCR from a bitter melon cDNA library using Phusion
polymerase (New England Biolabs). PCR products were
digested with SpeI/PacI before and cloned under control
of the GAL10 promoter into the corresponding restric-
tion sites in pESC-URA. The oligonucleotides used for
PCR were: 5’- McFAD2_ SpeI (5’ ATATACTAG-
TATGGGTGCTGGAGGCCGAAT 3’), 3’- McFAD2_
PacI (5’ ATATTTAATTAATTATTCCAACTTGTTGT
TGT 3’), McFAD2v_ SpeI (5’ ATATACTAGTATGG-
GAGTTGGAAAAAGAAT 3’), 3’- McFAD2v_ PacI (5’
TTAATTAATTAATCAGATCTTGTTGCGGTACCA
3’). (Note that the underlined sequences correspond to
the added corresponding restriction sites.) These pESC-
URA-derived plasmids were transformed into S. cerevi-
siae strain YPH499, and expression studies and fatty
acid analyses of induced cells were conducted as
described [15].

List of Abbreviations
Abbreviations: AAPT: CDP-choline:diacyglyglycerol cho-
linephosphotransferase; ACP: acyl carrier protein; BC:
biotin carboxylase subunit of acetyl-CoA carboxylase;
BCCP: biotin carboxyl carrier protein subunit of acetyl-
CoA carboxylase; a-CT: a-carboxyltransferase subunit
of acetyl-CoA carboxylase; DAG: diacylglycerol; DAP:
days after pollination; FAB2/SAD: stearoyl-ACP desatur-
ase; DGAT: diacylglycerol acyltransferase; ESA: eleostea-
ric acid; FAD2: Δ12 oleic acid desaturase; FAD3: Δ15
(ω-3) linoleic acid desaturase; FatA: acyl-ACP thioester-
ase A; FatB: acyl-ACP thioesterase B; G3P: glycerol-3-
phosphate; GPAT: glycerol 3-phosphate acyltransferase;
LPA: lysophosphatidic acid; LPAT: lysophosphatidic acid
acyltransferase; LPC: lysophosphatidylcholine; LPCAT:
lysophosphatidylcholine acyltransferase; PLC: phospholi-
pase C-type enzymes; PA: phosphatidic acid; PA Pase:
phosphatidic acid phosphatase; PC: phosphatidylcholine;
PDAT: phospholipid:diacylglycerol acyltransferase; RT-
PCR: reverse transcription-polymerase chain reaction;
SPE: solid phase extraction; TAG: triacylglycerol.
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Additional material

Additional File 1: Pilot sequencing results of independent colonies
from non-normalized and normalized cDNA libraries prepared from
bitter melon seeds collected at 18 DAP.

Additional File 2: The most abundant contigs identified by 454
sequencing of non-normalized cDNAs from developing bitter melon
seeds.

Additional File 3: Arabidopsis lipid genes with no detected
homolog in 454 sequences from bitter melon seeds.

Additional File 4: Bitter melon lipid gene database from 454
sequencing of normalized cDNA populations.

Additional File 5: Alignment of McDGAT2 and DGAT2 polypeptides
from other plant species.
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