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Abstract

viruses.

target any virus without preference.

Background: microRNAs (miRNAs) are non-coding short RNAs that regulate gene expression in eukaryotes by
translational inhibition or cleavage of complementary mRNAs. In plants, miRNAs are known to target mostly
transcription factors and are implicated in diverse aspects of plant growth and development. A role has been
suggested for the miRNA pathway in antiviral defense in plants. In this work, a bioinformatics approach was taken to
test whether plant miRNAs from six species could have antiviral activity by targeting the genomes of plant infecting

Results: All plants showed a repertoire of miRNAs with potential for targeting viral genomes. The viruses were targeted
by abundant and conserved miRNA families in regions coding for cylindrical inclusion proteins, capsid proteins, and
nuclear inclusion body proteins. The parameters for our predicted miRNA:target pairings in the viral genomes were
similar to those for validated targets in the plant genomes, indicating that our predicted pairings might behave in-vivo
as natural miRNa-target pairings. Our screening was compared with negative controls comprising randomly generated
miRNAs, animal miRNAs, and genomes of animal-infecting viruses. We found that plant miRNAs target plant viruses
more efficiently than any other sequences, but also, miRNAs can either preferentially target plant-infecting viruses or

Conclusions: Our results show a strong potential for antiviral activity of plant miRNAs and suggest that the miRNA
pathway may be a support mechanism to the siRNA pathway in antiviral defense.

Background

RNA silencing is a conserved defense mechanism that
plants and other eukaryotes use to protect their genomes
against aberrant nucleic acids. This process uses short
RNAs (20-30 nt) to recognize and manipulate comple-
mentary nucleic acids [1,2]. At least five classes of these
small regulatory RNAs have been characterized, includ-
ing microRNAs (miRNAs), small interference RNAs (siR-
NAs), transacting siRNAs (ta-siRNAs), natural antisense
siRNAs (nat-siRNAs) and, in metazoans, the Piwi-inter-
acting RNAs [3,4]. miRNAs and siRNAs are chemically
indistinguishable and participate in partially overlapping
pathways; both are derived from double-stranded RNA
(dsRNA) and are then processed into 21-22 nt single
stranded molecules by Dicer or a Dicer-like enzyme; later,
they are incorporated into the RNA-induced silencing
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complex (RISC) to guide the cleavage or translational
repression of the complementary strand [1,5]. The main
differences between miRNAs and siRNAs lie in their bio-
genesis and in their target molecules. siRNAs are gener-
ally derived from endogenous aberrant dsRNAs or from
exogenous agents such as viruses, and silence the same
molecule from which they originated. miRNAs, instead,
originate from nuclear genes and act in trans, silencing
mRNAs from other genes [6,7].

In plants miRNAs were described first in Arabidopsis
[8,9], and later in other species. To date, there over 2200
plant miRNAs from over 30 species available at the miR-
Base [10]. Most of these miRNAs target transcription fac-
tors and thus are implicated in diverse aspects of plant
growth and development [11,12].

In addition to regulate the endogenous expression of
some genes, miRNAs could have a direct role in viral
defense. This has been shown for various cases in animal-
infecting viruses. For example miR-32 restricts the repli-
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cation of the primate foamy virus type 1, miR-122 targets
the hepatitis C virus and at least four miRNAs expressed
in T-cells impair HIV replication [2,13-15]. Also an
important role for miRNAs in antiviral defense in
humans has been suggested through bioinformatics [16].
Likewise, animal-infecting viruses can encode miRNAs
to regulate both the viral life cycle and the interaction
between viruses and their hosts [17,18].

Whereas siRNAs are known to play an important and
direct role in antiviral defense in plants [19,20], so far,
there has not been proof of naturally occurring plant
microRNAs with antiviral activity. It has been shown,
using genetically modified viruses and plants, that com-
plementarity between a plant miRNA and a virus genome
is enough for antiviral activity. Transgenic tobacco and
Arabidopsis plants displayed resistance against Cucumber
mosaic virus (CMV), Turnip yellow mosaic virus (TYMV)
and Turnip mosaic virus (TuMV) when expressing artifi-
cial miRNAS directed against regions in the viruses'
genomes [21-23]. Also, inserting the target sequence of
host plant's miRNAs in the virus genome can impair virus
infectivity; however, the virus can escape rapidly of the
miRNA action by mutations [24].

It has been suggested that virtually any endogenous
small RNA could hold an intrinsic, albeit fortuitous, anti-
viral potential (by random complementarity) that is inde-
pendent of its cellular function [15,24-26]. Also, several
sequences of 20-25 nt located within Arabidopsis inter-
genic regions share perfect or near perfect complementa-
rity with a variety of plant virus genomes, but have not
been validated as miRNAs yet [27]. There are also a large
number of non-conserved RNAs with unknown targets
("orphan” miRNAs) that could have an antiviral role and
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constitute a reservoir of defensive molecules due to their
complementarity to invading viral genomes [25].

In this work, we present a bioinformatics approach to
explore the possibility of endogenous plant miRNAs hav-
ing a role in antiviral defense by targeting the genomes of
plant-infecting viruses and the results are considered in
the context of the evolution of plant-virus interactions.

Results
The set of plant miRNAs (n = 911) from six plants was
screened for targets against a set of genomes of plant
infecting viruses (n = 119) resulting in several putative
targets (any miRNA-target pair predicted by miRanda is
considered a hit). The plant with most hits was O. sativa
with 165, which was expected since most of the miRNAs
in the dataset belong to this species (353). The matching
percentage, which relates the number of hits to the sam-
ple size (miRNAs x viruses genomes), was similar for all
species, around 0.2%. The plant with the highest match-
ing percentage (0.2813%) was Z. mays, and the lowest was
A. thaliana (0.1579%). Overall out of the 911 plant miR-
NAs used in the screenings, 267 (28%) had targets in the
genomes of plant viruses; we name these "positive miR-
NAs". The percentage of positive miRNAs was different
for each plant, being lowest (22%) in A. thaliana and
highest (43%) in Z. mays. The percentage of "positive
viruses" (viruses that were targeted by at least one
miRNA) was lowest for S. bicolor (34%) and highest for A.
thaliana (80%) (Table 1). Thus every plant has a different
repertoire of miRNAs with a potential capacity of target-
ing viruses.

In total, 51 of the 74 (69%) viruses screened were "posi-
tive viruses", thus not all plant-infecting viruses can be

Table 1: Statistics for plant microRNAs vs plant viruses' genomes screenings

A. thaliana G. max O. sativa S. bicolor V.vinifera  Z. mays
Number of miRNAs 187 miRNAs 69 miRNAs 353 miRNAs 72 miRNAs 140 miRNAs 90 miRNAs
Number of viruses (total size) 20(149.9Kb) 20(146.1Kb) 20(223.7Kb) 20(166.2Kb) 16 (166.4) 23(188.8Kb)
Hits? 49 21 165 27 59 51
Matching percentage (Hits/Sample size) x 100 0.1579 0.2053 0.1972 0.2265 0.2558 0.2813
Positive miRNAsb (%) 41 (22%) 18(26%) 103 (29%) 25 (34%) 41 (29%) 39 (43%)
16 (80%) 10 (50%) 15 (75%) 6 (30%) 10 (50%) 9 (45%)

Positive viruses< (%)

a) MiRanda predicted microRNA:target pairs, b) microRNAs with possible targets in viruses genomes, c) viruses with miRNAs targets in their

genomes.
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targeted by their host's miRNAs. Some viruses were
highly targeted by plant miRNAs. For example, the Barley
Yellow Mosaic Virus, to which both O.sativa and Z.mays
are unsusceptible, displayed the highest number of
miRNA targets (Figure 1) [28].

miRNAs can be grouped according to sequence simi-
larity in families. In total 233 miRNA families were
screened against the viral genomes and 74 families (32%)
resulted in positive targets. Families that are relatively
well conserved across the plant kingdom and have multi-
ple copies in the genome were particularly successful in
producing hits; this may be a consequence of this families
being overrepresented in every screening (Figure 2). Fam-
ilies 156, 395, 159, 166, 160 which are present in at least
five of the six plant species and are encoded by at least
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two loci in each plant genome were among the ones with
more potential targets. Some families with unknown or
non-validated targets (i.e. 495, 414, 815, 818, 854, 529,
and 1861) also produced multiple, yet fewer, hits in the
viruses' genomes. These results suggest that abundant
and conserved plant miRNA families potentially target
viruses.

To validate our hypotheses that plant-infecting viruses
are more likely to be targeted by plant miRNAs than by
other sequences and that plant miRNAs preferentially
target plant-infecting viruses over other sequences, we
conducted the following analyses. We created a group of
negative controls to screen for miRNA targets in the fol-
lowing cases i) animal miRNAs vs plant virus genomes,
i) random generated miRNAs vs plant virus genomes, iii)

Hits
45
35
25
20
15
5
= =2 2 2 B =2 = =2 = Z m
r © P 2 2 wmrCc =2 - e 3
&4 .8 .2 .84 .3 .5 .82 2 .82 .3 .2 =2 g
s Is I I = I . ~ IS b IS s 1
= == = = = S~ R = = -
2 22 22T 2EE22 8283808y
c = € =2 & @ = = & 2 =
w2 oD % e e Q2 onm =]
o ®m QO ¥ O 2 Q «w wm o O & =
- - T ) = S x -~ = = -
S g = v = o 5 3 g = = = 0o
v ad = < = - L -0
£ E 2 EZ § 2 = E N = 2
[ST: b = E 7 o 9 = = &
= & S 2= = )
B 4 = % SRR ] = 2
Y oo 7 o LA = = ©
oD f &= S = -
oo I o e — .
B R D ? g2 5 =
— — = - =
o = < =] o
= T o =
3] [ —_ = =
1] - © - =
- = =
= =
= =
7] w2
=%

Grapevinerootstock stem lesion associated virus

Grapevine leafroll-associated virus 10

Figure 1 Plant infecting viruses targeted by plant miRNAs. Only viruses with more than 3 hits are shown.
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Figure 2 miRNAs families and the number of putative targets in the genomes of plant viruses. Only families with more than 3 hits are shown.

randomized plant miRNAs vs plant virus genomes and iv)
plant miRNAs vs animal virus genomes. As a positive
control we screened the set of plant miRNAs against their
validated target sequences.

The screenings were compared using four miRanda
parameters: the free-folding energy of the miRNA:target
pair, the identity, the Z-score and the miRANDA score.
All putative targets in each screening had high identity
percentage (min 58%), high Z-score (min 6.8) and highly
negative free-folding energy (maximum -23 kcal/mol)
(Table 2). No statistically significant differences were
found between the different screenings for these three
parameters, indicating that all the alignments found are
very similar and therefore comparable. Since there are no
differences between the positive control screening and all
the others, we can conclude that our positive miRNAs are
pairing with their targets as well as some plant miRNAs
pair with their known and validated targets in the plant
genomes.

The miRanda score of the positive control was signifi-
cantly higher than the score of the plant miRNA vs plant
viruses screening, while the miRanda score for three of
the four negative controls was significantly lower. How-
ever, all miRANDA scores are above the threshold of

what is considered necessary for biological activity. We
should also take into account that this parameter gives a
high weight to pairing in the 5region of the miRNA
which is not as crucial for plant miRNAs activity as for
animal miRNAs (Table 2) [29].

Next, our screening was compared with the negative
controls using the matching percentage. To discard errors
due to sample size effect, various data subsets with differ-
ent sample sizes of miRNAs and viral genomes were ran-
domly generated, screened again and then averaged
(Table 3). The matching percentages for plants miRNAs
to plant viruses were significantly higher than to animal
miRNAs and the two types of random miRNAs. This
indicates that the plant viruses might be preferentially
targeted by plant miRNAs than by other sequences. On
the other hand, comparisons of the matching percentages
for plant miRNAs to plant and animal viral genomes did
not show a clear trend (Table 3). For example, the miR-
NAs of V. vinifera seem to preferentially target plant
viruses than animal viruses (Figure 3A) while the oppo-
site was the case for A. thaliana, S. bicolor and Z. mays
(Figure 3B). And, the miRNAs from O. sativa and G. max
showed similar preference for the genomes of both plant
and animal viruses (Figure 3C). No clear conclusion can
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Table 2: miRANDA scoring values for each screening
Negative controls Positive
controls

Screenings  Plant miRNAs Animal Rand1vsPlant Rand2vsPlant PlantmiRNAs Plant miRNAs

vs Plant miRNAs vs viruses viruses vs Animal vs Control

viruses Plant viruses viruses Targets

Free-folding min -23.05 -23.01 -23.01 -23.02 -23.03 -23.01
Energy (kcal/mol)

mean -26.34 -27.22 -26.89 -26.07 -26.16 -28.5

max -43.99 -45.13 -39.87 -38.88.88 -36.26 -45.25

p value 0.290 0.091 0.184 0.173 0.0626

Identity (%) min 0.66 0.58 0.68 0.64 0.61 0.7059

mean 0.78 0.78 0.79 0.78 0.79 0.814

max 0.94 1 0.94 0.94 0.94 1

p value 0.784 0.212 0.548 0.323 0.0592

miRANDA score  min 114 96 107 87 109 126

mean 158.8 142 147.8 142.5 142.4 167.9

max 182 187 182 180 182 194

pvalue *<0.001 0.548 *<0.001 *<0.001 *<0.001

Z score min 7.009 6.834 7.009 6.995 7.102 7.200

mean 8.815 8.003 7.967 8.004 8.413 9.001

max 10.080 9.895 8.967 9.746 10.426 11.581

pvalue 0.643 0.342 0.423 0.262 0.089

p values are the result of pairwise Wilcoxon test between each screening and the plant microRNAs vs Plant viruses screening, * significant

differences a =0.05, significantly lower, significantly higher

then be drawn as to the specificity of plant miRNAs for
plant viruses.

The genomes of plant viruses were targeted in multiple
regions by several plant miRNAs. The most targeted
regions were those coding for RNA polymerases, cylin-
drical inclusion (CI) proteins, capsid proteins and nuclear
inclusion body (Nib) proteins (Figure 4A). Silencing in

any of these regions is likely to impair virus replication.
Plant miRNAs also target most frequently the RNA poly-
merase genes in animal viruses (Figure 4B). However,
there is a stronger preference to target coding sequences
in plant viruses than in animal viruses. Therefore, plant
miRNAs seem to be more directed to impair the fitness of
plant viruses.
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Discussion

Using a bioinformatics approach we found that plant
miRNAs potentially target genomic regions in plant-
infecting viruses. To validate our results we carried out
several positive and negative controls and these showed
that the genomes of plant viruses are preferentially tar-
geted by their host's miRNAs but were not conclusive
regarding the specificity of plant miRNAs for the
genomes of plant viruses. A similar trend has been found
using a bioinformatics approach with animal miRNAs vs
animal viruses [16], where the miRNA pathway has been
proved to have antiviral role in Metazoans [2,13-15]. This
suggests that our predicted pairings could also have a bio-
logical function, although an experimental biological vali-

dation is necessary. It is possible that some of the viral
targets found in this study are the result of purely fortu-
itous matches as has been suggested by various authors
[15,26,27,30]. Even if these pairings are the result of
chance instead of selection, it is possible that given the
right physiological circumstances (e.g. high expression of
the miRNAs, lack of silencing suppressor in the virus)
these miRNAs would efficiently silence the predicted tar-
gets. This hypothesis is supported by studies showing
that artificial miRNAs can mediate antiviral defense in
plants and that complementarity with the target is
enough to produce resistance [21-24]. Also, plants defec-
tive in miRNA-silencing have shown to be more suscepti-
ble to some viruses [31].
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Table 3: Matching percentages of plant microRNAs vs plant viruses screenings compared to negative controls

Negative controls

Plant microRNAs vs Plant viruses screenings

Animal microRNAs

Rand1vsPlant Rand2 vs Plant Plant microRNAs vs

vs Plant viruses viruses viruses Animal viruses
A. thaliana- m vs mean 0.16812 0.14473 0.08857 0.12714 0.2130
A. thaliana - viruses
p value <0.0001 <0.0001 <0.0001 <0.0001
G. max microRNAs vs mean 0.2088 0.10584 0.09664 0.11972 0.18624
G.max - viruses
p value <0.0001 <0.0001 <0.0001 0.2394
O. sativa microRNAs vs mean 0.2321 0.16285 0.09647 0.1481 0.2295
O.sativa viruses
p value <0.0001 <0.0001 <0.0001 0.3983
S. bicolor microRNAs vs mean 0.23237 0.14577 0.10179 0.12557 0.3656
S.bicolor - viruses
p value <0.0001 <0.0001 <0.0001 <0.0001
V.vinifera microRNAs mean 0.2741 0.17348 0.10818 0.18675 0.22115
V.vinifera viruses
p value <0.0001 <0.0001 <0.0001 <0.0001
Z. mays microRNAs vs mean 0.26809 0.16263 0.10903 0.2446 0.4445
Z.mays viruses
p value <0.0001 <0.0001 <0.0001 <0.0001

p values are the result of pairwise Wilcoxon test between each screening and the plant microRNAs vs Plant viruses screening, a = 0.05,

significantly lower, significantly higher

It was reported that human miRNAs were more likely
to target the genomes of human-infecting viruses over
non-host's viruses [16]. Such specificity could not be
demonstrated for plant miRNAs in the present study.
However, a large amount of the targets we found for plant
miRNAs in the genomes of animal viruses are in non-
coding regions and are therefore unlikely to impair viral
activity (Figure 4). Additionally, some predicted targets of
plant miRNAs were found both in plant and animal
viruses (e.g. capsid genes) which may indicate a prefer-
ence to target conserved regions in viruses. Finally, it is
possible that the genomes of plant-infecting viruses are
undergoing rapid evolution to avoid targeting by plant

miRNAs, therefore giving lower matching percentages
than expected. This is plausible since it has been shown
that viruses can rapidly evolve to escape miRNA targeting
in plants [24].

To identify possible plant miRNAs in the viruses
genomes we used strict parameters based on experimen-
tally valid miRNA:target pairings to ensure potential bio-
logical activity. Even considering the inherent difficulties
of the computational prediction of miRNA targets, which
often results large number of false positive targets [32], it
is possible that our conservative approach has underesti-
mated the number of candidate targets. Increasing evi-
dence has shown that miRNA-mediated silencing in
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plants can occur in relaxed miRNA:target pairings,
mainly leading to translational arrest instead of mRNA
cleavage, although the mechanisms are not fully under-
stood [17,33-36]. Once the criteria for miRNA-mediated
translational arrest in plants are fully understood, new
approaches searching for plant miRNA targets in viral
genomes may be necessary.

We found that miRNAs from deeply conserved and
highly expressed families (e. g. families 156, 395, 159, 166,
160) have more potential targets in the viruses' genomes.
This could suggest a way in which abundant plant miR-
NAs are selected to have multiplicity of functions includ-
ing pathogen defense. This is supported by the fact that
these families have multiple targets within the plant
genomes [33], and some of them have been shown to be
differentially expressed in response to stresses. For exam-
ple, miRNAs 395 and 399 are responsive to abiotic stress
(phosphorus and sulfates starvation) [37,38], and miR-
NAs 156, 159 and 160 are responsive to viral infections
[39-42].

By contrast, the more phylogenetically restricted fami-
lies (e.g. families 495, 414, 818, 854, 1861), may be partic-
ipating in more specific plant-virus interactions. Indeed,
in some plants there is a large diversity of non-conserved
and "young" miRNAs with still unknown targets that
could be potentially employed against viral sequences
[43,44]. The lack of potential antiviral activity for some
microRNA families could also be the result of them being
expressed at very low levels or in a tissue or cell-specific
manner, thus being less likely to play a significant role in
antiviral defense.

It is also important to consider some arguments that do
not support a putative function of plant miRNAs as an
effective option for antiviral defense. First, most viruses
encode for silencing repressors, which could directly
interfere with the miRNA machinery [27,45,46]. Second,
viral genomes evolve much faster than host miRNAs
[11,24]. Third, the miRNA signal is neither systemic nor
quickly amplified [26]. Nevertheless, using miRNAs to
protect against virus might be an advantageous preemp-
tive measure (a plant would be resistant to viruses that
has never encountered before) benefitting of their ability
to pair with multiple targets [26].

The apparent inadequacy of miRNAs as an antiviral
defense mechanism may indicate that their role is not as
direct as siRNAs. On one side miRNAs may simply act as
a support mechanism for siRNAs. On the other side, the
targets found here may be a reflection of a virus adapta-
tion phenomenon in which they take advantage of the
host miRNAs to suppress their own replication to evade
immune elimination and establish in this way a persistent
infection as has been suggested by Mahajan et al., [47]. In
this case the role of miRNAs would be to reach an equili-
brated host-virus interaction [47].
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Also, these results can be discussed in the context of
the hypothesis proposed by Lu et al., [26], which states
that early in plant evolution miRNAs played an important
role in anti-viral defense and then novel functions
evolved after the requirements of survival were satisfied
[26,33]. At this initial time, plant miRNAs may have been
crucial for shaping the host ranges of several virus
groups. Then, some of these "antiviral miRNAs" might
have been selected to regulate endogenous genes after
fortuitous matching. Both the rapid evolution of viruses
and the necessity of precise gene regulation could have
worked as selective pressures towards the modern
miRNA pathway since the requirement for a high degree
of complementarity between plant miRNAs and their tar-
gets can act as a stabilizer, preventing sequence drift even
over long periods of evolutionary time [43]. Many miR-
NAs might have been originated from invading viral
sequences, a pathway for miRNA evolution that has been
suggested previously for plants [48]. Additionally, bioin-
formatics evidence suggests a transition from viral
sequence to siRNA to miRNA gene in plants [49]. Our
candidate targets may be an indication of these virus-
derived miRNAs, especially those found for phylogeneti-
cally restricted miRNA families with unknown genomic
targets.

Conclusions

Our work presents initial evidence for the suspected
potential of antiviral activity mediated by plant miRNAs,
which is likely to have played a role in early plant evolu-
tion and in shaping host ranges for plant infecting
viruses.

Methods

Dataset

miRNA sequences from six plants (Arabidopsis thaliana,
Glycine max, Oryza sativa, Sorghum bicolor, Vitis vin-
ifera, and Zea mays) were downloaded from the miR-
BASE [10]. These species were selected for having at least
60 available sequenced miRNAs as late as March 2009,
and for being hosts of at least 10 plant-infecting viruses
with fully sequenced genomes. For comparisons, miR-
NAs from eight Metazoan species (Coenorhabditis ele-
gans, Drosophila melanogaster, Dario rerio, Gallus gallus,
Homo sapiens, Mus musculus, Ornithorhynchus anatinus,
and Pan troglodytes) were selected and 50 miRNAs
sequences for each animal were also downloaded from
the miRBASE [10].

Complete genome sequences for plant and animal-
infecting viruses were obtained from Genbank [50]. Host
ranges and related information for plant viruses were
consulted using the Description of Plant Virus Database,
DPVWeb [51] and the Plant virus Database, VIDE [52].
For animal-infecting viruses we used the International
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Committee on Taxonomy of Viruses (ICTV) database
[28].

Two sets of random miRNAS were made, one using a
Perl script generating random 21-nucleotide sequences
[53], and another one by randomizing the plant miRNA
sequences with the Bioedit software [54], doing 1000 ran-
dom swap operations.

Information for verified targets of plant miRNAs were
obtained from Tarbase [55], the Arabidopsis thaliana
small RNA project [56], the Arabidospsis MPSS Database
[57], the Plant microRNA Database [58], or primary liter-
ature [11,59,60]. The corresponding sequences were
downloaded from Genbank [50].

Target prediction

Targets for each set of miRNAs were searched in viral
genomes using a modified version of miRanda (v Septem-
ber 2008) [29]. This software uses a scoring system based
on the complementarities of nucleotides, similar to the
Smith-Waterman algorithm. The scoring matrix used for
this analysis also allows G = U 'wobble' pairs, which are
important for the accurate detection of RNA:RNA
duplexes. The algorithm uses folding routines from the
Vienna 1.3 RNA secondary structure programming
library [61]. Although miRanda was originally designed
to search for miRNA targets in animals, it is versatile
enough to be modified and has been used to search for
targets in viruses and plants, and has proven to be an effi-
cient method [30,62]. The miRanda screenings were
repeated several times using randomly generated subsets
of either the miRNA or the viral genome sets.

MiRanda screenings were made using different combi-
nations of miRNAs and viral genomes. The main one was
plant miRNAs against plant viruses' genomes. This was
compared with four other control screenings: (i) animal
miRNAs vs plant viruses, (if) random 21 nt sequences
(Rand1) vs plant viruses (iii) randomized plant miRNAs
(Rand?2) vs plant viruses and (iv) plant miRNAs vs ani-
mal-infecting viruses. As a positive control, the plant
miRNAs were screened against 190 sequences corre-
sponding to verified miRNA targets in the plant genomes.

The criteria to consider a sequence as a putative
miRNA target were: four or fewer mismatches overall,
only one or none mismatches in the 5' region of the
miRNA (positions 1 to 12), no more than two consecu-
tives mismatches in positions 13 to 21, no mismatches in
positions 10 and 11. Additionally, the miRNA:target pair
should have low free-energy of bonding (maximum -20
kcal/mol). These criteria are based on experimental work
and have been extensively used for miRNA target predic-
tion in various plants [23,63,64].

Four miRanda parameters obtained in the different
screenings were used to compare and validate the pre-
dicted targets. These parameters were: a) the free-folding
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energy of the miRNA:target pair, which is commonly
used as a measure for miRNA target prediction and indi-
cates the stability of the miRNA:target duplex and the
likeliness of correct matching and cleavage; b) the per-
centage identity, which indicates how many bases are
complementary between the miRNAs and the target; c)
the Z-score, which is based on a distribution of the shuf-
fled alignment score; a high Z-score means that the align-
ment is least likely to be the result of chance; and d) the
miRanda score, which weights all the others parameters
and also each base pair in the alignment based on com-
plementarity and position; it represents a measure of the
number of mismatches and their distribution (mis-
matches in the 5' end of the target are given a higher
penalization) [29].

Statistical analyses

The main variable used to compare the screenings was
the matching percentage = [Number of candidates/(Size
of the virus' genome (kb) x Number of miRNAs)] x 100,
which is the percentage of the screened sample that
resulted in target candidates. For statistical analysis, the
Shapiro Normality test and Wilcoxon tests were per-
formed with the software R [65].

To compare the targeted regions in the viral genomes,
the number of hits in each region was divided by the aver-
age size in kilobases of this region in the various viruses'
genomes.

Authors' contributions

ALPQ; designed the experiments, analyzed and organized the data and drafted
the manuscript, RN; did the first target predictions experiments, AZ; optimized
the software for target prediction and collaborated in data analyses, CL; coordi-
nated the investigation and helped to draft the manuscript. All authors have
read and approved the final manuscript.

Acknowledgements

We are grateful to Liliana Lopez Klein for their support in the statistical analyses.
Thanks to Ivan Acosta for fruitful discussions and for critically reading the man-
uscript and for editing. This research was supported partially by the DIB (Direc-
cion de Investigaciones, sede Bogotd), Universidad Nacional de Colombia.

Author Details
Universidad Nacional de Colombia, Bogotd, Departamento de Biologia, Oficina
222.Calle 45 Cra 30. Bogota D.C. Colombia

Received: 24 March 2010 Accepted: 1 July 2010
Published: 1 July 2010

References

1. Baulcombe D: RNAi silencing in plants. Nature 2004, 431:356-363.

2. Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM: The evolution of RNAi as a
defence against viruses and transposable elements. Phil Trans R Soc B
2009, 364:99-115.

3. Meins F Jr, S-Ammour A, Blevins T: RNA silencing systems and their
relevance to plant development. Annu Rev Cell Dev Biol 2005,
21:297-318.4

4. Vaucheret H: Post-transcriptional small RNA pathways in plants:
Mechanisms and regulations. Genes Dev 2006, 20:759-771.

5. Lindbo J, Dougherty W: Plant Pathology and RNA.: A Brief History. Annu
Rev Phytopathol 2005, 43:191-204.


http://www.biomedcentral.com/1471-2229/10/138
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18926973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16212497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16600909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16078882

Pérez-Quintero et al. BMC Plant Biology 2010, 10:138
http://www.biomedcentral.com/1471-2229/10/138

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34

35.

36.

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 2004, 116:281-297.

Tang GL, Reinhart BJ, Bartel DP, Zamore PD: A biochemical framework for
RNA silencing in plants. Genes Dev 2003, 17:49-63.

Llave C, Kasschau K, Rector M, Carrington J: Endogenous and Silencing-
Associated Small RNAs in Plants. The Plant Cell 2002, 14:1605-1619.
Reinhart B, Weinstein E, Rhoades M, Bartel B, Bartel D: MicroRNAs in
plants. Gene Dev 2002, 16:1616-1626.

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for
microRNA genomics. Nucleic Acids Res 2008:D154-D158.

Dugas D, Bartel B: MicroRNA regulation of gene expression in plants.
Curr Opin Plant Biol 2004, 7:512-52.

Mallory A, Vaucheret H: Functions of microRNAs and related small RNAs
in plants. Nat Genet 2006, 38(Suppl):S31-536.

Berkhout B, Haasnoot J: The interplay between virus infection and the
cellular RNA interference Machinery. FEBS Letters 2006, 580:2896-2902.
Bushati N, Cohen S: microRNA functions. Annu Rev Cell Dev Biol 2007,
23:175-205.

Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib
A, Voinnet O: A cellular microRNA mediates antiviral defense in human
cells. Science 2005, 308(5721):480-1.

Watanabe Y, Kishi A, Yachie N, Kanai A, Tomita M: Computational analysis
of microRNA-mediated antiviral defense in humans. FEBS Letters 2007,
581:4603-4610.

Nair V, Zavolan M: Virus-encoded microRNAs: novel regulators of gene
expression. Trends Microbiol 2006, 14(4):169-175.

Scaria V, Hariharan M, Pillai B, Maiti S, Brahmachari S: Host-virus genome
interactions: macro roles for microRNAs. Cell Microbiol 2007,
9(12):2784-2794V.

Ding SW, Li H, Lu R, Li F, Li WX: RNA silencing: a conserved antiviral
immunity of plants and animals. Virus Res 2004, 102:109-115.
Mahmood-ur-Rahman Al, Husnain T, Riazuddin S: RNA interference: the
story of gene silencing in plants and humans. Biotechnol Adv 2008,
26(3):202-9.

Niu Q, Lin S, Reyes J, Chen K, Wu H, Ye S, Chua N: Expression of artificial
microRNAs in transgenic Arabidopsis thaliana confers virus resistance.
Nature Biotechnol 2006, 24(11):1420-1427.

Qu J, Ye J, Fang R: Artificial MicroRNA-Mediated Virus Resistance in
Plants. JVirol 2007, 81:6690-6699.

Lin'S, WuH, Elena S, Chen K, Niu Q, Ye S, Chen C, Chua N: Molecular
Evolution of a Viral Non-Coding Sequence under the Selective Pressure
of amiRNA-Mediated Silencing. PLoS Pathog 2009, 5(2):e1000312.
Simoén-Mateo C, Garcia J: MicroRNA-Guided Processing Impairs Plum
Pox Virus Replication, but the Virus Readily Evolves To Escape This
Silencing Mechanism. J Virol 2006, 80(5):2429-2436.

Dunoyer P, Voinnet O: The complex interplay between plant viruses and
host RNA-silencing pathways. Curr Opin Plant Biol 2005, 8:415-423.
Lu'Y, Gan Q, Chi X, Qin S: Roles of microRNA in plant defense and virus
offense interaction. Plant Cell Rep 2008, 27:1571-1579.

Llave C: MicroRNAs: more than a role in plant development? Mol plant
pathol 2004, 5(4):361-366.

Blichen-Osmond C: Taxonomy and Classification of Viruses. In Manual
of Clinical Microbiology Volume 2. 8th edition. ASM Press, Washington DC;
2003:1217-1226.

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA
targets in Drosophila. Genome Biol 2003, 5(1):R1.

Hsu P, Lin L, Hsu S, Hsu J, Huang H: ViTa: prediction of host microRNAs
targets on viruses. Nuc/ Acids Res 2007:D381-D385.

MacDiarmid R: RNA silencing in productive virus infections. Annu Rev
Phytopathol 2005, 43:523-44.

Barbato C, Arisi |, Frizzo M, Brandi R, Da Sacco L, Masotti A: Computational
Challenges in miRNA Target Predictions: To Be or Not to Be a True
Target? JBiomed Biotechnol 2009:9. Article ID 803069.

Bartel B, Bartel D: MicroRNAs: At the Root of Plant Development? Plant
Physiol 2003, 132:709-717.

Brennecke J, Stark A, Russell R, Cohen S: Principles of MicroRNA-Target
Recognition. PLoS Biol 2005, 3(3):e85.

Brodersen P, Voinnet O: Revisiting the principles of microRNA target
recognition and mode of action. Nat Rev Mol Cell Bio 10:141-148.
Mallory A, Bouche N: MicroRNA-directed regulation: to cleave or not to
cleave. Trends Plant Sci 2008, 13(7):359-367.

37.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Page 11 of 12

Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK: A miRNA involved in phosphate
starvation response in Arabidopsis. Curr Biol 2005, 15:2038-2043.
Jones-Rhoades MW, Bartel DP: Computational identification of plant
micro-459 RNAs and their targets, including a stress-induced miRNA.
Mol Cell 2004, 14(460):787-799.

Bazzini AA, Hopp HE, Beachy RN, Asurmendi S: Infection and
coaccumulation of tobacco mosaic virus proteins alter microRNA
levels, correlating with symptom and plant development. P Nat/ Acad
Sci USA 2007, 104(29):12157-12162.

Feng J, Wang K, Liu X, Chen S, Chen J: The quantification of tomato
microRNAs response to viral infection by stem-loop real-time RT-PCR.
Gene 2009, 437(1-2):14-21.

Naqvi A, Choudhury N, Mohd Q, Hag R, Mukherjee S: MicroRNAs as
biomarkers in Tomato Leaf Curl Virus (ToLCV) disease. Nuclacids S 2008,
52:507-508.

Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y: Specific
enrichment of miRNAs in Arabidopsis thaliana infected with tobacco
mosaic virus. DNA Res 2007, 14:227-233.

Axtell MJ: Evolution of microRNAs and their targets: are all microRNAs
biologically relevant. Biochim Biophys Acta 2008, 1779(11):725-34.
Sunkar R, Jagadeeswaran G: In silico identification of conserved
microRNAs in large number of diverse plant species. BMC Plant Biol
2008, 8:37.

Duan C, Wang C, Huishan G: Regulation of microRNA on plant
development and viral infection. Chinese SciBull 2006, 51(3):269--278.
Zhang B, Pan X, Cobb GP, Anderson T: Plant microRNA: A small
regulatory molecule with big impact. Dev Biol 2006, 289:3-16.
Mahajan V, Drake A, Chen J: Virus-specific host miRNAs: antiviral
defenses or promoters of persistent infection? Trends Immunol 30(1):.
Shabalina A, Koonin E: Origins and evolution of eukaryotic RNA
interference. Trends Ecol and Evol 2008, 23(10):578-587.

Piriyapongs J, Jordan IK: Dual coding of siRNAs and miRNAs by plant
transposable elements. RNA 2008, 14:814-821.

Benson D, Karsch-Mizrachi |, Lipman D, Ostell J, Wheele D: GenBank.
Nucleic Acids Res 2005:D34-D38.

Adams MJ, Antoniw JF: DPVweb: a comprehensive database of plant
and fungal virus genes and genomes. Nucleic Acids Res
2006:D382-D385.

Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ, (eds):
Plant Viruses Online: Descriptions and Lists from the VIDE Database.
[http//www.agls.uidaho.edu/ebi/vdie//]. (1996 onwards)

Stajich JE, Block D, Boulez K, Brenner SE, et al.: The Bioperl toolkit: Perl
modules for the life sciences. Genome Res 2002, 10:1611-8.

Hall TA: BioEdit: a user-friendly biological sequence alignment editor
and analysis program for Windows 95/98/NT. Export Nucl acids S 1999,
41:95-98.

Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou
AG: The database of experimentally supported targets: a functional
update of TarBase. Nucl Acids Res 2009:D155-8.

Backman TW, Sullivan CM, Cumbie JS, Miller ZA, Chapman EJ, Fahlgren N,
Givan SA, Carrington JC, Kasschau KD: Update of ASRP: the Arabidopsis
Small RNA Project database. Nucleic Acids Res 2008, 36:D982-5.

Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD:
Arabidopsis MPSS: an online resource for quantitative expression
analysis. Plant Physiol 2004, 135:801-813.

Zhang Z,Yu J, Li D, Zhang Z, Lio F, Zhou X, Wang T, Ling Y, Su Z: PMRD:
plant microRNA database. Nucleic Acids Res 2010:D806-D813.
Fahlgreen N, Howell M, Kasschau K, Chapman E, Sullivan CM, Crumbie JS,
Givan SA, Law TF, Grant SR, Dangl JF, Carrington JC: High-Throughput
Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth
and Death of MIRNA Genes. PLoS ONE 2007:¢219.

Garcia D: A miRacle in plant development: role of microRNAs in cell
differentiation and patterning. Semin Cell Dev Biol 2008, 19(6):586-95.
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker P, Schuster P: Fast
Folding and Comparison of RNA Secondary Structures. Monatshefte f
Chemie 1994, 125:167-188.

Maziere P, Enright A: Prediction of microRNA targets. Drug Discov Today
2007,12(11/12):452-458.

Zhang B, Pan X, Wang Q, Cobba G, Anderson T: Computational
identification of microRNAs and their targets. Comput Biol Chem 2006,
30:395-407.



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12514099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12101121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17991681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15337093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16736022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16563388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17506695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17825824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16531046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17944962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18221853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17344304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19247440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16474149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18626646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20565604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14709173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16078894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12805599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18501664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16303564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19374024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18342023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18416839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16325172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19059006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18367716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381892
http://www.agls.uidaho.edu/ebi/vdie//
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18957447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17999994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19808935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17299599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18708151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17532529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17123865

Pérez-Quintero et al. BMC Plant Biology 2010, 10:138 Page 12 of 12
http://www.biomedcentral.com/1471-2229/10/138

64. Schwab R, Palatnik J, Riester M, Schimmer C, Schmid M, Weigell D: Specific
Effects of MicroRNA on the Plant Transcriptome. Dev Cell 2005,
8:517-527.

65. R Development Core Team: R: A language and environment for
statistical computing R Foundation for Statistical Computing, Vienna,
Austria. 2005 [http//www.R-project.org].

doi: 10.1186/1471-2229-10-138

Cite this article as: Pérez-Quintero et al, Plant microRNAs and their role in
defense against viruses: a bioinformatics approach BMC Plant Biology 2010,
10:138

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15809034
http://www.R-project.org

	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Discussion
	Conclusions
	Methods
	Dataset
	Target prediction
	Statistical analyses

	Authors' contributions
	Acknowledgements
	Author Details
	References

