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Abstract
Background Geographical factors affect the nutritional, therapeutic and commercial values of fruits. Dragon fruit 
(Hylocereus spp) is a popular fruit in Asia and a potential functional food with diverse pharmacological attributes. 
Although it is produced in various localities, the information related to the altitudinal variation of dragon fruit 
nutrients and active compounds is scarce. Hence, this study aimed to investigate the variations in metabolite profiles 
of H. polyrhizus (variety Jindu1) fruit pulps from three different altitudes of China, including Wangmo (WM, 650 m), 
Luodian (LD, 420 m), and Zhenning (ZN, 356 m). Jindu1 is the main cultivated pitaya variety in Guizhou province, 
China.

Results The LC-MS (liquid chromatography-mass spectroscopy)-based widely targeted metabolic profiling identified 
645 metabolites, of which flavonoids (22.64%), lipids (13.80%), phenolic acids (12.40%), amino acids and derivatives 
(10.39%), alkaloids (8.84%), and organic acids (8.37%) were dominant. Multivariate analyses unveiled that the 
metabolite profiles of the fruit differed regarding the altitude. Fruits from WM (highest altitude) were prime in quality, 
with higher levels of flavonoids, alkaloids, nucleotides and derivatives, amino acids and derivatives, and vitamins. 
Fruits from LD and ZN had the highest relative content of phenolic acids and terpenoids, respectively. We identified 
69 significantly differentially accumulated metabolites across the pulps of the fruits from the three locations. KEGG 
analysis revealed that flavone and flavonol biosynthesis and isoflavonoid biosynthesis were the most differentially 
regulated. It was noteworthy that most active flavonoid compounds exhibited an increasing accumulation pattern 
along with the increase in altitude. Vitexin and isovitexin were the major differentially accumulated flavonoids. 
Furthermore, we identified two potential metabolic biomarkers (vitexin and kaempferol 3-O-[2-O-β-D-galactose-6-O-
a-L-rhamnose]-β-D-glucoside) to discriminate between dragon fruits from different geographical origins.

Conclusion Our findings provide insights into metabolic changes in dragon fruits grown at different altitudes. 
Furthermore, they show that growing pitaya at high altitudes can produce fruit with higher levels of bioactive 
compounds, particularly flavonoids.
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Background
Foods, including fruits, vegetables, dairy products, etc., 
are vital for human health, as they are involved in the 
management, treatment and prevention of diseases [1, 2]. 
Among these, fruits are important sources of numerous 
essential nutraceuticals [3]. The daily intake of fruits is 
recommended for a well-balanced, healthy diet enriched 
with bioactive metabolites for the prevention of several 
chronic diseases [3, 4]. An adequate daily intake of veg-
etables and fruits substitutes high-energy-dense foods 
from the body and promotes the ingestion of dietary 
fiber and healthy nutrients [5, 6]. The recommended 
daily consumption of fresh fruits and vegetables by the 
WHO (World Health Organization) is at least 400 g [7]. 
Therefore, understanding fruit plants’ biology and fac-
tors underlying variation in fruits’ quality traits is of great 
interest. Studies have shown that environmental factors, 
such as altitude, light, humidity, temperature, atmo-
spheric gases, and rootstocks, affect the normal growth, 
development and reproduction of fruit plants, leading to 
significant changes in the physical and biochemical char-
acteristics of fruits [4, 8, 9]. For instance, the influence of 
different growing conditions on apple, strawberry, water-
melon, peach, blackcurrant, goji berry and wolfberry 
quality traits has been studied and proven [8, 10–15].

Amongst the environmental factors, altitude is a major 
determinant of fruit quality, as it affects the temperature, 
solar radiation (UV light and light intensity), and humid-
ity, leading to significant physiological and metabolic 
changes in plants [16–21]. Studies in strawberry, peach, 
and apple have shown that high altitude affects fruit 
color traits, stimulates the accumulation of antioxidation 
compounds, increases the acidity of fruits, induces varia-
tion in carotenoid profiles, impairs vitamin C synthesis, 
and alters protein metabolism [20–23]. For instance, an 
increase in altitude was associated with enhanced bio-
synthesis and storage of phenolic compounds, including 
quercetin-3-O-rhamnoside, cyanidin-3-O-galactoside, 
chlorogenic acid, and quercetin-3-O-rutinoside in apple 
[21]. Hence, evaluating the physicochemical profiles 
of fruits from different altitudes will provide valuable 
resources for the environmental-based production of 
fruits for specific industries and purposes.

Dragon fruit (pitaya or pitahaya) is an economically 
important tropical fruit of the Cactaceae family [24]. 
Three categories of dragon fruits, including red pulp with 
pink peel (Hylocereus polyrhizus), white pulp with pink 
peel (H. undatus), and white pulp with yellow skin (H. 
megulanthus) are found based on the peel and pulp col-
ors [25]. Its higher adaptability, tolerance to various abi-
otic stresses, commercial interest and health-promoting 
attributes are some of the characteristics that have led to 
its cultivation all over the world [24, 26, 27]. Dragon fruits 
are rich in phytochemicals, such as betacyanin, lycopene, 

vitamins (vitamin C mainly), dietary fiber, flavonoids, 
amino acids, phenolic acids, sugars and organic acids 
[25, 28–31]. Pharmacological investigations have shown 
that dragon fruit extracts have many therapeutic abilities, 
including anti-microbial, antioxidant, anti-cancer, anti-
diabetic, anti-plasmodial, hypolipidemic, anti-inflamma-
tory, chemopreventive, neuroprotective and anti-ulcer 
[25, 28, 32–40]. Betacyanin and peel powder from dragon 
fruit are used as natural colorants in food products or to 
improve food quality [28, 41, 42]. Variation in the content 
of nutraceuticals in dragon fruits is primarily governed 
by genotype, environmental conditions, and their inter-
actions [37, 43, 44]. However, few studies have focused 
on the variation in quality characteristics of dragon fruits 
from different geographical origins [37, 43].

Pitaya is the fifth most popular tropical fruit in Asia 
[24]. The major pitaya producing areas in China are in 
the Southern, principally in Guangdong, Guizhou, and 
Guangxi provinces. Dragon fruit has been grown in 
Guizhou since about 2000. Its typical karst landforms, 
humid tropical climate, annual precipitation (1100–
1335  mm) and annual average temperature (14–16  °C) 
are the most suitable for growing dragon fruit [24, 45]. 
The planted area and annual output of pitaya in Guizhou 
are about 6,670 hectares (110,388 acres) and 50,000 
tones, respectively. Three counties, namely Wangmo, 
Luodian and Zhenning are the top planting locations 
in Guizhou province (Figure S1). The total planted area 
and production in the three counties by 2019 were 670 
hectares (11,089 acres) and 7,000 tones, respectively. The 
three counties are primarily different in altitudes, offer-
ing the opportunity to investigate the altitudinal variation 
of dragon fruit phytochemical composition and quality 
traits. Understanding the impacts of altitude on dragon 
fruit quality values will contribute to meeting specific 
consumer demands and promoting the fruit industry.

In the last decade, metabolomics has emerged as the 
most powerful and efficient tool to chemically charac-
terize (qualitatively and quantitatively) the metabolome 
underpinning the diversity in plant phenotypes and to 
evaluate metabolic changes due to environmental fac-
tors [46, 47]. It has been applied to investigate differences 
in the metabolite profiles of Lycium barbarum (Chinese 
wolfberry) fruits from three different locations in China 
[14]. Therefore, in this study, we investigated changes in 
the metabolite profiles of Jindu1 fruits (the major pitaya 
cultivar) from the three top growing areas of Guizhou 
provinces through widely targeted metabolomics analy-
sis. We uncovered key DAMs (differentially accumulated 
metabolites) and differently regulated pathways between 
the three locations. Notably, we identified the bioac-
tive compounds whose accumulation was influenced by 
growing conditions, mainly the altitude. Our findings 
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provide fundamental resources for the environmental-
based production of dragon fruits of desired quality.

Results
Metabolite profiles of dragon fruits from different altitudes
To provide deep insights into the impacts of different 
altitudes on dragon fruit quality variation, we carried out 
the metabolic profiling analysis of fruits from the three 
locations. The UPLC-ESI-QqQLIT-MS/MS-based widely 
targeted metabolomics analysis approach was achieved 
on fruits from WM (650 m), LD (420 m), and ZN (356 m) 
(Figure S1) with three replications. All fruit extracts were 
analyzed at both the negative and positive ESI (elec-
trospray ionization) modes. The higher correlations 
obtained between quality control (QC) samples con-
firmed the repeatability of the experiment (Figure S2). In 
total, 645 metabolites were detected and chemically char-
acterized (TableS1). The classification of the metabolites 
revealed that flavonoids (22.64%), lipids (13.80%), pheno-
lic acids (12.40%), amino acids and derivatives (10.39%), 
alkaloids (8.84%), and organic acids (8.37%) were the pre-
dominant metabolic compounds in the pulp of dragon 
fruit (Fig. 1A). The flavonoids were dominated by flavo-
nols (41.78%) and flavones (35.61%) (Fig. 1B). The sum of 
all intensities of metabolites belonging to the same class 
showed that fruits from WM had significantly higher 
relative content of flavonoids, vitamins, amino acids and 
derivatives, and nucleotides and derivatives (Fig. 2A-D). 
Compared with fruits from WM, fruits from LD exhib-
ited significantly higher relative content of coumarins 
and phenolic acids (Fig.  2E, F). The alkaloid content of 
fruits from WM was significantly higher than in fruit 
from ZN (Fig. 2G). In contrast, fruit from ZN had signifi-
cantly higher relative content of saccharides and alcohols 
than fruits from WM (Fig. 2H). Fruit from ZN exhibited 
the highest relative content of organic acids, followed 
by fruits from WM (Fig.  2I). There were no significant 

differences in the relative contents of free fatty acids, lip-
ids, and terpenoids in the fruits from the three locations 
(Fig. 2J-L).

Altitudinal distribution and variation of dragon fruit 
metabolite profiles
We conducted PCA (principal component analysis) and 
HCA (hierarchical clustering analysis) analyses to exam-
ine the degree of metabolite variation in dragon fruits 
from different altitudes (Fig.  3). The PCA showed that 
the metabolite profiles of WM, LD, and ZN fruit sam-
ples were different and could be discriminated by PC1 
(35.31%) and PC2 (24.53%) (Fig.  3A). Supportively, the 
HCA showed that a number of metabolites exhibited dif-
ferential accumulation patterns in the pulp of the fruits 
from the three locations (Fig.  3B). Many metabolites 
exhibited higher accumulation patterns in fruits from 
WM compared with fruit from the two other locations. 
The results from correlation analysis were also support-
ive of the observed trends of metabolites’ variation in 
the fruits from different altitudes (Figure S2). Further, we 
performed OPLS-DA (orthogonal partial least squares-
discriminant analysis) to verify the altitudinal variation of 
metabolites in dragon fruits. Supportively, the OPLS-DA 
indicated strong goodness of fit and high predictability 
when comparing the groups against each other (Figures 
S3)A-C). As shown in the score plots of OPLS-DA, the 
metabolite profile of fruits from ZN showed 44.1% and 
50.2% variance when compared to fruits from LD and 
WM, respectively (Fig. 4A, B). Meanwhile, fruits from LD 
and WM showed 52.1% of variation (Fig. 4C).

Differentially accumulated metabolites (DAMs) across the 
dragon fruits from different altitudes and KEGG analysis
To unravel the real impact of altitude on metabolites’ 
accumulation in dragon fruit, we carried out DAMs anal-
ysis. By applying the thresholds of fold-change (FC ≥ 1), 

Fig. 1 Classification of the identified metabolites. (A) Classification of the 645 identified metabolites. (B) Specific classification of flavonoid groups
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VIP ≥ 1, and p-value < 0.05, we detected 43, 43, and 28 
significant DAMs in pairwise comparison between 
ZN_vs_LD, ZN_vs_WM, and LD_vs_WM, respectively 
(Fig.  4D-F). Key DAMs could serve as discriminatory 
metabolic biomarkers. Through the construction of a 
Venn diagram among the DAMs, we identified two key 
DAMs, including Apigenin-8-C-Glucoside (Vitexin, a 
flavonoid carbonoside) and Kaempferol 3-O-[2-O-β-D-
galactose-6-O-a-L-rhamnose]-β-D-glucoside (flavonol) 
(Fig. 5A). The classification of DAMs showed that flavo-
noids were the main metabolite class affected by the dif-
ferences in altitudes (Fig. 5B).

To unveil the main metabolic pathways significantly 
affected by the growing conditions, we performed KEGG 
annotation and enrichment analysis of the DAMs. 

Supportively to the DAMs classification, the results indi-
cated that flavone and flavonol biosynthesis and isofla-
vonoid biosynthesis were the most enriched pathways 
(Fig. 5C, D, and Figure S4). Glycerophospholipid metabo-
lism and ether lipid metabolism were also significantly 
enriched between ZN and LD (Figure 5C).

Variation of active flavonoid compounds
To examine the variation characteristics of DAMs 
in fruits from WM, LD, and ZN, we first carried out 
K-means analysis of DAMs. The results showed that the 
DAMs were grouped into six sub-classes based on their 
relative contents (Figure S5 and Table S2). DAMs in sub-
class 5 (13 metabolites) and sub-class 6 (19 metabolites), 
mostly flavonoids, exhibited the highest relative content 

Fig. 2 (A)-(L)Variation in the relative content of the major classes of metabolites in the fruits from the three different altitudes. The specific metabolite 
class is indicated at the top of each graph. ns, no significant difference. *, **, ***, and **** indicate significant differences at P ˂ 0.05, 0.01, 0.001, and 0.0001, 
respectively. WM, Wangmo County; LD, Luodian County; ZN, Zhenning County
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Fig. 4 Pairwise comparison and differentially accumulated metabolites (DAMs). (A)-(C) OPLS-DA score plots of pairwise comparisons between ZN_vs_
LD, ZN_vs_WM, and LD_vs_WM, respectively. (D)-(F) Volcano plots of DAMs in pairwise comparisons between ZN_vs_LD, ZN_vs_WM, and LD_vs_WM, 
respectively. WM, Wangmo County; LD, Luodian County; ZN, Zhenning County

 

Fig. 3 Overview of metabolite profiles of dragon fruits from the three different altitudes. (A) Principal component analysis (PCA). (B) Heat map visualiza-
tion. Each sample is represented by one column, and each metabolite is visualized in one row. Red and green indicate relatively high and low metabolite 
abundance, respectively. A, D, and E indicate ZN (Zhenning County), LD (Luodian County), and WM (Wangmo County), respectively. 1, 2, and 3 refer to 
replications
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in fruits from WM (Figure S5 and Table S2). Only eight 
metabolites in sub-class 2 exhibited the highest rela-
tive content in fruits from LD (Figure S5 and Table S2). 
As both the classification, KEGG and K-means analyses 
revealed flavonoids as the most affected by changes in 

altitude, we constructed a diagram of the flavonoid path-
way and a heatmap based on the fold changes to favorize 
future exploration and identification of differentially 
expressed genes (Figure 6 and S6). Many active flavo-
noid compounds, including vitexin, isovitexin, diosmetin, 

Fig. 6 A diagram of the flavonoid biosynthesis pathway with highlights on major differentially accumulated bioactive flavonoid compounds. The scaled 
Log2 fold change of each metabolite is plotted in a blue-yellow-red color scale. The small red circles indicate the highest accumulation. WM, Wangmo 
County; LD, Luodian County; ZN, Zhenning County

 

Fig. 5 Overlapped DAMs and KEGG analysis. (A) Venn diagram showing the number of overlapped DAMs. (B) Classification of DAMs in each pairwise 
comparison. (C) and (D) KEGG annotations and enrichment results of the DAMs between ZN_vs_LD and ZN_vs_WM, respectively. WM, Wangmo County; 
LD, Luodian Country; ZN, Zhenning Country
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hispidulin, rhoifolin, apigenin glucosides, diosmetin 
glucosides, epicatechin gallate, ferrerol-7-O-glucoside, 
kaempferol glucosides, pratensein-7-O-glucopyraniside, 
baicalin, etc., were highly accumulated in fruits from WM 
compared to those from LD and ZN (Figure 6 andS6). 
Genkwanin, oroxylin, acacetin, wogonin and biochanin A 
were highly induced in fruits from WM, followed by LD 
and ZN (Figure S6). Epicatechin glucoside had the high-
est relative content in fruits from LD, followed by WM 
(Figure 6 and S6).

Variation characteristics of other DAMs
The accumulation patterns of other DAMs in the dragon 
fruits from the three different altitudes are shown in 
Figure7. The results showed that other important bio-
active compounds, such as 4-hydroxybenzaldehyde, 
isochlorogenic acid B and methyl caffeate (phenolic 
acids), isoscopoletin (coumarin); tryptamine, sn-glycero-
3-phosphocholine, and sinapine glucoside (alkaloids); 
L-pipecolic acid, 5-oxoproline, S-(methyl)glutathione 
(amino acids and derivatives); 2-hydroxyisocaproic 
acid and (S)-(-)-2-hydroxyisocaproic acid (organic 
acids) accumulated highly in fruit from WM than oth-
ers (Fig.  7). Skimmin, androsin, (-)-secoisolariciresinol 

4-O-β-D-giucopyranoside, feruloyl glucose, p-coumaric 
acid-O-glycoside, L-fucose and pantothenol exhibited the 
highest content in fruits from LD, followed by WM and 
ZN (Fig. 7).

Discussion
Dragon fruit is a promising functional food with tremen-
dous pharmacological abilities against chronic diseases 
[25, 28, 32–40]. However, the content of bioactive com-
pounds in dragon fruits varies significantly depending on 
the growing environmental conditions [37, 43]. Thus, the 
present study investigated changes in the metabolite pro-
files of H. polyrhizus. cv. Jindu1 fruits from three major 
growing areas in China, mainly different in altitude. The 
three locations have different altitudes and mostly simi-
lar soil and climatic conditions. Our analyses confirmed 
that the altitude significantly affects the quality values of 
dragon fruits. We observed a great variation in the rela-
tive content of metabolite classes among the fruits from 
different origins. Fruits from ZN had higher relative 
terpenoid content. Compared to other locations, fruits 
from LD showed higher relative content of coumarins 
and phenolic acids. Fruits from WM showed the high-
est relative content of flavonoids, alkaloids, amino acids 

Fig. 7 Variation characteristic of the relative content of other DAMs in dragon fruit from the three different altitudes. The scaled Log2 fold change of each 
metabolite is plotted in a blue-yellow-red color scale. The small red circles indicate the highest accumulation. WM, Wangmo County; LD, Luodian County; 
ZN, Zhenning County
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and derivatives, nucleotides and derivatives, and vita-
mins, indicating that they were prime in quality. These 
results denote that the geographical conditions at WM 
(higher altitude) are the most suitable for producing 
higher nutritional and therapeutical dragon fruits. Con-
cordantly, Naryal et al. found that the weight of apricot 
fruits decreased with elevation, while the water content 
increased with the decrease in altitude [48]. It is also 
demonstrated that the sweetness of blueberry fruits 
increases with altitude, and fruits from low-altitude areas 
are more acidic [49]. Taken together, these findings show 
that cultivating pitaya varieties at high altitudes may pro-
duce good taste and marked health-beneficial dragon 
fruits. Similar findings were reported in blueberry [49]. 
Betacyanin is the major antioxidant compound in dragon 
fruit and is used as a natural coloring agent in food prod-
ucts [41, 42]. The metabolomics analysis revealed no 
difference in betacyanin accumulation, inferring its bio-
synthesis is less affected by the altitude.

Altitude is a major determinant of fruit quality [16–
18]. At high altitudes, the temperature decreases while 
solar radiation (light intensity, UV light, etc.) increases, 
resulting in the stimulation of UV-absorbing compounds 
(mainly flavonoids) biosynthesis and accumulation in 
plant organs [16, 18, 50]. Herein, we found that the dif-
ference in altitude induces variation in metabolite pro-
files of dragon fruits from the three locations. Sixty-nine 
significant DAMs were identified across the fruits from 
the three sites. The classification of DAMs showed that 
flavonoids were the main DAMs. Supportively, KEGG 
analysis unveiled that the biosynthesis of isoflavonoid, 
flavone, and flavonol were the major differently regu-
lated pathways under the three growing conditions. The 
flavonoid biosynthesis was significantly induced under 
WM (650 m) environmental conditions, followed by LD 
(420  m) and ZN (356  m). These findings are consistent 
with previous reports indicating an enhanced biosyn-
thesis and accumulation of phenylpropanoid pathway-
related compounds (flavonoid, anthocyanins, phenolic 
acids, etc.) in plants at high altitudes [16, 17, 49, 51]. Par-
ticularly, Wang et al. found that Lycium barbarum fruits 
from high-altitude locations in China had higher fla-
vonoid content [14]. Furthermore, our results denote 
that climatic conditions at WM may stimulate signal 
transduction mechanisms in developing dragon fruits, 
leading to higher induction of flavonoid biosynthesis 
structural and regulatory genes’ expressions [51]. Flavo-
noids are the most diverse class of polyphenol secondary 
metabolites and the third largest class of natural products 
broadly distributed in the plant kingdom [52]. Most fla-
vonoid compounds play vital roles in plants’ auto-defense 
processes against pathogens, plant-environment inter-
actions, ultraviolet (UV) radiation, and abiotic stress 
tolerance [52, 53]. We then inferred that fruit from WM 

may resist pathogen attacks during storage more than 
those from the other locations. It is demonstrated that 
dragon fruits with higher antioxidants (flavonoids, phe-
nolic acids, vitamin C, betaine, etc.) perform well during 
postharvest storage [54]. Further studies are required to 
verify these statements. Besides, many other factors, such 
as irrigation, water qualities, soils, fertilization, wind 
direction, photoperiods, and various annual maintenance 
operations, can also affect the quality characteristics of 
fruits [19]. The low altitudinal difference between LD 
and ZN suggests that these factors might also be involved 
in the observed metabolite profile variation. New stud-
ies combining all these environmental factors have to 
be designed and carefully performed to thoroughly 
understand the environmental influence on dragon fruit 
characteristics.

The higher flavonoid content of fruits from WM cou-
pled with the relatively highest content of most of the 
other differentially accumulated bioactive compounds 
suggests that they may own very strong pharmacological 
properties compared to fruits from other localities. The 
ability of flavonoid compounds to cure or prevent dis-
eases, such as diabetes, cancer, oxidative stress, amnesia, 
inflammations, microbial infections, and cardiovascu-
lar dysfunctions, has been proven [55–61]. For instance, 
vitexin and isovitexin were the most highly accumulated 
flavonoids in fruits from WM. These compounds are 
potential substitute drugs for diverse diseases and have 
received considerable attention due to their various phar-
macological attributes, including antioxidant, anti-hyper-
algesic, anti-inflammatory, anti-cancer, neuroprotective, 
etc [62, 63]. Besides, we identified vitexin and Kaemp-
ferol 3-O-[2-O-β-D-galactose-6-O-a-L-rhamnose]-β-
D-glucoside as potential biomarkers for discriminating 
between dragon fruits from different altitudes. Meta-
bolic biomarkers are critical resources used to authenti-
cate, differentiate, and assess the quality of plant-derived 
products from diverse origins [64]. Isovitexin has been 
detected as a marker of the Brazilian crude drug extracts 
from Echinodorus scaber and E. grandifloras [65]. Fur-
ther quantifications of these two potential biomarkers 
in dragon fruits from many genotypes and origins are 
required to confirm them as discriminatory biomarkers.

Conclusion
Overall, this study applied metabolomics analysis to 
compare the accumulation characteristics of nutritional 
and bioactive compounds in dragon fruits from three 
altitudes, including LD (420  m), WM (650  m), and ZN 
(356  m). We found that fruits from WM (highest alti-
tude) were prime in quality, with significantly highest 
levels of flavonoids, alkaloids, amino acids and deriva-
tives, vitamins and nucleotides and derivatives. Fruits 
from LD had the significantly highest relative content 
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of phenolic acids and coumarins and ranked second in 
terms of accumulation of flavonoid compounds. The 
fruits from ZN (lowest altitude) had the highest rela-
tive content of organic acids. We identified DAMs and 
revealed their accumulation patterns in the fruits from 
the three origins. The flavonoid biosynthesis pathway 
was the most affected by changes in altitudes. Further-
more, we uncovered two potential metabolic biomarkers 
(vitexin and kaempferol 3-O-[2-O-β-D-galactose-6-O-a-
L-rhamnose]-β-D-glucoside) that may serve to discrimi-
nate between dragon fruits from different origins. Our 
results show that high-altitude regions may be ideal for 
producing high nutritional and therapeutic dragon fruits. 
Moreover, they provide a fundamental basis for further 
studies toward the environment-based production of 
dragon fruits for specific purposes.

Materials and methods
Plant material and soil chemical properties
This study used H. polyrhizus cv. Jindu1 as the experi-
mental material. Jindu1 is the main cultivated pitaya vari-
ety in Guizhou province, China, with an area of about 1/4 
of the total planting area in the province. Fruit samples 
were collected from three growing areas, mainly differ-
ent in altitudes: Wangmo County (WM, 650 m), Luodian 
County (LD, 420 m), and Zhenning County (ZN, 356 m) 
(Figure S1). Three plantations at each location were ran-
domly selected, and conventional field management prac-
tices were applied. The soil chemical properties at each 
location are presented in TableS3. The soil properties, 
including pH, total nitrogen, alkaline hydrolyzed nitro-
gen, total phosphorus, available phosphorus, organic 
matter, total potassium, and available potassium contents 
were evaluated according to the NY/T 1121.2–2006 Soil 
Testing methods [66, 67]. The fruit samples were col-
lected from five-year-old Jindu1 trees during the peak 
harvest period in June-July 2022. Approximately 30 fruit 
pulps from six representative trees were equally mixed to 
represent one biological replicate in each plantation, and 
the three biological replicates were made from the three 
plantations. All nine samples were in-situ frozen in liquid 
nitrogen and further stored at -80 oC until the UPLC-MS 
analysis.

Widely targeted metabolomics analysis of dragon fruits
The pulp samples were freeze-dried and subsequently 
reduced to powder using a mixer mill (MM 400, Retsch, 
Haan, Germany). The crushing was operated at 30 Hz for 
1.5 min. Then, lyophilized powder (100 mg) of each sam-
ple was extracted at 4 °C for 6 h with 1.2 mL of 70% meth-
anol, followed by centrifugation (15  min at 15,000  g). 
Next, the supernatants were collected and filtrated 
(0.22  μm micropore membrane, SCAA-104, ANPEL, 
Shanghai, China). All extracts were stored at -20 oC up 

to the UPLC-ESI-QqQLIT-MS/MS analysis at MWDB 
(Metware Biotechnology Co., Ltd., Wuhan, China) [68–
70]. Equal volumes of all sample extracts were mixed to 
constitute quality control (QC) samples. The metabolo-
mics was performed as per previously described methods 
[69, 70], and detailed information about the liquid phase 
and MS conditions is presented in TableS3.

Identification and quantification of metabolites
The qualitative identification of each metabolite was 
achieved by integrating spectrum, retention time (Rt), 
and mass spectra information. The Q1 (accurate precur-
sor ions) value, Q3 (product ion) value, Rts, and frag-
mentation patterns were compared with standards (when 
they were available). When no standard was available, 
the metabolites were identified by reference to a local 
self-built database (Metware Biotechnology Co., Ltd., 
Wuhan, China) and public databases, including KNAp-
SAcK (a comprehensive species-metabolite relationship 
database), MassBank (Europe high quality mass spectral 
database), HMDB (human metabolome database), MET-
LIN (a metabolite mass spectral database), and MoTo DB 
(metabolome tomato database). All isotope signals were 
discarded to avoid duplication in the metabolite list [68, 
69, 71]. Finally, we carefully checked all identified metab-
olites through comparison to the phytochemical diction-
ary (CRC, natural products database) and the literature. 
All identified metabolite’s relative content was computed 
via the MRM modes (QqQ MS analysis).

Statistical analysis
After data quality assessment and standardization via 
Zscore, we conducted PCA (principal component analy-
sis), K-means, HCA (hierarchical clustering analysis) and 
OPLS-DA (orthogonal partial least squares discriminant 
analysis) analyses in R (version 3.5.0, www.r-project.org) 
using the packages prcomp, cluster package, pheatmap 
and MetaboAnalystR, respectively. Significant DAMs 
(differentially accumulated metabolites) were detected 
using the R-programming language ggplot2 program 
at thresholds of Log2FC ˃ 1, VIP ≥ 1, and p-value < 0.05. 
The VIP (variable important in projection) values were 
obtained from the OPLS-DA. The functional annotation 
of DAMs was achieved through mapping to the KEGG 
(Kyoto Encyclopedia of Genes and Genomes) database 
(http://www.kegg.jp/kegg/pathway.html). The metabolite 
sets enrichment analysis (MSEA) and hypergeometric 
test were integrated to identify the most enriched path-
ways. GraphPad Prism (version 9.0.0121) and TBtools 
software [72] were used for graph construction. ANOVA 
(analysis of variance) and post hoc test (Tukey test) were 
performed for multiple comparisons at P < 0.05.

Abbreviations

http://www.r-project.org
http://www.kegg.jp/kegg/pathway.html


Page 10 of 12Zhao et al. BMC Plant Biology          (2024) 24:344 

WM  Wangmo County
LD  Luodian County
ZN  Zhenning County
DAM  differentially accumulated metabolites
UPLC  Ultra performance liquid chromatography
QC  Quality control
ESI  Electrospray ionization
HCA  Hierarchical clustering analysis
PCA  Principal component analysis
OPLS-DA  Orthogonal projections to latent structures discriminant analysis
VIP  The variable importance for the projection
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