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Abstract 

Background Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous 
stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are 
no reports on the growth and development of S. kwangsiensis storage stems.

Results The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) 
than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used 
ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing 
to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabo-
lites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles 
of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared 
with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred 
at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved 
in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenyl-
propanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend 
for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis 
was not completely consistent.

Conclusions Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow 
into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. 
A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream 
substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosyn-
thesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis 
of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance 
for the cultivation, breeding, and harvesting of S. kwangsiensis.
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Introduction
Stephania kwangsiensis Lo (Menispermaceae), a well-
known Chinese herbal medicine, is an endangered plant 
distributed from northwestern to southwestern Guangxi 
Province and southeastern Yunnan Province of China. 
Specific secondary metabolites of Chinese herbs such as 
phenylpropanoids and alkaloids exert pharmacological 
effects. Some natural products share common upstream 
pathways and contain a limited number of common pre-
cursors [1–3]. The main medicinal parts of Stephania 
kwangsiensis are spheroids or depressed globose tuber-
ous roots rich in alkaloids. The tuberous roots of Stepha-
nia kwangsiensis are used to treat pain in the stomach, 
duodenal ulcers, pyrexia, upper respiratory tract infec-
tion, acute gastroenteritis, toothache, dysentery, neu-
ralgia, bruising, and swelling [1, 2]. The main alkaloids 
present in the root tubers of Stephania kwangsiensis 
include L-roemerine, dehydroroemerine, D-isocorydine, 
corydine, L-tetrahadropalmatine, palmatine, palmatine 
chloroform, sinoacutine, stephanine, dehydeostephanine, 
and L-capaurine, among others [1]. The L-tetrahydro-
palmatine (craniodyne, also known as rotundine) con-
tent was more than 2% [4]. It can relieve pain and fever, 
reduce the drug demand threshold, and drug depend-
ence, and inhibit colorectal cancer [5, 6]. Sinoacutine 
from S. kwangsiensis can improve the pain threshold by 
electrical stimulation of the toes on hot plates [7]. How-
ever, little is known about the dynamic changes in sec-
ondary metabolites that are important for harvesting 
high-quality roots of S. kwangsiensis.

In addition, S. kwangsiensis seeds are difficult to germi-
nate under natural conditions because of the hardness of 
the seed shell. The slow growth of roots, indiscriminate 
digging, and destruction of suitable wild environments 
by human activities have led to a decrease in the annual 
population of this species [1]. Therefore, the breeding 
and cultivation of S. kwangsiensis are highly important.

Currently, relevant studies on the geophytes of S. 
kwangsiensis have predominantly focused on the analy-
sis of alkaloid components in root tubers, antibacterial 
effects of endophytic fungi on plants and animals, appli-
cation of extracts in biological control, biogenetic diver-
sity, separation and extraction of active components, and 
tissue culture [1]. To date, there have been no reports on 
the growth and development of S. kwangsiensis, and the 
molecular mechanisms affecting the expansion of bul-
bous stems and accumulation of medicinal components 
during the growth and development of S. kwangsiensis 
are unknown.

In the early germplasm collection, preservation, and 
breeding process, we found that the main medicinal 
part of S. kwangsiensis is the bulbous stem, which devel-
oped from the hypocotyl rather than the root. This type 

of bulbous stem is also known as a swollen hypocotyl 
and is a type of underground plant stem. The enlarged 
underground stem of sugar beet (Beta vulgaris) origi-
nates only from the hypocotyl. The hypocotyl of some 
plants expands with the stem or adjacent parts of the 
root system, such as the enlarged stem of turnips (Bras-
sica spp.) or the swollen root system of Adenia [8]. The 
underground storage organ of a crop beet is also known 
as the storage root (taproot), which originates from the 
hypocotyl and primary roots [9]. Taproot formation 
is the result of the rapid growth of secondary xylem in 
the hypocotyl [10]. Multiple plant hormones, including 
auxins and gibberellins (GA), are important for taproot 
enlargement [10–15]. Plant hormones and sugars affect 
turnip taproot initiation and development [11]. Starch 
and sucrose metabolic pathways are altered during tur-
nip taproot development [16]. In addition, reduced lig-
nification and altered cell wall metabolism have been 
suggested to contribute to the loosening and elonga-
tion of the cell wall, thus promoting the enlargement of  
taproots [14, 17].

This study used ultra-performance liquid chromatog-
raphy-tandem mass spectrometry (UPLC-MS/MS) and 
Illumina RNA-seq to perform metabolome and tran-
scriptome profiling of S. kwangsiensis bulbous stems at 
three different developmental stages. This study provides 
insights into the molecular mechanism of S. kwangsien-
sis bulbous stem growth and development and provides 
a theoretical basis for the cultivation, breeding, and har-
vesting of S. kwangsiensis.

Results
Different growth periods in S. kwangsiensis
Several phenotypes of S. kwangsiensis occur at various 
growth stages, with the bulbous stem being the primary 
therapeutic component (Fig. 1). The stem did not expand 
during the unexpanded stage (S1T), and the cell shape 
was relatively regular and polygonal, with thin cell walls 
and almost no intercellular gaps. The size of the cells var-
ied and almost no starch granules were present (Fig. 1). 
In the rapidly expanding stage (S2T), the focus was on 
storing thin-walled tissue; the cell wall was thick, and the 
shape of the cells was irregular. Many small starch parti-
cles were formed within the cells, and most were evenly 
distributed within the cells. The number of starch parti-
cles significantly increased; however, the number of large 
starch particles remained relatively low (Fig.  1). In the 
stable expansion stage (S3T), the focus is on storing thin-
walled tissues with thickened cell walls and larger cell 
gaps. Starch particles were concentrated in one corner of 
the cell and the number of large starch particles gradually 
increased (Fig. 1).
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Fig. 1 Different growth periods and slice analysis of Stephania kwangsiensis. The cell micrograph on the right shows the black box on the left
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Metabolomic changes associated with the growth period
Significantly different phenotypes at different periods 
suggest differential concentrations of metabolites in S. 
kwangsiensis. Therefore, we performed a metabolome 
analysis using UPLC-MS/MS to obtain the metabolome 
profile of S. kwangsiensis (Fig. S1). We detected 1,068 
metabolites, that were classified into 10 classes: 216 alka-
loids, 161 lipids, 132 phenolic acids, 128 amino acids and 
derivatives, 114 others, 102 flavonoids, 83 organic acids, 
69 nucleotides and derivatives, 34 terpenoids, 29 lignans, 
and coumarins (Table S1, Fig. S2). These results suggest 
that alkaloids, lipids, and phenolic acids are the main 
metabolites of S. kwangsiensis during the growth period.

To evaluate the metabolome differences between 
groups and the variation status among the three repli-
cates, we performed principal component analysis (PCA) 
of all samples. The PCA plot showed that the samples 
were clearly distinguished between the three growth 
periods, indicating substantial differences in metabolite 
concentrations in S. kwangsiensis (Figs. S3-S4). The repli-
cates clustered together in the PCA, suggesting low varia-
bility in the metabolome profile (Fig. S5A). The Pearson’s 
correlation coefficient was used to test for correlations 
between different samples. The results also showed that 
the duplicate samples exhibited a strong correlation (Fig. 
S5B).

The heatmap illustrates nine samples divided into three 
main clusters based on ion abundance. The samples from 
each period were aggregated (Fig. 2A). Accordingly, more 
metabolites in S. kwangsiensis were abundant in S3T than 
in S1T or S2T (Fig. 2A). To explore metabolite differences 
in S. kwangsiensis during the three periods, we compared 
the abundance of metabolites.

The abundance of lipids in S1T was lower than those in 
S2T and S3T. Among the S3T alkaloids, lipids, and phe-
nolic acids were the top three differential classes based 
on their abundance (Table S2; Fig. S2). We obtained 472 
differentially accumulated metabolites (DAMs) in the 
comparison between S1T and S2T and 552 DAMs in the 
comparison between S2T and S3T, with threshold val-
ues of variable importance in projection (VIP) score ≥ 1 
and fold change ≥ 2 (Fig. 2B). A total of 247 DAMs were 
common, suggesting variation in the DAMs present dur-
ing different growth periods (Fig.  2B). We used a dif-
ferential abundance score to detect global changes in 
metabolites based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis. 
Plant hormone signal transduction, isoquinoline alkaloid 
biosynthesis, and pentose and glucuronate interconver-
sion pathways were significantly enriched, with multiple 
upregulated DAMs in S2T compared to S3T (Fig.  2C). 
Aminoacyl-tRNA biosynthesis, biosynthesis of secondary 

metabolites, and biosynthesis of amino acids were signifi-
cantly enriched by multiple upregulated DAMs in S1T 
compared to S2T (Fig. 2D).

Overall, these results indicated that with plant growth, 
there were significant changes in the pathways mainly 
related to growth in the early stages and secondary 
metabolism in the later stages.

Global transcriptomic changes in different growth periods 
of S. kwangsiensis
RNA was extracted from the samples used for metabo-
lomic analysis and analyzed using RNA-seq. The num-
ber of raw reads among the samples ranged between 
67,344,314 and 92, 093, 962, respectively. After removing 
low-quality reads, the Q30 scores of all products were 
greater than 93%, indicating high-quality gene sequenc-
ing results for downstream analysis (Table S3). A total 
of 63,851 assembled unigenes with an average length of 
1001  bp were aligned to multiple databases, including 
KEGG, NCBI non-redundant (NR), Swiss-Prot, Gene 
Ontology, and Clusters of Orthologous Groups/EuKary-
otic Orthologous Groups (COG/KOG), to annotate the 
function of the unigenes, of which 24,541 unigenes were 
mapped in at least one database (Table S3). Pearson’s 
correlation coefficient between replicates ranged from 
0.999 to 1, suggesting that the transcriptome results 
were reliable and stable (Fig. S6A). The replicates clus-
tered together in PCA, suggesting low variability in the 
unigene profile (Fig. S6B). A total of 6,196 differentially 
expressed genes (DEGs) in the comparison between S1T 
and S2T and 15,795 DEGs in the comparison between 
S2T and S3T samples were identified using threshold 
values of absolute log2 fold change (FC) ≥ 1 and adjusted 
P-value < 0.05, respectively (Fig.  3A, Tables S4 and S5). 
The expression of key genes was validated by qRT-PCR 
(Fig. S7), which showed high consistency between the 
transcriptome and qRT-PCR testing.

To systematically explore the biological functions of 
DEGs potentially involved in S. kwangsiensis at differ-
ent growth periods, we used DEGs generated by pair-
wise comparisons of different groups for KEGG pathway 
enrichment analysis (Fig.  3B, D). Phenylpropanoid bio-
synthesis, stilbenoid, diarylheptanoid, gingerol biosyn-
thesis, isoquinoline alkaloid biosynthesis, and tyrosine 
metabolism were significantly enriched in DEGs between 
the two comparison groups (Fig.  3C, E). Flavonoid bio-
synthesis and plant hormone signal transduction were 
identified using KEGG analysis of S1T and S2T (Fig. 3C), 
and pentose and glucuronate interconversions and zea-
tin biosynthesis were identified by analyzing S2T and 
S3T (Fig.  3E). These results are similar to those of the 
metabolomics.
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Temporal analysis for DEGs across different growth periods 
of S. kwangsiensis
To assess the gene expression patterns during develop-
ment, the DEGs were separately clustered into eight 
clusters using the STEM algorithm. The four clusters in 
each group, including profiles 0, 3, 4, and 7, were signifi-
cantly enriched by genes based on a P ≤ 0.05 (Fig.  4A). 
For example, the gene levels in profile 7 of both groups 
showed a rapid increase from S1T to S3T, and those in 
Profile 4 displayed an increase from S2T to S3T (Fig. 4A). 
The gene expression levels in profile 0 showed a continu-
ous decrease, whereas those in profile 3 showed a down-
ward trend from S2T to S3T (Fig.  4A). These results 
indicated that the genes involved in the significant pro-
files play an important role in the developmental process. 

Overall, nine KEGG pathways were associated with all 
profiles. The phenylpropanoid biosynthesis (ko00940) 
pathway was a common pathway enriched in profiles 0 
and 3, and fatty acid elongation (ko00062) belonged to 
profile 0 (Fig. 4B, C). Pentose and glucuronate intercon-
versions (ko00040) and isoquinoline alkaloid biosynthesis 
(ko00950) were unique to profile 0 (Fig.  4B). Spliceo-
some (ko03040), mRNA surveillance pathway (ko03015), 
RNA transport (ko03013) and circadian rhythm-plant 
(ko04712) belonging to Profile 4 (Fig.  4D). Finally, only 
one pathway belonged to profile 7, ribosome biogenesis 
in eukaryotes (ko00940) (Fig. 4E). Together, these results 
show that isoquinoline alkaloid biosynthesis and phenyl-
propanoid biosynthesis play significant roles in develop-
mental processes.
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Key pathways involved in different growth periods of S. 
kwangsiensis
KEGG analysis was used to annotate the upregulated or 
downregulated genes and metabolites involved in the 
biosynthesis of isoquinoline alkaloids biosynthesis and 
phenylpropanoid biosynthesis (Fig.  5). The number of 
genes and metabolites with similar regulatory patterns 

was significantly higher than the number of altered 
genes and metabolites (P = 0.0001, chi-square test). Our 
non-targeted metabolome analysis indicated significant 
reductions in salutaridine, (S)-reticuline, (S)-corytuber-
ine, coniferyl alcohol, and sinapaldehyde levels in the 
S3T group. The accumulation of (S)-coclaurine and (R)
N-methyl-coclaurine gradually increased and peaked 
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at S3T. The gene expression patterns of the DEGs in the 
three periods were consistent with those of the metabo-
lites. The levels of caffeic acid 3-O-methyltransferase 
(COMT, K13066), cinnamyl alcohol dehydrogenase 
(K22395), and peroxidase (K00430) were significantly 
higher in S1T than in S3T. We conducted a correlation 
analysis of the DEGs and DAMs in key pathways, and 
most showed significant correlations (Fig. S8). These 
results suggest that DAMs and DEGs exhibit various reg-
ulatory trends depending on the developmental period.

Discussion
The phenotype of S. kwangsiensis changed considerably 
during all the three growth periods. The sliced cells of S. 
kwangsiensis also showed pronounced changes, especially 
in the starch granules. The metabolomic results showed 
that lipids were upregulated during development. Lipids 
participate in diverse biological functions, including car-
bon storage [18]. The enlarged bulbous stem is a nutrient 
storage organ. A variety of nutrients, especially sucrose 
and starch, are accumulated in taproot originated from 
the hypocotyl [11, 19]. In addition, the starch and sucrose 
metabolism pathway is one of the most active pathways 
in taproot development of turnip and is considered very 
important for the secondary thickening process of tap-
roots [16]. The enlarged starch granules and increased 
lipid content indicated that carbon storage increased 

during bulbous stem development, and these changes 
may be important for hypocotyl-originated bulbous stem 
enlargement.

Alkaloids and phenolic acids are the main second-
ary metabolites produced during the development of S. 
kwangsiensis bulbous stems. Phenolic acids belong to the 
class of phenylpropanoid metabolites. Secondary metab-
olites, detected in smaller numbers than alkaloids and 
phenolic acids, were flavonoids, which are phenylpro-
pyl derivatives. Some of these metabolites have medici-
nal value and may share a common upstream pathway 
to form a limited number of common precursors [3, 
20]. These data provide information for further studies 
on the medicinal value and mechanisms of action of S. 
kwangsiensis.

The alkaloid contents of S2T and S3T were higher 
than that of S1T. L-tetrahydropalmatine is an isoqui-
noline alkaloid with medicinal properties. Although the 
two end metabolites, (S) -corytuberine and salutaridine, 
were downregulated in the pathway (Fig.  5), the accu-
mulation of the upstream metabolite, (S)-coclaurine, 
may have led to an increase in the total alkaloid content. 
In the KEGG analysis of metabolites, multiple DAMs 
involved in isoquinoline alkaloid biosynthesis increased 
significantly from S1T to S2T, indicating that S1T to S2T 
was the stage of isoquinoline increase, and the medici-
nal value significantly increased in S. kwangsiensis. At 
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the transcriptome level, the expression levels of multiple 
pathway genes were significantly altered. The phenylpro-
panoid biosynthesis pathway tended to be downregulated 
during bulbous stem development. Based on genome-
wide DEGs analysis, Li et al. [18] reported that, in addi-
tion to the starch and sucrose metabolism pathways, 
the phenylpropanoid biosynthesis pathway was one of 
the top two obviously changed pathways, which may be 
active in both tuberous root initiation and the second-
ary thickening process in turnip. However, changes in 
the phenylpropanoid biosynthesis pathway during turnip 
taproot development remain unclear. Phenylpropanoid 
and isoquinoline alkaloid biosynthesis pathways share the 
same upstream substrate, tyrosine. Although the levels of 
several tyrosine metabolites decreased from S2T to S3T, 
multiple genes involved in the phenylpropanine pathway 
were downregulated. Changes in the phenylpropanine 

pathway were consistent with those observed in the root 
development of sweet potato (Ipomoea batatas). In sweet 
potatoes, the reduction in carbon flow toward phenyl-
propanoid biosynthesis and its delivery to carbohydrate 
metabolism and starch biosynthesis occurs at the ear-
liest stage of storage root formation [21]. Therefore, we 
propose that the downregulated phenylpropanoid bio-
synthesis pathway triggers a tyrosine bias toward the 
upregulated (S)-coclaurine in the isoquinoline alkaloid 
synthesis pathway and may provide more substances for 
starch accumulation, which is beneficial for increased 
medicinal value and enlargement of the S. kwangsiensis 
bulbous stem.

Lignin synthesis is part of phenylpropanoid biosyn-
thesis. COMT is the key enzyme involved in lignin 
biosynthesis. Lignin content decreased significantly 
in the COMT mutant [22–24]. Another key enzyme, 
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peroxidase, catalyzes the final step of lignin biosynthesis 
[25]. Coniferyl alcohol is the precursor of guaiacyl lignin, 
or is further transformed into 5-Hydroxy-coniferylalco-
hol, which is the precursor of 5-hydroxygraiacyl lignin 
[26, 27]. Sinapaldehyde is a substrate that directly pro-
duces syringyl monolignols used for syringyl lignin bio-
synthesis [28]. Transcriptome analysis of sweet potato 
roots by Firon et  al. [21] revealed downregulated lignin 
biosynthesis and upregulated starch biosynthesis in 
the early stages of storage root formation. Upregulated 
starch biosynthesis and downregulated lignin biosyn-
thesis were also reported during the development of 
another traditional plant medicine, Callerya speciosa 
[29]. Angiosperm lignins are complex phenolic poly-
mers that predominantly consist of guaiacyl and syrin-
gyl units with small amounts of p-hydroxyphenyl units. 
Monolignols are synthesized in the cytosol and trans-
ported to the cell wall, where they are oxidized to form 
lignins [30]. From a functional perspective, lignins impart 
strength to cell walls, facilitating rigidity and hydropho-
bicity [31, 32]. Togari [33] proposed a direct link between 
lignification and the initiation of storage roots in sweet 
potatoes, suggesting that lignification inhibits the devel-
opment of storage roots. Liu et  al. [14] proposed that 
GA induces DELLA protein degradation to release NAC 
proteins and induces xylem lignification, thereby inhibit-
ing turnip taproot formation. In the bulbous stem of S. 
kwangsiensis, the expression of COMT and peroxidase 
was significantly higher in S1T than in S3T. In addition, 
coniferyl alcohol and sinapaldehyde, which are upstream 
substrates of lignin synthesis, were downregulated during 
S. kwangsiensis bulbous stem development. These results 
indicate the downregulation of the lignin synthesis path-
way during S. kwangsiensis bulbous stem enlargement. 
We suggest that reduced carbon flow in the phenylpropa-
noid biosynthesis pathway may reduce the intermediate 
metabolites of lignin synthesis, along with the downreg-
ulation of key enzymes in the lignin biosynthesis path-
way, leading to the overall downregulation of the lignin 
biosynthesis pathway, thus promoting the enlargement 
of storage bulbous stems. However, there were no sig-
nificant changes in the transcription levels of cinnamoyl 
coA reductase (CCR ) or cinnamyl alcohol dehydrogenase 
(CAD) during the development of S. kwangsiensis bul-
bous stems. These are key genes involved in lignin bio-
synthesis. CCR is the first rate-limiting enzyme that 
catalyzes the reaction of lignin-specific pathways, while 
CAD catalyzes the final step of monolignol biosynthesis 
[34, 35]. We speculate that the protein expression levels 
or activities of these two enzymes may change signifi-
cantly during enlargement of the S. kwangsiensis bulbous 

stem. However, this hypothesis needs to be verified in 
further studies.

Plant hormones play important roles in plant growth 
and have been reported to be important in the initiation 
of taproot enlargement [12–14]. Multiple upregulated 
DAMs are involved in plant hormone signal transduc-
tion, and significant changes in plant signal transduction 
pathways at the transcriptional level occurred in S1T 
and S2T, but not in S2T and S3T, indicating that plant 
hormones are important for the initiation of the rapid 
expansion of bulbous stems in S. kwangsiensis. Plant hor-
mones have been reported to regulate sugar metabolism 
and transport, including starch accumulation [23–27]. 
Sugars and plant hormones affect turnip taproot initia-
tion and development by stimulating vascular cambium 
activity [14]. Therefore, carbohydrate metabolism is not 
only regulated by plant hormones but may also jointly 
affect the initiation of hypocotyl-originated bulbous stem 
enlargement with hormones. Plant hormones also play 
an important role in regulating the biosynthesis of alka-
loids, including isoquinoline alkaloids [33]. However, the 
effects of plant hormones on carbohydrate metabolism 
and alkaloid synthesis pathways during S. kwangsiensis 
bulbous stem development require further investigation.

Conclusion
We performed a detailed metabolome and transcriptome 
analysis at different time points during S. kwangsiensis 
bulbous stem development. Our results indicated that 
a large number of DAMs and DEGs are involved in bul-
bous stem development. A series of biological pathways 
were identified in which multiple significantly altered 
genes were enriched. These pathways included plant 
signal transduction, isoquinoline alkaloid biosynthesis, 
pentose and glucuronate interconversions, phenylpro-
panoid biosynthesis, and tyrosine metabolism. Based on 
this analysis, we propose that carbon tends to flow into 
alkaloid synthesis and storage of lipids and starch rather 
than into the downregulated phenylpropanoid biosyn-
thesis pathway during the development of S. kwangsien-
sis bulbous stems. The decrease in metabolites involved 
in tyrosine metabolism may be one of the reasons for 
the downregulation of the phenylpropanoid biosynthe-
sis pathway. Downregulation of lignin synthesis during 
phenylpropanoid biosynthesis may reduce the inhibition 
of bulbous stem growth, thereby directly promoting bul-
bous stem enlargement. The roles of different plant hor-
mones in the rapid expansion of S. kwangsiensis bulbous 
stems require further study. These results provide practi-
cal guidance for breeding, cultivation, and harvesting of 
plants.
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Materials and methods
Plant materials
The seeds used in the experiment were sourced from 
Hechi (Guangxi, China), and the plants were grown in a 
greenhouse. Seeds were sown in peat soil and vermicu-
lite at a volume ratio of 1:1 and cultured at room tem-
perature to keep the substrate moist. No nutrients or 
fertilizers were added prior to sampling. Seedlings were 
collected during three phenotypically diverse hypoco-
tyl development periods. S1T: When the seedlings grew 
to a height of 5–10 cm after 20 d of seed germination 
and the base of the plant developed from the epicotyl 
had not expanded, we collected a portion of the seed-
lings approximately 2 cm above the ground. S2T: When 
the seedlings grew to a height of 50–80 cm after three 
months of seed germination, and the growth of the 
base of the plant developed from the epicotyl entered 
a period of rapid expansion, we collected the expand-
ing part approximately 2  cm above the ground. S3T: 
Bulbous stems were selected from wild plants that were 
healthy, free from pests and diseases, and had been 
growing for five years. Bulbous stem centers were col-
lected for the experiments. The sampling process was 
conducted in a sterile environment, and the samples 
were quickly frozen in liquid nitrogen and stored at 
–80 °C.

Paraffin sections
The specimens were fixed in FAA solution (formalin 
(37%): glacial acetic acid: ethanol (50%), ratio 5:5:90 in 
volume) [36]. Samples were progressively dehydrated in 
a graded ethanol series (70–100%), embedded in para-
plasts, and mounted on block holders. Samples were 
sectioned in 8-μm slices using a Reichert 820H Histo-
stat rotary microtome (Warer-Lambert Tech. Inc., USA). 
The paraffin sections were affixed to slides, stained with 
a combination of safranin and fast green, covered with a 
cover slip in place with a thin coating of Neutral Balsam, 
and dried at 38  °C for 48  h [36]. All the sections were 
observed and photographed using a Leica DMLB micro-
scope (Leica Microsystems, Germany).

Metabolite extraction and UPLC‑MS/MS analysis
The metabolite extracts were freeze-dried under vacuum 
and ground to a powder (30 Hz, 1.5 min). Powdered plant 
tissues (50  mg) were extracted using 1.2  mL precooled 
70% methanol. Vortex oscillation was conducted every 
30  min for 30  s, six times. The solutions were centri-
fuged at 12,000 rpm for 3 min before the supernatant was 
transferred to a new 1.5-mL Eppendorf tube. The insolu-
ble fraction was filtered using a microporous membrane 

(0.22 μm) and stored in a sample vial for UPLC-MS/MS 
analysis.

UPLC was performed using a SHIMADZU Nexera X2 
and Tandem mass spectrometry (MS/MS) analysis was 
conducted using an Applied Biosystems 6500 QTRAP 
with an Agilent SB-C18 1.8  µm, 2.1 × 100  mm column. 
The injection volume was 2 µL and a binary separation 
gradient was applied at a flow rate of 0.35 mL/min: 0 min, 
isocratic 95% A (ultra-pure water with 0.1% formic acid), 
5% B (acetonitrile with 0.1% formic acid); 0 to 9 min, lin-
ear gradient to 95% B; 9 to 10  min, isocratic 95% B; 10 
to 11.1 min, linear gradient to 5% B. The main conditions 
of mass spectrometry were electrospray ionization (ESI) 
source temperature 500 °C; ion spray voltage (IS) 5500 V 
(positive ion mode) /-4500  V (negative ion mode); ion-
source gas I (GSI), gas II (GSII), and curtain gas (CUR) 
were set to 50, 60, and 25 psi, respectively. Collision-
induced ionization parameters were set to “high.” The 
metabolites were quantified via multiple reaction moni-
toring (MRM) analysis using triple quadrupole mass 
spectrometry based on a self-established software data-
base (MWDB) [37, 38].

Metabolome analysis
Metabolomic analysis was performed using the Meta-
boAnalystR (1.0.1) package in R. To identify DAMs, we 
implemented orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) using MetaboAnalystR, accord-
ing to the following thresholds: variable importance in 
projection (VIP) score ≥ 1 and absolute log2 FC ≥ 1. Path-
way enrichment analysis of the identified metabolites was 
performed by mapping them to the Kyoto Encyclopedia 
of Genes and Genomes database. The significant path-
ways of the DAMs were determined using the P-values 
obtained from the hypergeometric test. PCA was per-
formed using the statistical function prcomp in the R 
platform.

RNA extraction and RNA‑Seq
Total RNA was extracted from S. kwangsiensi seedlings 
from three biological replicates at each stage using a Qia-
gen RNeasy Plant Kit (Hilden, Germany) according to 
the manufacturer’s protocol. DNA contamination and 
the quality, concentration, and integrity of the total RNA 
were confirmed using agarose gel electrophoresis, Nan-
oPhotometer, Qubit 2.0 fluorometer, and Agilent 2100 
BioAnalyzer.

S. kwangsiensi seedling RNA-seq libraries were pre-
pared using the Illumina TruSeq RNA Sample Prep Kit, 
following the manufacturer’s instructions, and the quality 
of the library was detected using Qubit2.0 and Q-PCR. 
The cDNA library products that passed quality tests were 
sequenced using the Illumina HiSeq-2500 platform.
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Transcriptome analysis
To obtain high-quality clean reads, the read sets obtained 
from S. kwangsiensi seedlings were subjected to adapter 
removal and quality analysis using CASAVA (1.8.2, 
Illumina). Read sets with N content exceeding 10% of 
the number of read bases were considered low-quality 
sequences and were filtered out. The Trinity software 
package was used for efficient and robust de novo assem-
bly of clean reads. All read pairs from S. kwangsiensi 
retained after filtering were used for de novo transcrip-
tome assembly using Trinity (version 2.6.6) with default 
parameters to construct unigenes.

The unigenes were functionally annotated and clas-
sified using various databases, including nr protein, 
Swiss-Prot, KEGG, TREMBL, Gene Ontology (GO), 
and Clusters of Orthologous Groups of Proteins (COG) 
using BLAST software. First, we selected the NR, Swiss-
Prot, KEGG, and COG databases to confirm sequence 
directions. Alignment of the unigene and protein data-
bases was performed using BLASTx. Finally, the protein 
sequences of unigenes with the highest similarity were 
retrieved for functional annotation and classification.

Clean reads from S. kwangsiensi were aligned to assem-
ble the transcripts using Botwie2. Gene expression was 
calculated using RNA-seq by Expectation Maximiza-
tion (RSEM). The expression value of each unigene was 
normalized to fragments per kilobase of transcript per 
million fragment-mapped reads (FPKM). To identify dif-
ferentially expressed genes, we used the DEseq2 package 
(1.22.2) in R to analyze unstandardized read count data 
between two samples based on a false discovery rate 
(FDR) < 0.05, and absolute log2 FC ≥ 1.

Temporal analysis
The short time-series expression miner (STEM) soft-
ware can process short time-series data for clustering 
and statistical biological explanations using exclusive 
approaches and integrate them with the GO and KEGG 
databases. We used the STEM algorithm with default 
parameters to analyze changes in the gene expression 
profiles of S. kwangsiensi during development. The DEGs 
of S. kwangsiensi were clustered according to their P-val-
ues. Clustered profiles with P ≤ 0.05 were considered dif-
ferentially expressed. Genes within the selected clusters 
were enriched in GO terms and KEGG pathways for 
functional annotation, using a hypergeometric distribu-
tion test. Functional items of each selected cluster with 
Q-values ≤ 0.05 were retained.

qRT‑PCR analysis
Quantitative reverse transcription PCR (qRT-PCR) was 
performed to validate the expression of the key genes. 

We extracted RNA from the bulbous stems at the three 
developmental stages and converted it into cDNA using a 
PrimeScript Reverse Transcriptase kit (Takara). Specific 
primers of key genes for qRT-PCR were designed using 
Primer Premier software (version 5.0) (Table S6). qRT-
PCR was performed using a qTOWER 3G Real-Time 
PCR Detection System. All reactions were performed in 
triplicates. We used 25S RNA as an internal control for 
gene expression normalization and the 2 (− ΔΔCt) algo-
rithm to estimate gene expression values [39].

Statistical analysis
Three replicates were analyzed for each tissue type at 
each stage. Pearson’s correlation coefficients were cal-
culated between the abundance of different genes and 
proteins from metabolomic profiling and between the 
relative expression from qRT-PCR and RNA-seq across 
stages using R v3.6.3.
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